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Novel methods for assessing baroreflex sensitivity (BRS) using only pulse

photoplethysmography (PPG) signals are presented. Proposed methods were evaluated

with a data set containing electrocardiogram (ECG), blood pressure (BP), and PPG

signals from 17 healthy subjects during a tilt table test. The methods are based on a

surrogate of α index, which is defined as the power ratio of RR interval variability (RRV)

and that of systolic arterial pressure series variability (SAPV). The proposed α index

surrogates use pulse-to-pulse interval series variability (PPV) as a surrogate of RRV,

and different morphological features of the PPG pulse which have been hypothesized

to be related to BP, as series surrogates of SAPV. A time-frequency technique was

used to assess BRS, taking into account the non-stationarity of the protocol. This

technique identifies two time-varying frequency bands where RRV and SAPV (or their

surrogates) are expected to be coupled: the low frequency (LF, inside 0.04–0.15 Hz

range), and the high frequency (HF, inside 0.15–0.4 Hz range) bands. Furthermore,

time-frequency coherence is used to identify the time intervals when the RRV and SAPV

(or their surrogates) are coupled. Conventional α index based on RRV and SAPV was

used as Gold Standard. Spearman correlation coefficients between conventional α

index and its PPG-based surrogates were computed and the paired Wilcoxon statistical

test was applied in order to assess whether the indices can find significant differences

(p < 0.05) between different stages of the protocol. The highest correlations with the

conventional α index were obtained by the α-index-surrogate based on PPV and pulse

up-slope (PUS), with 0.74 for LF band, and 0.81 for HF band. Furthermore, this index

found significant differences between rest stages and tilt stage in both LF and HF bands

according to the paired Wilcoxon test, as the conventional α index also did. These

results suggest that BRS changes induced by the tilt test can be assessed with high

correlation by only a PPG signal using PPV as RRV surrogate, and PPG morphological

features as SAPV surrogates, being PUS the most convenient SAPV surrogate among

the studied ones.
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1. INTRODUCTION

The baroreflex system plays an important role in regulating
short-term fluctuations of arterial blood pressure (BP) (La Rovere
et al., 2008; Robertson et al., 2012). Arterial baroreceptors (placed
in the wall of the carotid sinuses and aortic arch) sense changes
in BP and modulate efferent autonomic neural activity to the
central nervous system accordingly. A rise in sensed BP leads
to an increase of vagal neurons discharge and a decrease in
the discharge of sympathetic neurons, resulting in decreased
heart rate (HR), cardiac contractility and peripheral vascular
resistance. On the contrary, decreased BP enhances sympathetic
and inhibits vagal activity, leading to increased HR, cardiac
contractility and peripheral vascular resistance.

Cardiovascular diseases are frequently associated to an
impairment of baroreflex mechanisms, resulting in chronic
adrenergic activation. Reduced baroreflex control of HR has been
reported in coronary artery disease, heart failure, hypertension
and myocardial infarction (La Rovere et al., 2008; Pinna
et al., 2017). Assessment of baroreflex in humans is usually
approached measuring the changes in HR in response to changes
in BP, the so-called baroreflex sensitivity (BRS). Alternatively,
spontaneous beat-to-beat fluctuations of systolic arterial pressure
and RR interval can be analyzed, allowing BRS assessment
during daily-life. A wide spectrum of techniques has been
used for spontaneous beat-to-beat BRS assessment. Traditional
approaches, such as the sequence technique and those based on
the spectral analysis of systolic arterial pressure and RR interval
series (α index), were reviewed in La Rovere et al. (2008).

In order to deal with the nonstationary nature of
cardiovascular variability, methods based on wavelet transform
(Nowak et al., 2008; Keissar et al., 2010) and quadratic time-
frequency representations (Orini et al., 2011) have been
proposed. In Orini et al. (2012) a framework for nonstationary
BRS assessment, based on a time-frequency distribution, was
presented, taking into account the strength and prevalent
direction of local coupling between RR variability (RRV) and
systolic arterial pressure variability (SAPV) series. Alternatively,
in Chen et al. (2011) dynamic assessment of BRS is accomplished
based on a closed loop model within a point process framework.
A critical review of clinical studies using spontaneous BRS was
reported in Pinna et al. (2017). Despite some limitations, such
as the lack of standards and the poor measurability in some
patient populations, published studies support spontaneous BRS
as a powerful tool for prognostic prediction in diseases such
as hypertension, myocardial infarction, chronic heart failure
and diabetes (La Rovere et al., 2008; Di Rienzo et al., 2009;
de Moura-Tonello et al., 2016).

Abbreviations: BP, Blood pressure; BRS, Baroreflex sensitivity; ECG,
Electrocardiograml; HF, High frequency; HR, Heart rate; HRV, Heart rate
variability; LF, Low frequency; PA, Pulse amplitude; PAT, Pulse arrival time;
PATV, Pulse arrival time variability; PDA, Pulse decomposition analysis; PEP,
Pre-ejection period; PPG, Pulse photoplethysmography; PPV, Pulse-to-pulse
variability; PSTT, Pulse slope transit time; PTT, Pulse transit time; PUS, Pulse
up-slope; PW, Pulse width; RRV, RR interval variability; SAPV, Systolic arterial
pressure variability; SD, Standard deviation.

Spontaneous BRS assessment and monitoring during daily
life is limited by the requirement of continuous BP recording,
which is usually accomplished by the volume-clamp method
or tonometry method, neither of them being suitable for
ubiquitous monitoring (Mukkamala et al., 2015). This limitation
may be overcome by using a surrogate of systolic arterial
pressure which does not require the BP recording. Many works
have attempted BP estimation based on pulse transit time
(PTT), which is the time delay for the pressure wave to travel
between two arterial sites. Most of these approaches, reviewed
in Mukkamala et al. (2015), are based on models of arterial
wall mechanics and wave propagation in the artery. Due to
ease of measurement, pulse arrival time (PAT), which is the
time delay between the electrocardiogram (ECG) waveform
and a distal arterial waveform, has been widely used instead
of PTT for BP estimation. PAT is the sum of PTT and the
pre-ejection period (PEP), which varies beat-to-beat depending
on ventricular and arterial pressures, short-term physiologic
control and medication. Although the effect of PEP modulation
makes PAT more inconvenient than PTT for BP estimation,
half of the studies reviewed in Mukkamala et al. (2015) used
PAT as a surrogate of PTT. Some of these methods have
been used for BRS assessment. For instance, in Abe et al.
(2015) it was proposed to evaluate baroreflex function using
the maximum normalized cross-correlation between the LF
components of HRV and PAT, derived from ECG and pulse
photoplethysmographic (PPG) signals.

In Liu et al. (2011) it was suggested that PAT can track
BP variations in HF range, but was inadequate to follow the
LF variations. To overcome this limitation (Ding et al., 2016)
proposed to estimate BP combining PAT with a new index,
the photoplethysmogram intensity ratio (PIR), which can reflect
changes in arterial diameter due to arterial vasomotion. In order
to avoid PEP influence in BP estimation, PTT has been derived
from impedance plethysmography recorded at the wrist and PPG
at the finger (Huynh et al., 2018), or from a ballistocardiogram
and PPG at the foot (Martin et al., 2016). Alternatively, PTT was
estimated from two PPG signals recorded at ear and toe in Chen
et al. (2009) and at forearm and wrist inWang et al. (2018). Some
works have investigated the correlation between PAT and PTT
estimated from PPG signals at finger and forehead at rest (Liu
et al., 2015) and during a tilt-test (Lázaro et al., 2016). In Li et al.
(2014) different PPG indices were investigated for BP estimation.
The time ratio of systole to diastole, time span of PPG cycle,
diastolic time duration and area ratio of systole to diastole are at
least as good as PTT for BP estimation, and can be derived from
just one PPG signal.

The PPG signal can be acquired with a sensor placed in
many places of the body. Furthermore, its recording is very
simple, economical, and comfortable for the subject. Thus, PPG
signal is a very interesting signal for ambulatory scenarios and
wearable devices, and assessing BRS from PPG signal may have
significant impact in such applications. Moreover, several studies
have compared pulse rate variability (PRV), derived from the
PPG to HRV derived from the ECG, reporting good agreement
even in non-stationary situations and during abrupt autonomic
nervous system changes (Gil et al., 2010; Wong et al., 2012;
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Posada-Quintero et al., 2013; Schfer and Vagedes, 2013). In this
work we investigate the feasibility of assessing BRS solely from
one PPG signal. The proposed approach is based on using PPG-
based surrogates of RRV and SAPV series. On one hand, pulse-
to-pulse variability (PPV) series was used as surrogate of RRV
series. On the other hand, different PPG morphological features
which are hypothesized to be related to the BP were used for
generating series that were used as surrogates of SAPV. The
ability of the proposed methods to capture changes in autonomic
nervous system control was evaluated in a tilt-test database.

2. MATERIALS AND METHODS

2.1. Data and Preprocessing
A data set containing ECG, BP, and PPG recordings from 17
healthy subjects (11 men), aged 28.5 ± 2.5 years, during a tilt
table test was used for method evaluation. The protocol started
with 4 min in supine position (Rest1), followed with 5 min in
70◦-tilt-up position (Tilt), and ended with 4 min back to supine
position (Rest2). The table took 18 s for automatic transitions
between stages.

ECG lead V4 was recorded by Biopac ECG100C with a
sampling rate of 1,000 Hz, BP signal (xBP(n)) was recorded by
Finometer system with a sampling rate of 250 Hz, and PPG
signal was recorded from the index finger by BIOPAC OXY100C
with a sampling rate of Fs = 250 Hz. A low-pass filter with
a cut-off frequency of 35 Hz was applied to the PPG in order
to attenuate noise. This preprocessed PPG signal is denoted
xPPG(n) in this paper. Several points were measured over the
PPG pulses. Some of them were measured directly over the pulse
as those described in section 2.1.1, and others over the waves
extracted from the pulse by the pulse decomposition analysis
(PDA) technique described in section 2.1.2.

2.1.1. Pulse Delineation
Several points of the ith PPG pulse were detected in order
to take different morphological measurements. All these points
are illustrated in Figure 1. First, PPG pulses were detected
by an algorithm based on a low-pass derivative and a time-
varying threshold (Lázaro et al., 2014). This algorithm detects the
maximum up-slope point (nUi ), and later it is used for detecting
the pulse apex point (nAi ) and the pulse basal point (nBi ) as:

nAi = argmax
n

{

xPPG(n)
}

, n ∈
[

nUi , nUi + 0.3Fs
]

(1)

nBi = argmin
n

{

xPPG(n)
}

, n ∈
[

nUi − 0.3Fs, nUi

]

. (2)

Subsequently, nAi and nBi are used to compute the medium-
amplitude point (nMi ). This point is considered as a robust
measure of PPG pulse location because it is located during the
interval of the steepest slope of the PPG pulse, and it is set as:

nMi = argmin
n

{
∣

∣

∣

∣

xPPG(n)−
xPPG(nAi )+ xPPG(nBi )

2

∣

∣

∣

∣

}

,

n ∈
[

nBi , nAi

]

. (3)

Pulse onset nOi and end nEi points were detected based on the
first derivative (Lázaro et al., 2013). In addition, pulse up-slope

FIGURE 1 | Example of PPG pulse with its automatically detected points, and

morphological measures taken from them: pulse amplitude (PA), pulse width

(PW), and pulse slope transit time (PSTT).

end nSEi was detected in a similar way. Let x′PPG(n) be the first
derivative of xPPG(n) computed by successive differences, after a
5-Hz-low-pass filter. Then, nSEi is set as:

nSEi = argmin
n

{
∣

∣x′PPG(n)− ηx′PPG(nUi )
∣

∣

}

, n ∈
[

nUi , nAi

]

,

(4)
where η was set to 0.05 similarly to the case of nOi and nEi

(Lázaro et al., 2013).

2.1.2. Pulse Decomposition Analysis
PDA is a field in PPG signal proccessing that consits of
modeling the PPG pulse as a main wave superposed with
several reflected waves, increasing the robustness of some
morphological measurements and even allowing others that
would not be possible directly over the pulse. Several models
can be found in the literature, based on different shapes
including Gaussians (Baruch et al., 2011), LogNormal (Huotari
et al., 2011), and Rayleight (Goswami et al., 2010). In this
work, a modification to the PDA technique presented in
Lázaro et al. (2018) is proposed. The main difference of
this technique with respect to other PDA techniques in the
literature is that the waves are extracted one-by-one, instead
of fitting a several-waves-model at once. The modification
proposed in this paper consists of not assuming a specific shape
for the superposed waves, although it is assumed that they
are symmetrical.

First, the baseline of the PPG signal was estimated by cubic-
spline-interpolation of xPPG(nBi ), and subsequently subtracted
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from xPPG(n). This baseline-removed version of PPG signal is
denoted xbPPG(n) in this manuscript. Then, the beginning and the
end of the ith PPG pulse were considered to be nBi and nBi+1 ,
respectively. Note that this criterion ensures that each PPG pulse
begins and ends with zero amplitude, as subtracted baseline was
estimated at those nBi . Later, the algorithm extracts recursively
the jth inner wave of the pulse by the following steps:

1. Set the beginning of the up-slope of the jth wave (nb
SOj,i

) as the

previous to the first non-zero-amplitude sample. Note that in
case of j = 1 (the main wave), this corresponds to nBi .

2. Set the end of the up-slope of the jth wave (nb
SEj,i

) as the first

relative maximum.
3. Estimate the jth wave ybj,i(n) by concatenating the up-

slope with itself horizontally flipped, assuming that
it is symmetric:

xbj,i(n) =

{

xbPPG(n), n ∈
[

nb
SOj,i

, nb
SEj,i

]

0, otherwise
(5)

ybj,i(n) = xbj,i(n)+ xbj,i(−n+ 2nb
SEj,i

+ 1), (6)

4. Substract ybj,i(n) to xbPPG(n) and go back to step 1 to continue
extracting the (j+ 1)th wave.

Once the desired number of waves have been extracted, they can
be modeled in order to measure morphological features. In this
work, three waves were extracted per PPG pulse. Subsequently,
these ybj,i(n) were normalized to the unit in amplitude and to 1,000
samples by spline interpolation, and then they were modeled as
Gaussian waves, each one defined by an amplitude, a mean, and
a standard deviation (SD). Once these values are estimated, they
were re-converted to the original scales of amplitude and time.
An illustration of the steps of this algorithm can be observed
in Figure 2.

2.2. PPG-Based Surrogates of Systolic
Arterial Pressure Variability for BRS
Estimation
2.2.1. Systolic Arterial Pressure Variability Surrogates

Based on Pulse Signal
Four pulse morphological features that have been related to the
BP and/or to the arterial stiffness in the literature were measured
from each PPG pulse: amplitude (PA), width (PW), up-slope
(PUS), and slope transit time (PSTT). Pulse amplitude and width
were measured as in Lázaro et al. (2013). The pulse amplitude
corresponds to that amplitude reached by nAi with respect to
nBi , and the pulse width was measured as the time interval
between nOi and nEi . Pulse up-slope was measured as the first
derivative value at nUi , and PSTT was measured as the time
interval between nOi and nSEi . Later, PA, PW, PUS, and PSTT
series were computed as:

duPA(n) =
∑

i

[

xPPG
(

nAi

)

− xPPG
(

nBi

)]

δ
(

n− nMi

)

(7)

duPW(n) =
∑

i

[

nEi − nOi

]

δ
(

n− nMi

)

(8)

duPUS(n) =
∑

i

[

x′PPG
(

nUi

)]

δ
(

n− nMi

)

(9)

duPSTT(n) =
∑

i

[

nSEi − nOi

]

δ
(

n− nMi

)

, (10)

where δ(·) denotes the Kronecker delta function, and the
superscript “u” denotes that the signals are unevenly sampled,
as the PPG pulses occur unevenly in time. A median-absolute-
deviation outlier-rejection (Bailón et al., 2006) rule was applied
to each one of these series, rejecting those points of the series
that are outside the boundaries defined as the median ± 5 times
the SD of the previous 50 points. Subsequently, a 4-Hz-evenly
sampled version of each one of them was obtained by linear
interpolation. The resulting signals are denoted using the same
nomenclature, this time without the superscript “u” [e.g., dPA(n)].

2.2.2. Systolic Arterial Pressure Variability Surrogates

Based on Pulse Decomposition Analysis
Seven morphological features were extracted from each PDA-
based modeled PPG pulse. Specifically, the amplitude, mean, and
twice the SD of the Gaussian-function fitted to the main wave
were studied (mA1, mB1, and mC1, respectively). Moreover, the
feature related to twice the SD of the first reflected wave were
also studied (mC2), as well as the time delay between the main
wave occurrence mB1 and those of reflected ones mB2 and mB3

(mT12 and mT13, respectively). Furthermore, the percentage of
amplitude that it is lost in the first reflection was also estimated as:

mA12 =
mA1 −mA2

mA1

. (11)

Figure 3 illustrate these measures. These features extracted from
the PDA are also hypothesized to be related to the BP and/or to
the arterial stiffness since they are related to amplitude, relative
position between the waves, and waves dispersion by SD. Their
associated series were computed as:

du{ A1, B1, C1, C2, T12, T13, A12 } (n) =
∑

i

m{ A1, B1, C1, C2, T12, T13, A12 } δ
(

n− nBi
)

.

(12)

The outliers of these series were rejected by the same median-
absolute-deviation-based rule applied in the case of the features
which were measured over the pulse (see section 2.2.1), and
similarly, they were linearly interpolated obtaining a 4 Hz evenly
sampled version of each one of them denoted without the
superscript “u”.

2.3. Baroreflex Sensitivity Indices
The BRS indices were computed based on the α index, which
is computed from a spectral analysis of RRV and SAPV.
Several α-index surrogates based on PPG signal were computed,
using PPV as RRV surrogate, and the SAPV surrogates
described above.

The PPV was estimated using nMi as fiducial point:

duPPV(n) =
∑

i

1

Fs

[

nMi − nMi−1

]

δ
(

n− nMi

)

. (13)
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FIGURE 2 | Example of the steps for the pulse decompostion analysis that lead to extraction of main wave (first row), first reflected wave (second row), and second

reflected wave (third row). In addition, the subsequent modeling of the extracted waves can be observed in the third column in magenta, red, and blue for the main,

first reflected, and second reflected waves, respectively.

FIGURE 3 | Measures over the extracted waves of an example PPG pulse.

Gaussians fitted to these waves are shown in color.

These series were also outlier-rejected and linearly interpolated
to an even sampling rate of 4 Hz. Then, a power spectrum was
computed from dPPV(n), obtaining S̄PPV(f ), and from the kth
SAPV surrogates, obtaining Sk(f ), for each one of the stages of
the protocol, where k can be PA, PW, PUS, PSTT, A1, B1, C1, C2,
T12, T13, and A12. These power spectra were obtained by the
Welch periodogram, using a 2 min Hamming window and 50%
of overlap. Then, the PPG-based surrogates of the α index were
extracted from these spectra, within LF ([0.04, 0.15] Hz) and HF
([0.15, 0.4] Hz) bands:

α
{LF,HF}
k

=

√

∫

�{LF,HF}

SPPV(f )df

/ ∫

�{LF,HF}

Sk(f )df , (14)

where �LF and �HF denote the LF and HF bands, respectively.
In addition, in order to take into account the non-stationarity

of the protocol, the BRS indices were computed using a time-
frequency technique for instantaneous measurement of α index,
described in Orini et al. (2012). A time-frequency distribution
was applied to dPPV(n) obtaining SPPV(n, f ), and to each one of
the PPG-morphology series used as SAPV surrogates obtaining
Sk(n, f ). In addition, a cross time-frequency spectrum SPPV,k(n, f )
was also computed as in Orini et al. (2012). The instantaneous
frequencies of the main components of SPPV,k(n, f ) within [ 0.04,
0.15] Hz [for LF band, fLF(n)] and [0.15, 0.4] Hz [for HF band
fHF(n)] were computed as the frequencies where SPPV,k(n, f ) is
maximum within those bands. Then, �LF(n) and �HF(n) were
defined as the frequency bands centered at fLF(n) and fHF(n),
respectively, with a bandwidth equal to the frequency resolution
of the used time-frequency distribution. Then, the PPG-based
surrogate of α index was computed for each Sk(n, f ) as the square
root of the ratio between the powers of dPPV(n) (as a surrogate of
RRV) and dk(n), for each one of the defined bands:

α
{LF,HF}
k

(n) =

√

∫

�{LF,HF}

SPPV(n, f )df

/ ∫

�{LF,HF}

Sk(n, f )df . (15)

Figure 4 shows inter-subject median and interquartile range
(IQR) of α

{LF,HF}
k

(n) during the protocol. For BRS assessment,
it is convenient to measure these indices only when PPV and
k series are coupled. In order to detect these time courses,
a time-frequency coherence (γPPV,k(n, f )) was computed, and
PPV and k series were considered to be coupled in those
areas where γPPV,k(n, f ) is over a significance level. The indices
αLF
k
(n) and αHF

k
(n) measured only when γPPV,k(n, f ) is significant

within �LF and �HF, respectively, are denoted α
LFγ

k
(n) and
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FIGURE 4 | Median (black) and IQR (shaded area) of αLF(n), αHF(n), and their PPG-based surrogates, during the whole protocol. First 3 rows are related to the LF

band and last 3 rows are related to the HF band.

α
HFγ

k
(n), respectively, in this paper. Further details are given

in Orini et al. (2012).
For validation purposes, the conventional α index was

also computed from the RRV and the SAPV, denoted
with no subindex [α{LF,HF,LFγ ,HFγ }(n)], and taken as
reference. The RRV was computed by the interval function
using the R points (nRi ) determined from the ECG
by Martínez et al. (2004):

duRRV(n) =
∑

i

1

Fs

[

nRi − nRi−1

]

δ
(

n− nRi

)

. (16)

The SAPV was computed from the maximum of BP pulses (n̆Ai ),
which were detected similarly to the case of the PPG pulses (see
section 2.1.1):

duSAPV(n) =
∑

i

xBP
(

n̆Ai

)

δ
(

n− n̆Ai

)

. (17)

2.4. Performance Metrics
A unique value per subject and stage of the protocol (Rest1, Tilt,
and Rest2) was obtained for each one of the three studied α-index
estimation methods:

1. Welch-periodogram approach (α{LF,HF}): As it is based on a
non-time-frequency technique, a unique value per subject and
stage is available.

2. Time-frequency approach (ᾱ{LF,HF}): The median of α{LF,HF}(n)
within each stage and each subject was taken as the unique
value per subject and stage.

3. Time-frequency-coherence approach (ᾱ{LFγ ,HFγ }): The
median of α{LFγ ,HFγ }(n) within each stage and each subject
was taken as the unique value per subject and stage.

Then, correlation between the indices (α and αk) obtained from
the 17 subjects and the 3 stages of the protocol (Rest1, Tilt, and
Rest2) were computed. The distributions of these indices were
found to be not normal by the Kolmogorov-Smirnov test. Thus,
the Spearman’s correlation coefficient was used. Furthermore, the
Wilcoxon signed-rank test was applied to see if the indices can
find significant (p < 0.05) differences between the different stages
of the protocol.

As the SAPV surrogates, the α-index surrogates have
different units and magnitude than classical α index.
Thus, these surrogates cannot be directly compared to the
classical α index, but their evolution can be compared.
In order to do this, the relative variation of the α-
index between consecutive stages was computed for

Frontiers in Neuroscience | www.frontiersin.org 6 April 2019 | Volume 13 | Article 339

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lázaro et al. BRS Measured by PPG

each subject:

1 α =
αS2 − αS1

αS1

, (18)

where αS1 and αS2 represent the studied index within stages S1
and S2, respectively.

A linear regression of the α-index surrogates which
obtained best results in terms of correlation (those based
on PUS, as it can be observed in section 3) was performed,
obtaining similar units than those of the conventional α

TABLE 1 | Inter-subject Spearman correlations of α{LF,HF} and α
{LF,HF}
k

obtained

in the different stages of the protocol.

α and αk ᾱ and ᾱk ᾱ
γ and ᾱ

γ

k

k LF HF LF HF LF HF

PUS 0.81 0.80 0.74 0.76 0.74 0.81

A1 0.80 0.87 0.69 0.80 0.69 0.76

PA 0.77 0.79 0.67 0.79 0.67 –

A12 0.61 0.68 0.50 0.62 0.50 0.61

T12 0.48 0.53 0.48 0.61 0.48 0.56

PW 0.32 0.48 0.14 0.49 0.14 0.36

PSTT 0.48 0.36 0.39 0.27 0.39 0.29

C2 0.39 0.50 0.17 0.30 0.17 –

T13 0.20 0.18 0.14 0.10 0.14 –

C1 0.31 0.24 0.36 0.35 0.36 –

B1 0.03 0.02 0.10 0.05 0.10 –0.06

In addition, inter-subject Spearman correlations of medians of ᾱ{LF,HF} and ᾱ
{LF,HF}
k

obtained in the different stages of the protocol are also shown, as well as the inter-subject

Spearman correlations of medians of ᾱ{LFγ ,HFγ } and ᾱ
{LFγ ,HFγ }

k .

index (ms/mmHg). This linear regression was performed in
order to compare those indices in a Bland-Altman plot. In
addition, a multiple linear regression was performed using all
the studied α-index surrogates in order to study whether their
information is complementary or redundant. The combined
α-index surrogates are denoted α̂{LF,HF} (Welch-periodogram
approach), ˆ̄α{LF,HF} (time-frequency approach), and ˆ̄α{LFγ ,HFγ }

(time-frequency-coherence approach).

3. RESULTS

Table 1 shows inter-subject Spearman’s correlation coefficients

between α{LF,HF} and α
{LF,HF}
k

, between ᾱ{LF,HF} and ᾱ
{LF,HF}
k

,

and between ᾱ{LFγ ,HFγ } and ᾱ
{LFγ ,HFγ }

k
. The highest correlations

were obtained for the α-index surrogates based on PUS. A
scatterplot of these indices is shown in Figure 5. In addition,
a Bland-Altmant plot of these indices and their associated
conventional α indices is shown in Figure 6, after a linear
regression in order to obtain similar units and magnitudes. The
obtained limits of agreement were 0.94± 21.90ms/mmHg (mean
of the two values± 1.96× SD), –8.99E–15± 60.90, 1.29± 20.13,
4.56E–15 ± 40.49, 1.40 ± 18.43, 5.92E–15 ± 46.89 ms/mmHg,

for αLF
PUS, α

HF
PUS, ᾱLF

PUS, ᾱ
HF
PUS, ᾱ

LFγ

PUS, and ᾱ
HFγ

PUS , respectively.
The Bland-Altmant plot obtained from the multiple linear

regression using all the studied indices is shown in Figure 7.
The obtained limits of agreement were 1.31 ± 20.38, 2.61E–15
± 25.48, 1.12± 19.68, –6.30E–15± 20.00, 0.89± 10.25, –6.85E–
15 ± 15.80 ms/mmHg, for αLF

PUS, αHF
PUS, ᾱLF

PUS, ᾱHF
PUS, ᾱ

LFγ

PUS, and

ᾱ
HFγ

PUS , respectively.
Table 2 shows the inter-subject median and interquartile

ranges of α{LF,HF} and α
{LF,HF}
k

, for those indices which showed

FIGURE 5 | Scatterplots of α vs. αPUS indices (first column), of ᾱ vs. ᾱPUS indices (second column), and of ᾱγ vs. ᾱ
γ

PUS
indices (third column).
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FIGURE 6 | Bland-Altman plots of α vs. αPUS indices (Welch-periodogram approach, first column), of ᾱ vs. ᾱPUS indices (time-frequency approach, second column),

and of ᾱγ vs. ᾱ
γ

PUS
indices (time-frequency coherence approach, third column), after a linear regression to convert all units to ms/mmHg. Note that scales are not the

same for LF band (first row) than for HF band (second row).

FIGURE 7 | Bland-Altman plots of α vs. its multiple-linear-regression-based combination of surrogates α̂ (Welch-periodogram approach, first column), of ᾱ vs. its

multiple-linear-regression-based combination of surrogates ˆ̄α (time-frequency approach, second column), and of ᾱγ vs. its multiple-linear-regression-based

combination of surrogates ˆ̄αγ (time-frequency coherence approach, third column). Note that scales are not the same for LF band (first row) than for HF band

(second row).

at least moderate Spearman’s correlation coefficients (>0.50), and
their relative increments (1). Significant differences (p < 0.05)
of these indices between Tilt and rest stages are denoted with∗.
Similarly, the inter-subject median and interquartile ranges of

medians of ᾱ{LF,HF} and ᾱ
{LF,HF}
k

are shown in Table 3, and

interquartile ranges of medians of ᾱ{LFγ ,HFγ } and ᾱ
{LFγ ,HFγ }

k
are

shown in Table 4.

4. DISCUSSION

Novel methods for measuring BRS using a PPG signal have been
presented. They are based on surrogates of the α index, defined
as the ratio of the power of RRV series and the power of SAPV
series. In this work, PPV is used as a surrogate of RRV, and the
SAPV is surrogated by different morphological features of the
PPG pulse which have been related to BP in the literature. Some
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TABLE 2 | Inter-subject median and interquartile ranges of α{LF,HF} and α
{LF,HF}
k

.

α

Median

[First quartile, Third quartile]

k
LF HF

Rest1 Tilt Rest2 Rest1 Tilt Rest2

α 1.99∗ 0.93 1.42∗ 2.79∗ 0.91 2.13∗

(ms/mmHg ×10) [1.35, 2.90] [0.60, 1.05] [0.89, 1.99] [1.82, 4.93] [0.47, 1.19] [1.54, 2.50]

1 –106.58 37.87 –220.44 52.45

(%) [–250.08, –64.39] [22.20, 58.03] [–552.97, –147.87] [41.72, 77.60]

PUS 3.41∗ 1.54 2.41∗ 4.41∗ 1.46 4.44∗

(ms2/a.u. ×108) [2.04, 5.43] [1.15, 2.29] [1.37, 4.58] [3.28, 6.33] [1.17, 2.62] [2.83, 5.94]

1 –122.90 42.46 –115.58 64.53

(%) [–203.55, –30.42] [3.56, 57.68] [–305.99, –98.13] [37.04, 74.70]

A1 3.71∗ 2.07 2.56 4.78∗ 1.87 4.42∗

(ms/a.u. ×10−2) [2.58, 6.84] [1.51, 2.94] [1.28, 4.44] [3.11, 7.61] [1.32, 2.92] [2.89, 5.11]

1 –81.94 27.65 –92.90 50.78

(%) [–194.28, –17.10] [–29.56, 50.62] [–256.82, –75.16] [26.26, 64.68]

PA 5.25∗ 3.05 4.39∗ 6.94∗ 3.41 8.69∗

(ms/a.u. ×10) [4.00, 9.81] [2.55, 4.91] [2.28, 7.54] [6.46, 11.15] [2.18, 5.53] [4.86, 12.34]

1 –77.63 30.97 –93.94 48.55

(%) [–176.46, –15.02] [–22.42, 50.93] [–331.49, –52.50] [33.52, 73.50]

A12 2.00∗ 1.08 1.44 1.11∗ 0.63 1.21∗

(ms/n.u. ×103) [1.57, 2.17] [0.76, 1.55] [0.87, 1.92] [0.85, 1.50] [0.47, 0.93] [0.95, 1.52]

1 –45.69 20.47 –82.31 47.74

(%) [–235.27, –5.27] [–42.09, 51.86] [–277.89, –26.75] [15.44, 57.68]

T12 4.70 4.16 4.08 3.24∗ 2.32 3.46∗

(ms/ms ×10−2) [4.08, 6.60] [2.77, 5.80] [3.30, 6.23] [2.86, 4.13] [1.45, 3.39] [2.70, 3.99]

1 –34.22 18.80 –45.43 38.66

(%) [–121.33, 10.56] [–3.63, 37.65] [–179.21, –8.12] [0.58, 52.76]

Significant differences (p < 0.05) of these intra-subject medians between Tilt and rest stages are denoted with ∗. In addition, the median and interquartile ranges of the relative increments

(∆) of these intra-subject medians between consecutive stages of the protocol (Rest1 and Tilt, and Tilt and Rest2) are also shown.

of these features are based on a novel PDA technique that has
been presented in this paper.Manymodeling functions have been
applied to fit the PPG pulses in the literature. The novelty of
the proposed PDA technique is that the used modeling function
does not affect to the decomposition, as it is applied individually
to the already extracted waves. It is worthy to note that the
goal in this paper is not to obtain a very accurate measure of
the studied morphological features, but in deriving a measure
which is proportional to those features (as only their variability
is needed). Keeping this in mind, a Gaussian function was used
because it satisfies de goal while being a simple function that
makes sense from the physiological point of view.

Three approaches were studied for estimating the α index
from RRV and SAPV (or their surrogates): one based on Welch
periodogram (α{LF,HF}), and two based on a time-frequency
distribution which takes into account the non-stationarity of the
protocol (Orini et al., 2012). This method redefines both LF and
HF bands, making them time-varying following the dominant
frequencies in such bands ( ᾱ{LF,HF}). Alternatively, this method
computes a time-frequency coherence between the RRV and
the SAPV (or their surrogates), and estimates the α index in

restricted areas where the obtained coherence is statistically
significant, i.e., in those areas evidencing that RRV and SAPV (or
their surrogates) are coupled ( ᾱ{LFγ ,HFγ }).

The correlation analysis shows how the PPG-based surrogates
of α index track the changes of the conventional (ECG-and-BP-
based) α index. Five out of the eleven SAPV surrogates leaded to
α-index surrogates which obtained at least moderate correlation
(>0.5). Those SAPV surrogates are, in order of cases getting
the highest correlation: PUS, A1, PA, A12, and T12. Specifically,
those α-index surrogates based on PUS obtained high correlation
(>0.7) in all the cases. Those α-index surrogates based on A1 also
obtained high correlation in four out of the six cases (αLF

A1, α
HF
A1 ,

ᾱHF
A1 and ᾱ

HFγ

A1 ), while the remaining two ( ᾱLF
A1 and ᾱ

LFγ

A1 ) were
very close to obtain it (correlation was 0.69 in both cases).

Results regarding the BRS assessment are shown in Table 2

for the Welch-periodogram approach (α{LF,HF}), Table 3 for the
time-frequency approach ( ᾱ{LF,HF}), and Table 4 for the time-
frequency-coherence ( ᾱ{LFγ ,HFγ }). The conventional α indices
showed significant differences between both rest stages and Tilt
within both LF and HF, and for the 3 approaches. The highest
difference was observed between Rest1 and Tilt within HF band
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TABLE 3 | Inter-subject median and interquartile ranges of intra-subject median of ᾱ{LF,HF} and ᾱ
{LF,HF}
k

.

ᾱ

Median

[First quartile, Third quartile]

k
LF HF

Rest1 Tilt Rest2 Rest1 Tilt Rest2

α 1.86∗ 0.94 1.34∗ 2.47∗ 0.85 1.96∗

(ms/mmHg ×10) [1.35, 2.44] [0.59, 1.06] [0.92, 2.04] [1.77, 3.31] [0.41, 1.30] [1.52, 2.48]

1 –100.04 31.21 –178.17 53.36

(%) [–172.82, –74.32] [6.35, 58.64] [–355.59, –117.53] [39.64, 77.75]

PUS 2.91∗ 1.63 1.81∗ 3.84∗ 1.58 4.27∗

(ms2/a.u. ×108) [2.13, 5.30] [1.47, 2.09] [1.18, 4.26] [3.28, 5.79] [0.98, 2.40] [2.80, 5.61]

1 –101.90 7.67 –146.59 53.28

(%) [–159.25, –58.17] [–9.30, 56.29] [–332.19, –81.41] [40.21, 70.44]

A1 2.95∗ 2.03 2.23 4.72∗ 1.96 4.28∗

(ms/a.u. ×10−2) [2.35, 6.05] [1.86, 2.96] [1.34, 4.16] [3.22, 6.09] [1.39, 3.03] [2.98, 6.35]

1 –71.93 –11.96 –91.35 42.31

(%) [–88.72, –22.61] [–47.85, 49.40] [–263.31, –53.42] [25.53, 70.41]

PA 4.76∗ 3.31 3.68 8.68∗ 3.62 7.87∗

(ms/a.u. ×10) [3.93, 9.94] [2.98, 5.22] [2.27, 6.73] [6.05, 10.45] [2.21, 5.05] [5.73, 11.51]

1 –64.68 –10.13 –113.09 50.80

(%) [–99.06, –17.93] [–55.90, 44.17] [–319.85, –62.92] [24.07, 69.72]

A12 1.88∗ 1.16 1.41 1.30∗ 6.78 1.31∗

(ms/n.u. ×103) [1.11, 2.25] [0.82, 1.54] [0.97, 2.19] [0.93, 1.56] [0.5, 0.95] [0.92, 1.80]

1 –30.61 11.47 –89.39 45.56

(%) [–96.71, –8.05] [–36.23, 51.83] [–161.07, –34.94] [–4.30, 57.83]

T12 4.88∗ 4.21 4.63 3.58∗ 2.27 4.01∗

(ms/ms ×10−2) [3.46, 6.65] [2.66, 5.79] [3.20, 6.93] [3.17, 4.23] [1.57, 3.05] [2.56, 4.73]

1 –33.02 25.21 –84.19 41.15

(%) [–144.80, 11.64] [7.39, 46.72] [–158.29, –19.44] [9.53, 59.66]

Significant differences (p < 0.05) of these intra-subject medians between Tilt and rest stages are denoted with ∗. In addition, the median and interquartile ranges of the relative increments

(∆) of these intra-subject medians between consecutive stages of the protocol (Rest1 and Tilt, and Tilt and Rest2) are also shown.

(-220.44% for αHF, -178.17% for ᾱHF, and -189.00% for ᾱHFγ ),
while the smallest difference was observed between Rest2 and
Tilt within LF band (37.87% for αLF, 31.21% for ᾱLF, and
35.37% for ᾱLFγ ).

The only SAPV surrogate which led to α-index surrogates
showing the same behavior than the conventional α-index
was PUS. None of the other SAPV surrogates led to α-index
surrogates finding significant differences between Rest2 and Tilt
within LF (the smallest observed change) with the exception
of PA when using the Welch-periodogram approach (αLF

PA).
However, PUS, A1, PA, and A12-based α-index surrogates found
significant Rest1 and Tilt within both the LF and HF band, and
between Rest2 and Tilt within the HF band, for the 3 approaches.
The T12-based α-index surrogates also found these differences
for both the time-frequency and the time-frequency-coherence
approaches while they found significant differences only within
HF band for the Welch-periodogram approach. In general, those
PPG-based-α-index surrogates exploiting the pulse amplitude
(PA, A1, and A12) obtained better results than those exploiting
the pulse dispersion (PSTT, B1, C1, C2, T12, and T13) for
BRS assessment, with the exception of T12. However, the best

results were obtained for the index derived from PUS, which
exploits both PPG amplitude and pulse dispersion. Another
possible reason of the better results obtained by PUS is that it is
measured at the beginning of the pulse, which would be the part
related to a unique wave (main wave, before superposition of
reflections) containing the BP information better expressed than
the reflected waves.

The Bland-Altman plots (Figure 6) for PUS-based α-
index surrogates (after converting units to ms/mmHg by
a linear regression) are wider for HF (±60.90 ms/mmHg,
±40.49 ms/mmHg, and ±46.89 ms/mmHg, for Welch-
periodogram, time-frequency, and time-frequency-coherence
approaches, respectively) than for LF (±21.90, ±20.13, and
±18.43 ms/mmHg, for Welch-periogram-, time-frequency-,
and time-frequency-coherence approaches, respectively).
When combining all the PPG-based α-index surrogates
by a multiple-linear regression, these limits of agreement
are narrower, specially for within HF (±25.48, ±20.00,
and ±15.80 mm/mmHg, for Welch-periogram-, time-
frequency-, and time-frequency-coherence approaches,
respectively). These results suggest that there is complementary
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TABLE 4 | Inter-subject median and interquartile ranges of intra-subject median of ᾱ{LFγ ,HFγ } and ᾱ
{LFγ ,HFγ }

k
.

ᾱ
γ

Median

[First quartile, Third quartile]

k
LF HF

Rest1 Tilt Rest2 Rest1 Tilt Rest2

α 1.90∗ 0.96 1.49∗ 2.29∗ 0.72 2.12∗

(ms/mmHg ×10) [1.46, 2.90] [0.58, 1.12] [1.03, 2.15] [1.57, 3.71] [0.45, 1.25] [1.54, 2.94]

1 –117.50 35.37 –189.00 57.92

(%) [–192.77, –82.71] [14.80, 59.37] [–379.50, –121.44] [45.78, 78.53]

PUS 2.94∗ 1.74 2.38∗ 4.56∗ 1.63 4.35∗

(ms2/a.u. ×108) [2.06, 5.42] [1.18, 2.18] [1.37, 4.63] [3.74, 6.90] [1.15, 2.73] [3.21, 5.54]

1 –110.81 26.90 –149.21 61.31

(%) [–161.04, –65.23] [–5.61, 60.80] [–337.87, –111.69] [36.88, 76.98]

A1 3.53∗ 2.18 2.77 4.63∗ 1.98 4.03∗

(ms/a.u. ×10−2) [2.47, 5.65] [1.76, 2.95] [1.47, 4.37] [3.19, 6.06] [1.53, 3.09] [3.15, 5.86]

1 –73.33 11.92 –98.35 39.30

(%) [–143.21, –26.44] [–45.15, 58.81] [–214.68, –57.39] [30.64, 64.98]

PA 6.54∗ 3.63 5.11 8.52∗ 3.50 7.94∗

(ms/a.u. ×10) [3.94, 10.01] [2.71, 4.75] [2.29, 7.35] [6.43, 11.54] [2.15, 5.59] [5.72, 12.16]

1 –80.12 16.64 –122.46 60.19

(%) [–135.09, –20.67] [–32.66, 56.67] [–289.82, –75.74] [28.98, 74.27]

A12 1.78∗ 1.25 1.53 1.24∗ 0.77 1.33∗

(ms/n.u. ×103) [1.20, 2.15] [0.83, 1.62] [0.93, 2.07] [1.17, 1.87] [0.54, 1.07] [0.91, 1.81]

1 –49.07 13.43 –90.11 40.77

(%) [–107.14, –15.78] [–10.92, 55.82] [–150.88, –21.83] [19.90, 57.58]

T12 4.99∗ 3.78 4.74 3.62∗ 2.36 3.89∗

(ms/ms ×10−2) [3.64, 6.09] [2.75, 5.77] [3.22, 6.95] [3.28, 5.11] [1.57, 3.79] [2.78, 4.82]

1 –26.56 28.52 –67.77 42.34

(%) [–109.23, 6.28] [5.59, 45.66] [–206.71, –15.50] [0.64, 59.04]

Significant differences (p < 0.05) of these intra-subject medians between Tilt and rest stages are denoted with ∗. In addition, the median and interquartile ranges of the relative increments

(∆) of these intra-subject medians between consecutive stages of the protocol (Rest1 and Tilt, and Tilt and Rest2) are also shown.

information among the SAPV surrogates and thus, they
could be combined for improving the α-index surrogate.
However, this combination may require a calibration
process which may be subject-specific in a final application.
Further studies including data from same subjects during
different days must be elaborated in order to explore
techniques to combine the information of the different
α-index surrogates.

Comparing the correlations obtained by the PUS-based
α-index surrogates among the three α-index estimation
approaches, the highest correlation within LF was obtained
when using the Welch-periodogram approach (0.81), while the
highest correlation within HF was obtained when using the
time-frequency-coherence approach (0.81). However, given
the intrinsic non-stationarity of the cardiovascular system,
our recommendation is to use the time-frequency-coherence
approach (Orini et al., 2012) because it takes into account the
time-varying dominant frequencies and the strength of the
coupling between RRV and SAPV (or their surrogates) and thus,
its estimates are more related to the BRS than the estimates from
the other two approaches.

Based on these results, our recommendation for PPG-

based BRS assessment is ᾱ
{LFγ ,HFγ }

PUS . First, ᾱ
LFγ

PUS presented
a significant decrease of more than 100% in median in tilt
with respect to supine, which is in concordance with the

decrease in reference ᾱLFγ . Second, ᾱ
HFγ

PUS also presented a
significant decrease in tilt with respect to supine, in this case
around 2 times lower with respect to Rest1 (26.90%) than to
Rest2 (61.31%), and these results are also in accordance to
the reference ᾱHFγ (with 35.37% and 57.92%, respectively).
It is worthy to note that the best α surrogate may be not
derived from the best SAPV surrogate, because PPV was
used as RRV surrogate while it is the sum of RRV and PAT
variability (PATV) (Gil et al., 2010). Thus, for obtaining a exact
surrogate for the ratio RRV/SAPV using PPV as numerator
of the ratio, the best denominator is not exactly SAPV, but
SAPV×(1+PATV/RRV).

These results support the potential value of the proposed
index as a surrogate of BRS to monitor baroreflex impairment
in certain applications. For example, in de Moura-Tonello et al.
(2016) the square root of the RR and systolic BP series power
(α index) at rest was significantly reduced (around 50%) in type
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2 diabetes mellitus patients without cardiovascular autonomic
neuropathy with respect to healthy controls of similar age
and antropometric characteristics. In Ranucci et al. (2017)
preoperative BRS was evaluated in 150 patients undergoing
coronary surgery and related to postoperative complications such
as atrial fibrillation, renal function impairment and low cardiac
output syndrome. The α index was significantly lower (around
30% in median) in patients experiencing postoperative acute
kidney dysfunction, as well as in patients with low cardiac output
state (around 50% in median). However, clinical studies have
to be elaborated in order to evaluate the proposed indices in
different applications. To the best of our knowledge, this is the
first time that these indices are studied for BRS assessment, so
healthy volunteers with presumably efficient baroreflex were used
in order to observe actual changes along the protocol. Different
results may be obtained with patients of different diseases,
specially taking into account that coherence is reduced in heart
disease patients.

Results reported in this work suggest that BRS can be
assessed with high correlation by only a PPG signal
based on PPV (as RRV surrogate), and PPG-amplitude-
based and/or PPG-dispersion-based features (as SAPV
surrogates), being PUS the most convenient SAPV surrogate
for BRS assessment. The PPG signal recording is simple,
economical, and comfortable for the subject. Moreover, PPG
signal can be acquired in many places of the body. Thus,
these results are very interesting for ambulatory scenarios
and for wearable devices. Future studies may include an
surrogate of the α index using a combination of different
PPG-based SAPV surrogates, specially amplitude- and
dispersion-based features.
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