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Preface

Atrial fibrillation (AF) is a complex, age-related arrhythmia which has reached
global and epidemic proportions with considerable socioeconomic impact. During
the last decade, substantial progress has been made in research on AF, including a
better understanding of the basic mechanisms that initiate and maintain AF,
low-cost technology for early detection and prevention of AF, and treatment with
catheter ablation, which is clinical routine in many hospitals. However, the effi-
cacies of antiarrhythmic drugs and catheter ablation still need to be improved and
therefore the focus of much ongoing research.

Although clinical data, genetic factors, and imaging of different modalities play
an important role when classifying patients with AF, electrophysiological infor-
mation continues to be essential in the diagnosis and management of AF. New
methodological challenges have emerged in ECG analysis as a result of new clinical
findings as well as advances in technology. For example, different clinical studies
suggest that frequent atrial ectopy is a precursor of AF and that brief AF episodes
may be associated with increased risk of stroke—results which call for new types of
signal processing algorithms to detect these events. The pervasive use of
smartphone-based ECG applications is becoming an increasingly important tool in
the quest for finding asymptomatic AF, implying that robust algorithms need to be
developed to ensure that AF detection and characterization of atrial activity can be
performed in signals of lower quality. Spatiotemporal analysis of body surface
potential maps represents yet another challenge, where the limits of extracting
clinically relevant information remain to be established.

The aim of this book is twofold, namely to offer a comprehensive, state-of-the-art
review of methods developed for noninvasive analysis of AF, serving as a springboard
for those developing new methods, and to provide a text which can be used at different
levels in education. The lack of review articles on methods for detection of AF,
extraction of f waves, and characterization of f waves is addressed by three chapters
which consider these topics at length. This book is confined to describing aspects
related to signals recorded noninvasively, whereas aspects related to invasive signals
could easily form the contents of another book and therefore left out. Although this is
an edited book, where each chapter is written by a different team of authors, sequential
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reading is still recommended since the chapters, to some degree, build on each other
and contain numerous cross-references.

The title should not be interpreted as if there is a divide between clinical and
engineering research. Rather, the title reflects the fact that research in AF includes
an engineering signature, where mathematics is one of the cornerstones. The first
chapter is entitled “A Clinical Perspective on Atrial Fibrillation” to lay the foun-
dation for engineering-oriented research and to emphasize the importance of
interdisciplinarity.

This book is intended for master students and doctoral students in biomedical
engineering, electrical engineering, and computer science, as well as for researchers
and practicing engineers with an interest in the analysis of cardiac arrhythmias. The
unified style and standardized notations make this book suitable as a supplement to
textbooks on biomedical signal processing. The chapters on detection and extrac-
tion have already been used in capstone projects at Lund University as part of a
course in biomedical signal processing. In fact, the projects have turned out to be
popular as the methods described in this book have varying levels of complexity
and therefore let the student choose the desired level. In addition to the mandatory
fundamental courses on digital signal processing and probability theory, familiarity
with matrices and linear algebra and basic concepts in statistical signal processing is
recommended.

With much appreciation, I would like to thank the authors for their expert
contributions and for generously sharing their time with this project.

Special thanks to Pablo Laguna (Zaragoza), Vaidotas Marozas (Kaunas), and
Andrius Petrėnas (Kaunas) who spent an enormous amount of time reviewing
different versions of the entire book. Their engagement has significantly contributed
to improve the contents.

Thanks to Pietro Bonizzi (Maastricht), Ki Chon (Storrs), Rebeca Goya (Madrid),
Mikael Henriksson (Lund), Philip Langley (Hull), Jinseok Lee (Iksan), Julien Oster
(Nancy), Olle Pahlm (Lund), Birutė Paliakaitė (Kaunas), Roberto Sassi (Milano),
Monika Šimaitytė (Kaunas), Martin Stridh (Lund), Steven Swiryn (Chicago), Olof
Sörnmo (Lund), Jean-Marc Vesin (Lausanne) for stimulating discussions and
helpful explanations.

Thanks also to Marianna Meo (Bordeaux), Michela Masè (Trento), Massimo
Rivolta (Milano), Roger Larsson (Lund), María de la Salud Guillem (Valencia) for
generously sharing figures reproduced in this book.

Lund, Sweden Leif Sörnmo
March 2018
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Chapter 1
A Clinical Perspective on Atrial
Fibrillation

Pyotr G. Platonov and Valentina D. A. Corino

1.1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical prac-
tice which requires therapeutic interventions. Its prevalence is growing and the num-
ber of patients with AF is increasing along with the aging population in the indus-
trialized countries. Atrial fibrillation is not only affecting the quality of life due to
the irregular heartbeats, palpitation attacks, or inappropriate acceleration of the heart
rate, but it is also one of the most common risk factors of ischemic stroke, which may
lead to irreversible handicap and death. Contrary to many other arrhythmias encoun-
tered in clinical practice, AF may require therapeutic interventions even in patients
who do not have any subjective discomfort from their arrhythmia. Accordingly, this
defines an unmet challenge of correct and timely arrhythmia detection.

By affecting millions of patients worldwide, AF is characterized by a palette of
clinical manifestations which to some extent is defined by preexisting comorbidities,
from completely asymptomatic variants to significant limitations of everyday life due
to arrhythmia-related palpitations, fatigue, chest pain, or aggravation of heart failure.
Amore severe background clinical profile in patients with heart failure, diabetes, and
hypertension is usually associated with more severe symptoms during AF. However,
in many cases it remains unclear why patients with similar AF phenotype in terms
of frequency of arrhythmic attacks and heart rate during AF can have completely
different clinical manifestations so that some patients would be in need for hospital
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admission and cardioversion, while others would be completely unaware of the heart
rhythm disturbance.

An introductory chapter on clinical matters to a book whose primary focus is
engineering comes with the inherent challenge of balancing between unnecessary
clinical aspects and a too simplistic picture of complex biological phenomena which
to a significant part are not completely understood. However, it is difficult to imagine
the development of contemporary clinical medicine, and cardiac electrophysiology
in particular, without the progress in many engineering disciplines. Reaching com-
mon understanding of basic electrical phenomena in the heart, their importance for
health, and risks associated with complications of heart rhythm abnormalities is
therefore vital to guide the development of technology aimed at facilitating patient
care, prolonging life, and improving its quality.

This chapter provides an overview of basic concepts related to the mechanisms
underlyingAF, its impact on the human health, and basic principles used by clinicians
to prevent AF and minimize its ominous impact on the human organism. The main
areas of uncertainties in clinical decision-making will be highlighted, where the
existing knowledge gapsmake further translational research efforts highlywarranted.

1.2 Atrial Fibrillation: Definition

Atrial fibrillation is a supraventricular tachyarrhythmia, characterized by uncoordi-
nated atrial electrical activation and, consequently, ineffective atrial contractions. In
the vast majority of cases, AF diagnosis is based on an ECG demonstrating

1. irregular RR intervals,
2. absence of distinct repeating P waves, and
3. presence of undulating atrial activity, also known as fibrillatory waves or f waves,

seeFig. 1.1a.While seemingly straightforward, there are situations in clinical practice
when this definition is not always simple to apply. On the other hand, a healthy person
would present with an ECG in sinus rhythm, characterized by the presence of Pwaves
originating from the sinus node and reflecting atrial depolarization and regular RR
intervals, see Fig. 1.1b.

Irregularity of RR intervals, being a key feature of AF, will only be present in
patients with preserved atrioventricular (AV) conduction. Even though this is the
case for the vast majority of patients with AF, patients with complete AV block
(either induced by cardio-active medications or developed as a result of disease or
cardiac surgery) or escape rhythm, originating from the conduction system segments
located below the site of block, will have regular RR intervals which may mislead
ECG assessment. RR interval irregularity in AF lacks any organization detectable
by the human eye. This type of RR behavior differs from other situations in which
irregularity of RR intervals is observed, e.g., in patients with atrial or ventricular
premature contractions, variable conduction through the AV node during regular
atrial tachycardias, or a second-degree AV block, characterized by nonconducted
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Time (s)

0 64 52 31

(a)

(b)

Fig. 1.1 ECGrecordedduringaAFandbnormal sinus rhythm. In atrial fibrillation, theRR intervals
are irregular and the P waves replaced by an undulating atrial activity, known as f waves

atrial beats resulting in pauses occurring on the background of fairly regular rhythm
driven by the sinus node or other atrial sources.

The absence of P waves is rarely controversial in patients with low-amplitude
f waves, see Fig. 1.2a. However, large-amplitude f waves mimicking P waves, espe-
cially in the right precordial leadsV1 andV2,may represent a challenge, see Fig. 1.2b.
In such situations, one should check whether the atrial waves occur at the same time
in several ECG leads and have a distinct and repetitivemorphology,which thenwould
contradict an AF diagnosis. On the contrary, indistinct atrial wave morphology, vari-
able and short intervals between successive atrial waves (measurable in the leads
with distinct atrial waves, often the right precordial leads), and the lack of isoelectric
line between them would support AF diagnosis.

1.3 Classification of Atrial Fibrillation

Several classifications ofAF exist and are used in clinical practice. Themost common
way to describe AF is based on the duration and the recurrent nature of arrhythmic
episodes, which make patients contact healthcare providers, see Table1.1.

It is, however, important to appreciate that AF is not a static condition: a patient
with paroxysmal AF may develop persistent AF episodes that do not cease sponta-
neously. Moreover, allocation of a given arrhythmic episode to either a paroxysmal
or persistent condition largely depends on the subjective judgement used to adminis-
ter or withhold cardioversion attempt early on in the course of the AF attack. When
sinus rhythm is restored by cardioversion, the ultimate duration of the AF episode
is unknown. Thus, patients with highly symptomatic AF seeking care soon after
arrhythmia breakthrough may have their arrhythmia assessed differently compared
to patients with less symptomatic AF, who may have to wait longer with greater
likelihood of spontaneous conversion within several hours or days.
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Fig. 1.2 Different ECG manifestations of AF. a Low-amplitude (“fine”) f waves which are nearly
isoelectric between the QRS complexes in all leads, and b large-amplitude (“coarse”) f waves,
particularly in the right precordial leads
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The clinical relevance of the classification presented in Table1.1 is based on the
relationship between the persistence of AF episodes and the efficiency of therapeutic
options aimed at terminating AF and preventing its recurrence. As a rule, the more
persistent AF is, the more difficult it is to achieve arrhythmia freedom by therapeutic
interventions.

The alternative way to describe AF is based on the presence of comorbidities,
which may have etiological links to the arrhythmia itself. In this regard, description
ofAFas valvular or nonvalvular is one of themost commonly used in clinical practice.
The reason for this description is also related to a rather specific and therapy-resistant
course of the disease in patients with valvular disease, associated with volume and
pressure overload of the left atrium, leading to severe left atrium dilatation and
extensive fibrotic replacement of the atrial myocardium.

Lone AF is a historical descriptor that has been variably applied to predominantly
younger persons without clinical or echocardiographic evidence of cardiopulmonary
disease, hypertension, or diabetes mellitus. Because of the high variability in the use
of this descriptor, lone AF is today considered as potentially confusing and rarely
used to guide arrhythmia management.

1.4 Epidemiology of Atrial Fibrillation

Atrial fibrillation increases in prevalence with advancing age. Given the intermittent
nature of the arrhythmia and indistinct symptoms present in a considerable proportion
of patients with AF, the exact assessment of AF prevalence depends largely on the
methodology used for screening of this condition. The use of routine resting ECG,
or clinically motivated physical exams applied to epidemiological cohorts, estimates
AF prevalence as 0.5% in individuals <50 years of age, 1.5–2% in 50–60 years of
age, and 3% and higher in patients above 70 years of age (Fig. 1.3) [1]. However,
dedicated population screening for AF using thumb-ECG, performed in Sweden,

Table 1.1 Clinical classification of atrial fibrillation

Type Definition

New onset AF is defined by the occurrence of the first episode, irrespective of
its duration and severity of AF-related symptoms

Paroxysmal AF is recurrent (≥2 episodes) and self-terminates in less than seven
days, usually within 24h

Persistent AF fails to self-terminate within seven days. Episodes require
termination by cardioversion

Long-standing persistent AF has lasted for one year or more when it is decided to adopt a
rhythm-control strategy

Permanent AF exists when the presence of arrhythmia is accepted by the patient
and the physician
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Fig. 1.3 Prevalence of AF
according to age and
gender [1]

45–49

Women

Men

50–54 55–59 60–64 65–69 70–74

Age group (years)

0  

1  

2  

3  

4  

Pr
ev

al
en

ce
 (

%
)

demonstrated that 7% of the population older than 65 years have AF, of whom
individuals >75 years of age have particularly high prevalence, reaching 12% [2].
Atrial fibrillation is significantly more common among men, particularly at young
age, however, gender-related differences diminish with increasing age.

If we consider the age distribution among patients with AF, then approximately
1% of them are <60 years of age, whereas up to 12% are 75–84 years of age [3].
In the United States, the percentage of Medicare fee-for-service beneficiaries with
AF was in 2010 reported to be 2% for those <65 years of age and 9% for those
≥65 years of age [4]. The lifetime risk of developing AF after 40 years of age was
shown to be about 25%, being slightly higher among men than women [5].

1.5 Mechanisms of Atrial Fibrillation

Advances in clinical and fundamental research promoted over the last decades have
led to a well-established understanding of AF as an epiphenomenon which despite
similar manifestations may have different underlying mechanisms, thus requiring
individualized treatment [6].

The mechanisms of AF are complex and require a combination of triggers, com-
monly represented by ectopic atrial firing and a vulnerable atrial substrate which
promotes perpetuation of AF. The relative importance of trigger mechanisms and
atrial substrate characteristics for the development of AF may vary and, to a large
extent, affect clinical manifestations of the arrhythmia. Less advanced atrial substrate
in the presence of rapidly firing atrial foci may be found in patients with paroxys-
mal AF with high likelihood of spontaneous conversion. On the other hand, age-
or disease-related changes in atrial myocardium may lead to increased vulnerabil-
ity of atrial myocardium and longer duration of AF episodes, which may become
long-standing or permanent.

Focal ectopic firing originating from the myocyte sleeves within the pulmonary
veins was first proposed in the late ’90s as the triggering mechanism of AF [7],
which led to the development of catheter-based ablation therapy, resulting in reduc-
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tion of AF burden. Contemporary understanding of the pulmonary veins role in the
genesis of AF is based on the presence of myocytes exhibiting unique electrical
properties, such as pacemaker cells, transitional cells, and Purkinje cells [8], and a
complex fiber architecture which together promote reentry and ectopic activity ini-
tiating AF [9]. However, the presence of a trigger in atrial myocardium per se is not
sufficient for initiation of AF, but requires prerequisites for stabilization of reentry
in atrial myocardium in order to maintain AF. With rare exceptions of AF caused
by mutations in genes coding ion channels in patients with structurally normal atria,
fibrotic replacement of atrial myocardium remains the cornerstone of atrial pathol-
ogy in patients with AF. However, the exact mechanisms underlying the structural
abnormalities in the atrial walls observed in patients with the arrhythmia and its
relationship to the arrhythmia mechanisms still remain poorly understood.

The common perception of AF as a result of the interplay between the structural
changes in the atrial myocardium, induced by the well-described cardiovascular risk
factors, and structural remodeling, induced by the arrhythmia itself, has recently
been challenged by observations of progressive structural abnormalities in the atrial
walls that occur independently of the cardiovascular comorbidities and persistence
of AF [10]. It is also well-known that lone AF is not an uncommon clinical entity that
may manifest early in life without any apparent risk factors, which would explain
development of atrial fibrosis in patients with structurally normal hearts [11]. To
what extent fibrotic atrial cardiomyopathy represents a “common cause” of AF or a
mechanism responsible for arrhythmia development in a subgroup of patients with
AF phenotype remains, however, uncertain.

1.6 Atrial Myocardium Characteristics in Atrial
Fibrillation

An indirect indication of the link between cardiovascular comorbidities and AF
comes from epidemiological studies in which potentially fibrosis-causing conditions
such as hypertension, ischemic heart disease, and diabetes were highly predictive
of incident AF [12]. Age-related increase in the prevalence of AF has also been
well-documented [1], and explained by growing cardiovascular disease burden in
the elderly as well as age-related increase in the extent of atrial fibrosis [13]. How-
ever, attempts to provide a quantitative assessment of atrial structural abnormalities
associated with AF have shown a more complex picture. Even though catheter-based
techniques of endocardial voltage mapping and emerging noninvasive magnetic res-
onance imaging (MRI) have shown their value in visualization of atrial structural
abnormalities, histological evaluation of atrial tissue samples remains the gold stan-
dard for tissue characterization. This approach, however, is often limited to a small
volume of tissue samples collected in patients undergoing atrial biopsy, or confined
to right or left atrial appendages in patients undergoing open-chest heart surgery,
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thus imposing a significant bias on patient selection and leaving large portions of the
atrial walls, in which AF perpetuates, outside reach.

One of the first observations of the structural substrate of AF in patients without
apparent structural heart disease came from studies where biopsies were collected
from atrial septum as well as from ventricles in patients with lone AF [11, 14],
reporting on a consistent finding of myocardial inflammation and fibrosis confined
to the atrial myocardium, but not present in the ventricular walls. These studies were
the first to suggest the presence of occult myocardial disease that may have direct
causal relationship with development of AF.

The concept of atrial cardiomyopathy has been further expanded by studying
histology specimens from multiple sampling locations in the right and left atrium
collected post mortem from deceased patients with common cardiovascular comor-
bidities with previous paroxysmal, permanent AF, and those without AF history
enrolled in three equal groups according to prespecified inclusion criteria [15]. The
extent of fibrosis and fatty tissue in the atrial myocardium showed strong and sig-
nificant correlation with the presence of AF at all tissue sampling locations in the
left and right atria. Notably, patients with and without AF did not differ in regard
to cardiovascular comorbidities, and no age-related increase in the extent of atrial
fibrosis was observed. Similar observations were made in patients with persistent or
long-standing AF referred for surgical ablation [16], thus suggesting that develop-
ment of structural abnormalities in the atria is not a result of concomitant diseases, but
rather a phenomenon associated with AF. Indirect assessment of atrial fibrosis using
MRI in a large cohort has further supported this theory by not finding any significant
differences in the estimated fibrosis extent between AF patients with and without
comorbidities [17]. So far, however, there is no histology data that would specifi-
cally address the question of causal relationships between the burden of concomitant
cardiovascular diseases and atrial fibrosis in patients with AF.

Contrary to the findings in lone AF, a similar extent of fibrotic replacement and
inflammatory infiltration in the free walls of the right and left ventricles was observed
in patients with common cardiovascular comorbidities [14]. In a controlled study,
ventricular fibrosis demonstrated strong correlation with AF history and extent of
fibrosis in themajor atrial conduction routes such as Bachmann’s bundle and terminal
crest [18]. These findings may be interpreted as indicating an underlying occult
cardiomyopathy with significant inflammatory component in patients with AF.

Whether or not structural abnormalities observed in the atria are the cause or con-
sequence of AF remains an open question. The presence of a relationship between
the extent of fibrosis and AF burden can be explained both ways: expansive fibrotic
process in the atria may promote persistent AF, or be a consequence of the long-
standing fibrillatory process. The lack of this relationship, however, would favor the
concept of the primary fibrotic atrial cardiomyopathy underlying AF development.
Available data suggest that the extent of fibrosis tends to be larger in patients with
permanent AF than in patients with paroxysmal AF [15], see Fig. 1.4, but the rela-
tionship between extent of structural abnormalities and duration of AF seems to
disappear in patients with persistent AF [16]. In another study that quantified the
expression of extracellular matrix proteins in atrial tissue samples collected during
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(a) Permanent AF (b) Paroxysmal AF (c) No history of AF

Fig. 1.4 Light microscopy of crista terminalis specimens in patients with or without history of AF.
a Fibrosis extent 51%, fat 15%, capillary density 2%,mean cardiomyocyte diameter 12m, b fibrosis
extent 14%, fat 24%, capillary density 0.4%, mean cardiomyocyte diameter 11m, and c fibrosis
extent 5%, fat 1%, capillary density 1%, mean cardiomyocyte diameter 15m. (Masson’s trichrome
stain; original magnification 200). (Reprinted from [15] with permission)

heart surgery, no systematic difference between patients with paroxysmal and per-
manent AF was documented [19]. Even though this does not address the unresolved
causality issue, one can speculate that fibrosis extent in the atrial walls may be linked
to AF burden and clinical manifestations of the arrhythmia at the early stages of the
disease. However, upon reaching a certain level, fibrosis would no longer affect AF
phenotypes in patients who develop persistent AF.

1.7 Atrial Fibrillation and Stroke

Ischemic stroke is a devastating complication of AF. One in five of all strokes is
attributed to AF [20], and AF in stroke patients confers an increased risk of morbidity
andmortalitywhen comparedwith non-AF-related stroke [21]. Themainmechanism
of AF-related stroke is considered to be thrombus formation in the left atrium in
condition of irregular contractility. When a blood clot is formed it can be pumped
out of the heart to the brain, leading to cerebral artery occlusion.

Clinical risk factors for development of ischemic stroke in patients with AF are
well-known. The CHA2DS2–VASc score is a clinical tool developed to assess the
risk of ischemic stroke in patients with AF and to guide administration of oral anti-
coagulation therapy, with proven effect on reduction of the risk of ischemic stroke
[22, 23]. The letters of the score stand for individual risk factors known to predispose
to ischemic stroke, involving the following risk factors:

• Congestive heart failure (1 point),
• Hypertension (1 point),
• Age ≥75 years (2 points),
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• Diabetes mellitus (1 point),
• Stroke/Transient ischemic attack/Thromboembolism (2 points),
• Vascular disease (1 point),
• Age 65–74 years (1 point),
• Sex category (female) (1 point).

Advanced age of ≥75 years and history of ischemic stroke are the most powerful
predictors of ischemic stroke in patients with AF, receiving double points in the
risk score calculation. In general, patients with a high CHA2DS2–VASc score are
recommended life-long oral anticoagulation therapy.

An important aspect of the CHA2DS2–VASc score applicability is its dependence
on AF diagnosis, whichmeans that patients fulfilling one or more criteria listed in the
risk score would not be offered stroke prevention therapy unless AF is documented.
However, AF is often asymptomatic, and sometimes ischemic stroke may be the first
clinical presentation of underlying AF.

It has been reported that at least one third of patients with AF had asymptomatic
AF [24, 25]. In patients with implantable devices, subclinical AF was quite common
and associated with increased risk of stroke [26]. In this context, sensitivity and
specificity of AF screening techniques as well as the reasonable balance between the
associated costs, the need for surgical interventions (as in the case of implantable
subcutaneousmonitors), and the risk of false positiveAFdetection become the factors
defining the clinical utility of AF screening.

As the history of ischemic stroke automatically places a patient with AF in the
high-risk group regarding ischemic stroke recurrence, screening for AF becomes par-
ticularly important in ischemic stroke survivors.Using the standardECGat admission
with ischemic stroke, AF is documented in 20–25% of those who survived ischemic
stroke [21, 27]. Additional, repeated conventional snapshot ECG recordings after
stroke onset appeared to increase AF detection rate by 1.4–6.7% [28–30]. Diag-
nostic yield of 24–48-h continuous, ambulatory ECG monitoring in patients with
ischemic stroke and sinus rhythm at admission has been reported to be 1–6.4% [28,
30, 31], increasing to 12.5% when monitoring was continued for a week [31]. In
stroke patients who underwent 30-day ambulatory, automatically triggeredAF detec-
tion, AF was documented in 6–11% of cases [2, 32]. Outpatient cardiac telemetry
during 3–4 weeks in patients with cryptogenic stroke revealed 17–20% of new AF
cases [33, 34]. However, the highest detection rate of AF in patients with cryptogenic
stroke was reported in patients with insertable cardiac monitors and appeared to be
30% [35]. Though the superiority of the latter strategy for AF detection is obvious,
its cost-effectiveness is largely affected by proper selection of patients who would
benefit from continuous screening for AF.

WhileAFmost certainly is a risk factor for ischemic stroke, it is not necessarily the
direct cause of it. The causality of association between AF and ischemic stroke was
questioned by the reported lack of temporal relationship between stroke events and
symptomatic AF paroxysms or atrial high-rate episodes detected by an implantable
loop recorder [36–38] or an implantable device [39–42]. In different studies, only
2% of patients had subclinical AF episodes lasting more than 6min at the time
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of stroke or systemic embolism [43]. Among the plausible explanations for this
change of paradigm is the recently proposed concept of fibrotic atrial cardiomyo-
pathy [44], according to whichAFmay result from an underlying progressive disease
affecting atrialmyocardiumand resulting in replacement ofmyocardiumwithfibrosis
and fat, increasing atrial thrombogenic properties, and the risk of stroke, which in
this situation does not have to express a temporal relationship with the arrhythmia
episodes.

Finally, availability of diagnostic information recorded directly from the atria
in patients with implanted dual-chamber pacemakers or cardioverter–defibrillators
poses a new challenge of interpretation. Our knowledge regarding clinical impor-
tance of AF and its relationship to stroke has been built on clinical AF episodes,
i.e., AF detectable by conventional means of ECG diagnostics, while implantable
device-detected arrhythmias, also called atrial high-rate episodes, are often sub-
clinical, asymptomatic, and short in duration, which in some cases may only last
several seconds. Even though these episodes may have electrogram characteristics
indistinguishable from AF, it is yet unknown whether such brief AF episodes are
associated with a risk of stroke similar to that of conventionally defined AF.

1.8 Principles of Atrial Fibrillation Management

Management of patients with AF is aimed at reaching two fundamental goals: pro-
longing life and improving its quality by reducing arrhythmia-related symptoms.
Three major treatment strategies have been developed and implemented:

1. Ischemic stroke prevention (oral anticoagulation)
2. Heart rate control during AF (rate-control strategy)
3. Prevention of AF (rhythm-control strategy).

Only ischemic stroke prevention was shown to reduce mortality in patients with AF,
while rate- and rhythm-control strategies remain the key elements of AF patients
care with the primary objective to improve quality of life.

1.8.1 Ischemic Stroke Prevention

Prevention of thromboembolic complications of AF is achieved by administration of
medications attenuating blood-clotting capacity (i.e., anticoagulants) to individuals
at high risk of ischemic stroke. The challenge to be met when using anticoagulation
therapy is to maintain the fine balance between the benefit of reducing propensity to
clotting and the potential harm of the drugs related to their inherent property of pro-
longing bleeding time and the risk of bleeding complications, which in some cases
may be fatal, such as intracranial bleedings. Clinical decision-making tools have
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been proposed to facilitate administration of stroke-prevention measures to individ-
uals in need. The most commonly used risk quantification tool recommended by
the management guidelines is the above-mentioned CHA2DS2–VASc score, which
estimates the probability of ischemic stroke. However, balancing the risk of bleeding
is not an easy task since a number of factors included in the CHA2DS2–VASc score
increase both the risk of ischemic stroke and the risk of major bleeding complications
of anticoagulant therapy: hypertension, advanced age, and the history of stroke.

Recent studies that questioned the causal relationships between the arrhythmia
and embolic events, reviewed earlier in this chapter, have led to a paradigm shift sug-
gesting that AF may be a marker of the increased risk of ischemic stroke rather than
its direct cause. Interestingly, a number of studies have shown that the CHA2DS2–
VASc score not only predicts the risk of ischemic stroke, but it is also a reasonably
accurate tool to predict the development of AF in patients without known AF history.
This strategy is based on the findings documented in cohorts of ischemic stroke sur-
vivors [45, 46] and in selected cohorts of patients evaluated for palpitations [47, 48].
Therefore, it is plausible to suggest that patients with a high CHA2DS2–VASc score
may benefit from oral anticoagulation therapywithout need for documentation of AF.
The clinical utility of this approach remains to be proven in ongoing clinical trials.
It is likely, however, that its risk–benefit ratio will largely depend on the CHA2DS2–
VASc score cut-off selected for making the decision to initiate anticoagulation and
the underlying risk of bleeding.

1.8.2 Rate-Control Strategy

Whether a patient would benefit from implementation of rate-control measures is the
question that needs to be asked for every patient with AF, regardless of the severity
of clinical manifestations of the arrhythmia. Some patients with high ventricular rate
during AF may not have any distinct symptoms associated with fast and irregular
heartbeats. However, if left untreated, high ventricular rate may lead to deterioration
of ventricular contractile function, reduction of cardiac pumping capacity, and dilata-
tion of the ventricular chambers (known as tachycardiomyopathy) with development
of heart failure as the ultimate consequence. Adequate rate-control improves quality
of life, reduces morbidity, and decreases the potential for developing tachycardia-
induced cardiomyopathy.

The degree of rate control and the thresholds defining adequately controlled ven-
tricular response during AF remain, however, an area of uncertainty. According to a
“strict rate-control approach”, the goal of rate-control therapy is to bring the heart
rate down to ≤80 beats per minute (bpm) at rest, or the average heart rate ≤100 bpm
in ambulatory monitoring. These thresholds, however, may be difficult to achieve
in clinical practice in a considerable part of patients with AF. In a single study,
an alternative “lenient rate-control approach”, using instead 110 bpm at rest, was
tested and shown to be noninferior to the strict rate-control strategy [49]. Additional
independent confirmatory studies are needed to fully understand the impact of the
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lenient rate-control approach on mortality, heart failure symptoms, hospitalizations,
and quality of life.

Rate control may be achieved by different means, including the use of phar-
maceuticals or catheter-based therapies. Some antiarrhythmic drugs, including beta-
blockers, calcium antagonists, or cardiac glycosides, have proven efficient in slowing
down ventricular response during AF through their blocking effect on the AV node.
The choice of the drug remains empirical and is driven mainly by the presence of
contraindications of or intolerance to certain compounds. As a last resort, the pow-
erful antiarrhythmic drug amiodarone can be used to control the heart rate. Due to
the risk of serious side effects that may appear during long-term administration, the
use of amiodarone is restricted to rare occasions when other drugs fail to achieve the
therapeutic goals.

In rare caseswhen rate control cannot be achieved bymedication due to either drug
intolerance or inefficiency, catheter-based therapy may be applied. Ablation of the
atrioventricular junction, achieved by local application of either radiofrequency cur-
rent or deep freezing (cryoablation), leads to destruction of the functional connection
between the atria, whichmay continue to fibrillate, and the ventricles. Obviously, this
approach is only feasible in patients with implanted pacemaker, either received for
other indication or implanted specifically to enable AV junctional ablation. Patients
undergoingAV junctional ablation becomepacemaker-dependent,which is an impor-
tant limiting factor, and, therefore, this approach is the last one in the armamentarium
of AF therapies. On the bright side, however, remains the fact that ventricular con-
tractions become regular and steered exclusively by a programmable pacemaker,
eliminating the concern of high rate without the need for rate-control pharmacolog-
ical therapies.

1.8.3 Rhythm-Control Strategy

Rhythm-control strategy includes all therapeutic interventions aimed at prevention of
AF recurrences and restoration of sinus rhythm using a combination of approaches,
including cardioversion (electrical or pharmacological), antiarrhythmic drugs, and
catheter ablation in the setting of appropriate anticoagulation and rate control.

It may seem surprising that rhythm-control strategy aimed at restoration or main-
tenance of sinus rhythm is the last item on the list of AF therapies. However, this
approach, still reserved for the most symptomatic patients, has not been associated
with mortality reduction and may be associated with increased number of hospital
admissions. While stroke prevention and rate control are considered obligatory com-
ponents of care for patients with AF, rhythm-control measures are generally reserved
for patients who remain symptomatic despite adequate rate control.

In some situations, however, rhythm-control strategymay be prioritized over rate-
control measures. This may be important in situations when it is difficult to achieve
adequate rate control in younger patients, in tachycardia-mediated cardiomyopathy,
during the first episode of AF, in AF precipitated by an acute illness, or patient pref-
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erence. Another argument favoring rhythm-control strategy over limited rate-control
intervention is that AF progresses from paroxysmal to persistent in many patients
and subsequently results in electrical and structural remodeling which eventually
becomes irreversible. For this reason, acceptance of AF as permanent in a patient
may render future rhythm-control therapies, if needed, less effective. This observa-
tion may bemore relevant for a younger patient who wishes to remain a candidate for
future development in rhythm-control therapies. Early intervention with a rhythm-
control strategy to prevent progression of AF may therefore be beneficial.

Restoration of sinus rhythm may be achieved by means of either antiarrhythmic
drugs (pharmacological cardioversion) or delivery of electrical shock through the
electrodes applied on the chest of the patient (electrical cardioversion). Whether
to choose pharmacological or electrical approach to cardiovert a patient with AF
depends on a number of factors.

Electrical cardioversion is generally considered the most efficient way to restore
sinus rhythm. Compared to pharmacological cardioversion, which may have a suc-
cess rate varying from 30 to 60% depending on the choice of drug, degree of atrial
remodeling, and duration of the AF episode, electrical cardioversion, electrically
resetting cardiomyocytes using appropriate shock settings, terminates AF immedi-
ately in more than 90% of all patients. On the other hand, restoration of sinus rhythm
using electrical cardioversion requires sedation, which itself is not a risk-free inter-
vention and does not prevent immediate recurrence of AF.

Pharmacological cardioversion, on the other hand, does not require sedation, but
is more time-consuming, in part due to the time required for an antiarrhythmic drug
to reach therapeutic concentration in the body, and in part due to the need for rhythm
observation after drug administration in order to monitor potential proarrhythmic
effects of the potent antiarrhythmic drugs used for pharmacological cardioversion.
With few exceptions, most of the drugs suitable for pharmacological cardioversion
are also efficient as rhythm-control agents which may be administered over long
periods of time to reduce the frequency and duration of AF and to improve quality of
life. Since rhythm-control strategy is the approach aimed at improving quality of life,
rather than reducing mortality, the choice of drug is, to a greater extent, guided by
safety concerns related to proarrhythmic side effects, expressed by nearly all potent
antiarrhythmic drugs, than by drug efficacy. Patients with coronary artery disease,
heart failure, and significant left ventricular hypertrophy havemore restricted options
than those with minimal or no structural heart disease.

Catheter ablation has evolved from an experimental technique, having emerged
at the end of ’90s [50], to become an efficient treatment modality, which in selected
patient populations has demonstrated efficacy superior to antiarrhythmic drugs [51].
The approach is based primarily on the creation of electrically impenetrable bound-
aries surrounding the ostia of pulmonary veins, using either radiofrequency current
or deep freezing delivered with a catheter placed in the left atrium. Depending on
the degree of atrial remodeling and arrhythmia persistence, pulmonary vein isolation
may be combined with additional lines in the left or right atrium aimed at further
hampering propagation of fibrillatory waves in the atrial myocardium, and thus to
reduce the likelihood of AF maintenance. The evidence supporting the efficacy of
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catheter ablation is strongest for paroxysmal AF in young patients with little or no
structural heart disease, and in procedures performed in highly experienced centers.
As of today, the effect of catheter ablation on reduction of mortality, stroke, or heart
failure is insufficient. The ongoing randomized clinical trials “Catheter Ablation
Versus Antiarrhythmic Drug Therapy for Atrial Fibrillation” (CABANA) and “Early
Therapy of Atrial Fibrillation for Stroke Prevention Trial” (EAST) are expected to
provide new information to assess whether catheter ablation is superior to standard
therapy with either rate- or rhythm-control drugs for reducing total mortality, and
whether early application of rhythm-control strategy can impact the risk of ischemic
stroke, cardiovascular death, or the development of heart failure. This research will
help us to understand whether catheter ablation provides benefit beyond improve-
ments in quality of life in patients with AF.

In clinical practice, the ability to predict the likelihood of AF conversion (either
spontaneous or induced by antiarrhythmic drugs) and the risk of AF recurrence
after cardioversion or catheter ablation would be useful for planning rhythm-control
therapies and avoiding unnecessary interventions. In patients prone to regain sinus
rhythm spontaneously within a reasonable time frame, cardioversion attempt, for
example, can be withheld or postponed. Patients who are unlikely to respond to
an antiarrhythmic drug can be scheduled for electrical cardioversion instead, while
those who are unlikely to maintain sinus rhythm over a considerable time span may
not be good candidates for rhythm-control strategy at all. Therapeutic efforts could
instead be focused on achieving appropriate rate control. The proper stratification
tool, however, is still lacking.

The degree of structural and electrical remodeling of the atria in patients with AF
is considered the factor which, to a large extent, defines the probability of success
in applying rhythm-control strategy. In general, patients with long-lasting persistent
AF, enlarged atria, and extensive fibrotic replacement of myocardium in the atrial
walls are less likely to benefit from cardioversion. Clinical assessment of these factors
may involve using different diagnostic modalities such as echocardiography, MRI,
and endocardial voltage mapping, which may not be practical for all patients, is
associated with significant costs and catheterization-related risks. On the other hand,
characteristics of the atrial fibrillatory process, retrievable from the ECG in terms
of frequency content and degree of organization, may contain important prognostic
information [52, 53].

1.9 Electrocardiography in Atrial Fibrillation Diagnosis

Novel wearable devices can greatly improve the diagnosis of AF in ambulatory
outpatients. For screening purposes, low-cost and easy-to-use handheld or wearable
devices can be used to record theECG, eitherwith a dedicated device or a smartphone.
In both cases, a single-lead ECG is recorded between the thumbs, fingers, or palms.
Using handheld devices, systematic screening has been performed in a population
at risk under certain circumstances, e.g., in primary care during seasonal influenza
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vaccination in the Dutch population aged 65 years and older [54], or in stroke and
transient ischemic attack patients [55]. For example, the smartphone has been used
for screening purposes in community pharmacies [56] and in subjects identified
via general practitioner records [57]. Section2.3 provides an overview of different
technologies available for recording the ECG.

A large number of studies suggest that handheld or wearable devices are well-
suited for AF screening, particularly in high-risk patients. This would be of great
importance from a clinical point of view as more patients with AF would be detected
at an early stage. However, early identification/detection of AF is compounded by
the silent nature of AF in about one third of all patients [24]. Since the risk of stroke
is the same for silent AF and symptomatic AF [58], it is important to detect the
arrhythmia at an early stage so that therapies can be introduced which protect the
patient from progression of AF as well as from the consequences of the arrhythmia.

In ECG-based detection of AF, the analysis of RR intervals has received the most
attention since such information is readily available in most applications. However,
such analysis is problematic when an AF episode is preceded by some other type of
arrhythmia which is also manifested by an irregular ventricular rhythm resembling
AF. Therefore, the analysis of P and f waves, although beingmore complex, is receiv-
ing more attention since morphologic information is essential when distinguishing
AF from other arrhythmias. Morphologic information is also essential to the detec-
tion of brief AF episodes since a handful of RR intervals does not provide accurate
quantification of rhythm irregularity. Chapter 4 provides a comprehensive review of
AF detectors based on rhythm information as well as on rhythm and morphologic
information.

Despite its disadvantages, rhythm-based detection offers the possibility to detect
AF in single-lead pacemakers or defibrillators. From a clinical point of view, new
onset or new recognition of AF in patients with reduced left ventricular systolic
function is common, and therapeutic decisions aremade easier by accurate estimation
of AF burden. Another group of patients which would benefit from early detection
of AF are those with heart failure and a biventricular pacemaker implanted, in whom
long episodes of undetected AF may substantially reduce biventricular pacing up to
causing decompensation [59].

1.10 Standardization of Atrial Fibrillation ECG
Characteristics Assessment

There is considerable variation in the methodology and definitions of parameters
used to characterize AF between different clinical and engineering research groups.
While some of the ECG-based parameters for characterizing f waves, e.g., the atrial
fibrillatory rate (AFR) and the closely related dominant AF frequency (DAF), have
been tested in clinical contexts for more than a decade, the clinical significance
of novel descriptors characterizing the degree of AF organization with, e.g., signal

http://dx.doi.org/10.1007/978-3-319-68515-1_2
http://dx.doi.org/10.1007/978-3-319-68515-1_4
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entropy or harmonic decay in the power spectrum, is limited to small-cohort studies
which are either cross-sectional or retrospective by design, and thus stay even farther
away from clinical routine than do the parameters which characterize the spectral
properties of the f waves. The interdependence of different parameters of AF and
their relation to methodological issues also remains to be further investigated.

It is not known to what extent differences in the methodology used for AF assess-
ment may affect the results. Differences in signal processing algorithms, not always
apparent from the descriptions of published methods which may involve proprietary
information, can influence the result of studies comparing different methodologies.
There is a paucity of data that would compare performance of individual methods of
AF complexity assessment on the same patient cohort performed by different groups,
which further reinforces the need for exchange of data and methodology. There is
an unmet need for reproducibility studies of AF parameters in the clinical context.
However, methodological differences may hamper interpretation and comparability
of study findings, thus suggesting that reproducibility studies should ideally be pre-
ceded by applying an alternative methodology to the same patient cohort as used in
the original study before testing performance of biomarkers on a different patient
cohort.

One can draw a parallel with studies assessing the value of biochemical or genetic
markers for diagnosis or prognosis in the clinical context. It is unlikely that the results
of such studies would be comparable and generalizable in clinical practice if different
non-standardized laboratory procedures would be used for estimation of biomarker
values or identification of genetic variants. Until similar logic is applied to ECG-
derived AF parameters, it would be unrealistic to expect that results of the studies
involving ECG signal processing will be widely implemented in clinical practice.

From the clinical point of view, AF is such a multicausal rhythm disorder so that
its clinical impact and interpretation of ECG characteristics should not be assumed
to have similar meaning in different clinical contexts [6]. More importantly, despite
years of clinical research and refinement of methodologies aimed at characterizing
AF complexity, we are still far from understanding the natural course of different
markers which can be derived from the ECG, their intra-individual reproducibility
during recurrent AF episodes, propensity to showing circadian behavior, relation
to the time from AF onset, and the degree of AF persistence and evolution during
long-time observation in patients with permanent AF.

Taking AFR as an example of a spectral parameter that was assessed using the
same methodology in the context of sinus rhythm restoration and maintenance after
cardioversion, it was found to lack predictive value in patients with long-standing
AF [60], to have significant association between a lowerAFRand a higher probability
of sinus rhythm during follow-up in patients with shorter AF duration [61], and to be
highly predictive of spontaneous conversion in patients with AF duration less than
48h [62]. At the same time, AFR is known to express circadian fluctuations, at least
in patients with permanent AF [63, 64], and to demonstrate pronounced and rapid
acceleration over the course of several minutes [65] to 3–4h from the onset of an AF
episode [66].
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Even though a number of issues remain to be clarified, it is quite clear that the
interpretation ofAFR is highly dependent of the clinical context, andmore studies are
needed to define its limits of applicability as a biomarker suitable for risk stratification
and prediction of intervention effect. Few other quantifiable characteristics of AF
can be compared with AFR with respect to the level of understanding of biomarker
“behavior” in different clinical contexts.

1.10.1 Electrocardiographic Characteristics as Biomarkers

As long as AF parameters are considered in the context of characterization of disease
process and prediction of intervention effect, they fall under the definition posed
by regulatory authorities governing drug development and approval. The European
Medicines Agency (EMEA) defines biomarkers as “tests that can be used to follow
body processes and diseases in humans and animals. They can be used to predict how
patients will respond to a medicine or whether they have, or are likely to develop, a
certain disease” [67].

Both EMEAand Food andDrugAdministration (FDA) have developed biomarker
qualification procedures that need to be fulfilled in order to accept the use of a
biomarker in the context of a clinical trial, e.g., as a patient selection or stratifica-
tion criterion, a measure of intervention effect or an endpoint. Biomarkers being
considered for qualification should be “conceptually independent of the specific test
performing the measurement [but] cannot become qualified without a reliable means
to measure it” [68]. Signal characteristics of AF should therefore be seen as potential
biomarkers used for guidance of therapy and should have a reliable means of their
assessment. Therefore, already at an early stage of their development and validation,
care should be taken to make sure that studies in which AF signal characteristics are
assessed provide important information that defines the context of biomarker use,
i.e., the specific populations within the AF continuum, the clinical type of AF, the
potential impact of concomitant therapies, and interventions.

1.10.2 Roadmap for Standardization of AF Parameters

With regard to the above-mentioned observations of inter-individual variability and
context dependence of AF signal characteristics, as well as the strict requirements
posed by regulatory authorities, several issues need to be dealt with on the way to
implementation of ECG-derived AF parameters in clinical decision-making.
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Cross-Validation of Signal Processing Techniques

Reproducibility studies are needed to find out whether differences in the predictive
value of AF parameters in different studies are caused by differences in clinical
and demographical characteristics of studied populations or differences in signal
processing methodologies. There is a continued need to establish open databases that
would promote collaboration between initiative participants who in turn would be
encouraged to share their data anddeveloped algorithms. PhysioNet (www.physionet.
org) [69] and Telemetric and Holter ECG Warehouse (THEW, www.thew-project.
org) [70] are important repositories where large AF-ECG data sets are available,
usually accompanied by clinical information. The former repository is supported
by National Institute of General Medical Sciences (NIGMS) and National Institute
of Biomedical Imaging and Bioengineering (NIBIB), and the latter by FDA and
National Heart, Lung, and Blood Institute (NHLBI).

On the other hand, any data set containing different types of AF ECG recorded at
different ventricular rates, f wave amplitude, signal quality, and so on, are suitable
for technical assessment of agreement between different signal processing methods
and their robustness.

Biomarker Behavior in Different Clinical Contexts

Since the use of ECG-derived AF parameters is highly dependent on the clinical
context, there is a need for studies which specifically target different patient pop-
ulations in order to obtain reference values valid in specific clinical situations, in
which different degrees of atrial electrical or structural remodeling are expected. For
example, the performance of AF parameters should be assessed separately in patients
with short versus long duration of AF, with recurrent versus permanent AF, treated
versus not treated with oral antiarrhythmic drugs, etc. Since any intervention on the
atria may affect both spectral content and organization, studies should specifically
address AF behavior in patients with a history of cardiac surgery and/or catheter
ablation.

Comprehensive Data Processing

Researchers should be encouraged to assess and present the full range of AF charac-
teristics, thus not limiting the results to presentationof significant findings only. Publi-
cation bias is a known phenomenon which hampers further development of biomark-
ers, and may lead to potentially unnecessary and time- and resource-consuming
analysis performed by independent groups unaware of negative findings obtained by
others in similar clinical contexts.

www.physionet.org
www.physionet.org
www.thew-project.org
www.thew-project.org
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Prospective Studies

While retrospective studies and studies on selected patient populations may be suit-
able for initial assessment of novel AFmarkers, only prospective studies may answer
questions concerning the suitability of these markers for prediction of intervention
effects or long-term prognosis. A similar approach is exercised by regulatory author-
ities that include review of clinical studies demonstrating the value of a novel param-
eter in the biomarker qualification procedure [67, 68].
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Chapter 2
Lead Systems and Recording Devices

Andrius Petrėnas, Vaidotas Marozas and Leif Sörnmo

2.1 Introduction

The surface ECG is the most widely used clinical tool for detecting atrial fibrilla-
tion (AF), with the standard 12-lead ECG, recorded at rest, as the preferred lead
system [1]. However, fewer leads are sufficient to confirm AF, being particularly
advantageous when the patient is monitored for an extended period of time, for exam-
ple, to detect silent, previously undocumented AF. Since extended ECG monitoring
may last for several days, even a three-lead system, requiring five electrodes, may
become inconvenient for the patient [2]. For this reason, various types of single-lead
devices have been developed to ensure patient comfort in exchange for diagnostic
reliability provided by more leads. While reduced lead systems are well-suited for
detecting AF, they only provide limited information on the underlying mechanisms.
On the other hand, comprehensive characterization of AF, such as identification of
wavefront propagation patterns in the atria [3], benefits from using a large number
of electrodes.

Commercial devices, especially those employing a small number of leads, tend
to produce false positives due to electromyographic noise, motion artifacts, ectopic
beats, or pronounced sinus arrhythmia [4], calling for manual review of computer-
detected arrhythmic episodes. This shortcoming is particularly pronounced when
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it is of interest to analyze brief AF episodes. Since manual review of long-term
continuous ECG recordings is time-consuming, and at times unreliable [5], it is
essential to improve AF detection performance.

2.2 Lead Systems

Historically, the electrode placement of most lead systems has been focused on
ventricular activity, and, consequently, they are suboptimal for atrial activity—an
observationwhich applies especially to atrial activity duringAF. Since the amplitudes
of atrial waves, i.e., P and f waves, are much smaller than those of ventricular waves,
better discrimination of atrial tachyarrhythmias, e.g., atrial tachycardia, atrial flutter,
and AF, can be achieved in leads with larger atrial amplitude [6, 7]. Moreover,
large-amplitude leads facilitate the characterization of f waves, especially when the
f waves have been separated from ventricular activity (Chap. 5). For example, the
atrial fibrillatory rate (AFR), a parameter useful for selection of treatment strategy [8],
is more reliably estimated.

When the standard 12-lead ECG system is employed, limb lead II normally pro-
duces the largest P wave amplitude. On the other hand, since the atrial activity is
disorganized during AF, the precordial leads V1 and V2 usually have the largest
f wave amplitude due to their proximity to the atria. In general, the f waves in V1 to
V6 have decreasing amplitude as the distance to the atria increases. Moreover, the
precordial electrodes are placed close to each other, thus causing the f waves to be
correlated.

For sake of clarity, it should be noted that the term “lead” is used for defining
the voltage difference between two electrodes. For example, lead I is the voltage
between the left and right arm electrodes, whereas lead V1 is the voltage between the
electrode placed at C1, i.e., chest position #1, and Wilson’s central terminal which is
the average of the three limb leads.

2.2.1 Body Surface Potential Mapping

While the standard 12-lead ECG serves as the reference system for AF diagnosis,
it only provides limited information on the wavefront propagation patterns of atrial
activity. A larger number of electrodes, distributed over the body surface, better
reflect spatial differences. Indeed, reconstruction of body surface potentials from the
f waves of the 12-lead ECG is associated with a 53% reconstruction error, indicating
that additional electrodes are needed to provide a more accurate representation of the
f waves [9]. For this reason, body surface potential mapping (BSPM) is an important
tool for reconstructing f waves [10]. The number of electrodes used in BSPM systems
has ranged from56 [3] to 252 [11], involving anterior, posterior, and sometimes lateral
sites. Electrodes can either be distributed nonuniformly [9] or arranged as a uniform
grid around V1 [3, 12].
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In one of the very first BSPM studies on AF, wavefront propagation patterns were
identified, representing either a single wavefront, single wavefront with breakages,
or multiple wavefronts [3]. Signals were recorded using a custom-made vest with
56 (40 anterior and 16 posterior) electrodes arranged around V1 in a uniform grid
with a distance of 2.2cm between the electrodes. Despite the low quality of the
f waves, the constructed maps of wavefront propagation were consistent with those
observed using invasive or optical mapping. When comparing f waves in V1 to
those recorded using BSPM, f waves in V1 were representative only when a single
wavefront propagated across the whole atria; in such cases, f wave amplitude and
AFR were similar, regardless of the site where the signal was recorded. However,
for a single wavefront breaking or multiple simultaneous wavefronts coexisting, the
f wave pattern differed and depended on the site.

Obviously, more electrodes result in higher spatial resolution. However, many
electrodes are impractical in clinical routine, and, therefore, the following questions
should be answered:

• What is the optimal number of electrodes?
• Which electrode placement provides the best atrial information?

To answer these questions, BSPMwith 64 nonuniformly distributed electrodes (48
anterior and 16 posterior) was employed [9]. The criterion for selecting the optimal
leadswas given by the total rootmean square (RMS) error of the reconstructed signals
of the remaining leads not included in the lead system under consideration. Since the
ventricular activity of the whole body surface can be reconstructed from the standard
12-lead ECG with an error of 25% [9], the optimal number of electrodes needed
to record the atrial activity was defined by the same error percentage. The results
showed that 23 electrodes were needed to achieve this reconstruction error, using
the placement shown in Fig. 2.1. To reduce the error to 10%, at least 45 electrodes
were required for reconstructing the atrial activity, while only 22 electrodes for the
ventricular activity.

(a) (b)

Fig. 2.1 Placement of a anterior and b posterior electrodes in AF-optimized body surface potential
mapping
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Assuming that the type of wavefront propagation can be successfully identified
using BSPM, this technique has the potential to characterize the degree of atrial
organization. The application of BSPM is limited by the time-consuming preparation
procedure; however, this problem may be mitigated by integrating the electrodes
into smart textiles, which would reduce the time required for electrode placement
considerably.

2.2.2 Modifications of the Standard 12-Lead ECG

A lead system tailored to the analysis of AF is more likely to be clinically accepted
if it can be viewed as a modified standard 12-lead ECG. Accordingly, several such
modifications have been proposed [9, 13–15]. The design of a modified lead sys-
tem is restricted to the 10 electrodes defining the standard 12-lead ECG. To retain
Wilson’s central terminal, used as the reference potential of the precordial leads, the
positions of the extremity electrodes VR, VL, and VF should be retained. Moreover,
it is desirable to place the electrodes in relation to conventional sites to simplify elec-
trode placement, especially since incorrect placement is a well-known problemwhen
acquiring the standard 12-lead ECG [16]. The electrode sites are determined heuris-
tically, either by placing the electrodes close to the atria or using some optimization
criterion.

A heuristic approach to determining ECG leadswith increased fwave amplitude is
to place V3 to V6 in the vicinity of V1 and V2. For example, the precordial electrodes
can be rearranged to form a 2 × 3 grid on the right side of the chest, with V1 and V2

unmodified and V3 to V6 replaced by the new electrodes VLS, VS, VRS, and VR [13].
The electrode VLS (left superior, LS) is placed one intercostal space above V2. The
electrodeVS (superior, S) is placed one intercostal space aboveV1. The electrodeVRS

(right superior, RS) is moved to the right of VS, whereas the electrode VR is moved
to the right of V1 and aligned vertically with VRS, see Fig. 2.2a. Preliminary results
based on simulated f wave signals, using a biophysical model of the human atria
and thorax, showed that the resulting lead system, coined as the electroatriogram,
provides more information on atrial activity than the standard 12-lead ECG [13, 14].

Two other, heuristically derived modifications are intended for either anterior or
posterior monitoring [15]. Similarly to the lead system in [13], V1 and V2 remain
unmodified, whereas the other four leads are rearranged counterclockwise around V1

and V2, see Fig. 2.2b and c. The only difference compared to the placement in [13]
is that the lead on the right upper side of the chest, denoted VRS, is placed one inter-
costal space below V1, denoted VB. The posterior electrodes V1P, V1PS, V2P, and
V2PS (posterior superior, PS) are rearranged in a similar fashion. Two electrodes are
placed opposite to V1 and V2, whereas the remaining two are placed one intercostal
space below V1 and V2. Following cancellation of the ventricular activity, the use-
fulness of the proposed electrode placement was investigated in terms of interlead
dispersion of the AFR. The proximity of V1 to V2 gave rise to nearly the same AFR,
whereas the dispersion was larger among the anterior leads. Although the posterior
electrode placement was associated with 35% lower frequency dispersion than that
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(c)(a)

V1 V2

V1 V2

VR

VRS VS VLS VS VLS
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V2P V1P

V2PS V1PS

Fig. 2.2 Heuristically derived modifications of the precordial electrode placement: two anterior
and one posterior electroatriogram proposed in a [13], b [15], and c [15], respectively

of the anterior, the combination of both approaches can be used to extract additional
information. It was shown that anterior leads mostly reflect the AFR of the right
atrium [17], whereas posterior leads mostly reflect the AFR of the left atrium [18].
Therefore, inclusion of both anterior and posterior leads should be applied to identify
frequency gradients, and the driving atrium.

The above-mentioned heuristic approaches are useful for finding electrode place-
ment which offers larger f wave amplitude, but not for finding electrode placement
which increases the atrial information. A quantitative approach to optimal placement
of precordial electrodes is to maximize the ratio of the smallest to the largest singular
value of the f wave signal obtained at different sites on the body surface [14]. Similar
to the heuristic approaches, four of the precordial electrodes are rearranged, while
two remain unmodified. The placement of V1 is unmodified due to its proximity to
the atria, as is the placement of V4 because its f waves are the ones which are the least
correlated to those in V1. In [14], using a biophysical model to simulate f waves, the
search for optimal placement of the four precordial electrodes resulted in four distinct
areas on the thorax where the electrodes should be placed to ensure additional atrial
information, see Fig. 2.3a. The electrode VS is placed one intercostal space above V1.
The electrode VRS is positioned to the right of VS at the same intercostal space. The
electrode VLC is placed slightly below the left clavicle (LC), whereas the electrode
VP is placed on the back behind the atria at the same level as V1. Interestingly, two
of the four new electrode sites, namely VS and VRS, were the same as those derived
heuristically in [13]. In addition, the placement of VS was the same as that used
for lead S in the EASI lead system, defined by the E, A, and I electrode positions
of the Frank lead system, plus an electrode S positioned over the upper end of the
sternum [19].

Results obtained from simulated f wave signals showed that more information can
be extracted using the optimized as well as the heuristically-derived lead systems
than with the systems using conventional electrode placement. Nevertheless, the
difference between the proposed lead systems in terms of gained atrial information
was not large. Considering that the electrodes of the heuristically-derived placement
are closer to the atria, thus producing larger f wave amplitude, the use of optimized
placement, involving electrodes with smaller f waves (V4 and VLC), is questionable.
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V1

VS
VRS

VLC

V4

VP

(a) (b)

V1
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V2
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Fig. 2.3 Modifications of precordial electrode placement derived by using different optimization
criterion, namely a the ratio of the smallest to the largest singular value of the fwave signals (anterior
and posterior placement) [14], and b the f wave reconstruction error (anterior placement) [9]

Two other modified 12-lead ECG systems for improving AF analysis have been
derived using an iterative lead selection principle. Only those leads were chosen
which increase the information contained in each selected lead set [20]. Similarly to
the previously described lead systems, only four precordial electrodes were reposi-
tioned based on the criteria for selecting leads with additional atrial information [9].
Depending on the constraint that either V1 andV2 orV1 andV4 should be kept at their
conventional sites, two electrode placements were derived of which one had the two
additional electrodes VRI (right inferior) andVW (waist), see Fig. 2.3b. Both lead sys-
tems were associated with similar f wave reconstruction error, about 10% lower than
that obtained with the standard 12-lead ECG, although the electrodes were placed on
different parts of the body. A relatively small improvement in reconstruction error
implies that modifications of the 12-lead ECG do not result in markedly increased
atrial information content. Considering the increased complexity of the electrode
placement, it is doubtful whether such modifications will be adopted clinically.

2.2.3 Reduced Lead Systems

So far, no specialized lead system is used in clinical routine when ambulatory mon-
itoring is prescribed in patients with AF. Therefore, five-electrode, standard ambu-
latory monitoring is typically applied, capable of recording six limb leads, i.e., I, II,
III, aVR, aVL, aVF, in combination with a single precordial lead, e.g., V1 [21]. It
is well-known that standard ambulatory monitors lead to reduced quality of life and
have lower patient compliance [2, 22]. For this reason, single-lead monitors are con-
sidered as a promising alternative for long-term ambulatory monitoring of AF [22].
To facilitate AF detection in reduced-lead ECGs, it is desirable to employ electrode
placement optimized for f wave analysis.

A reduced lead system for atrial activity enhancement was proposed already in the
very first book on electrocardiography, authored by Sir Thomas Lewis and published
in 1913 [23]. The Lewis lead system consists of five leads, where two, L1 and L2,
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are derived for the purpose of enhancing the f waves, see Fig. 2.4a. The bipolar chest
lead L1 is obtained by placing electrode 1 over the upper end of the sternum, and
electrode 2 on the right side of the sternum at the second intercostal space. Lead L2

is the voltage between electrodes 2 and 3, placed on the right side of the sternum at
the fourth intercostal space.

The Lewis lead system has two out of six electrodes placed directly on the pec-
toral muscle, where artifacts due to arm movement are likely to occur. In order to
avoid leads on the chest muscles, a modified Lewis lead was proposed which is more
immune to noise and with good projection of the f waves [24]. The modified Lewis
lead LM is obtained by removing electrode 2 of the Lewis lead system, and moving
electrode 3 one intercostal space downwards, i.e., from the fourth to the fifth, to
improve the immunity to armmovement artifacts, see Fig. 2.4b. A comparative study
showed that L1 and L2 exhibit a high atrial-to-ventricular amplitude ratio [24]. How-
ever, f wave enhancement is achieved at the expense of a much reduced ventricular
amplitude, rather than increased f wave amplitude. Despite the fact that L1 and L2

are proximal, L1 was found to be twice as susceptible to electromyographic noise
as L2, and, therefore, L2 is considered the preferred lead. For long-term monitor-
ing, where high noise levels are often encountered, LM may be more advantageous
since it has larger f wave amplitude than L2. Hence, L2 offers better immunity to
electromyographic noise [24].

Recent results have shown that the largest P wave amplitude is obtained when the
distance between electrodes is 12–18 cm [25]. Depending on torso size, the distance
between the electrodes of the modified Lewis lead LM is 14–20 cm, whereas the
distance for L1 and L2 is less than half. Since L1, L2, and LM are roughly along the
same axis with respect to the heart’s electrical vector, the longer distance between
electrodes is probably the primary reason for a larger f wave amplitude in LM than
in L1 and L2.

A short distance between the bipolar electrodes is desirable since the electrodes
can then be integrated into a single recording device, and, consequently, increase
patient compliance [22, 27]. However, a reduced distance between the electrodes
will also reduce P and f wave amplitudes, which in turn may reduce the performance

1
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(b) (c)(a) (d)

1

2

1
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Fig. 2.4 Reduced lead ECG systems suitable for ambulatory AF monitoring. a Original Lewis
leads [23], b modified Lewis lead [24], c f-lead [25], and d P-lead [26]. Note that all lead systems
involve bipolar leads, although only the leads enhancing atrial activity are shown
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of AF detectors exploring the presence of f waves [28, 29]. Thus, another approach
to finding the best lead for ambulatory monitoring of f waves is to account for both
signal amplitude and distance between the electrodes. Based on the analysis of 120
combinations of bipolar leads, obtained from 16 electrodes placed on the precordial
area, the best leads for monitoring of P and f waves were identified [25]. A lead
for P wave monitoring is obtained by placing one electrode on the right side of the
sternum at the second intercostal space, and another electrode on the sternum in line
with the fourth intercostal space. A lead for f wave monitoring (referred to as “f-
lead”) is obtained by placing one electrode on the sternum at the level of the second
intercostal space, and another electrode on the right side of the sternum at the fourth
intercostal space, see Fig. 2.4c. Although a distance of 8cm was found to be optimal
for both P and f waves, these leads involve different electrodes, and, thus, a lead can
only be optimal for either P or f wave monitoring. Considering that one electrode
is placed on the sternum, while the other on the right side of the chest, both leads
are susceptible to motion artifacts. Hence, the signal quality during daily activities
should be investigated before an AF monitor is designed for these particular leads.

However, this approach is not necessarily optimal with respect to maximized
atrial amplitude. Therefore, a bipolar lead (referred to as “P-lead”) for maximized
P wave amplitude was derived based on the analysis of 117-lead BSPM, recorded
from more than 200 healthy individuals [26]. Since only healthy individuals were
included, the best lead coincided, not surprisingly, with the electrical axis of the
heart, see Fig. 2.4d. To obtain the P-lead, one electrode has to be placed on the right
sternal clavicular junction and the other on the midpoint of the left costal margin in
line with the seventh intercostal space. The study showed that the P-lead has nearly
three times larger P wave amplitude than L2, and 35% larger amplitude than LM.
While the P-lead is attractive for AF detectors involving P wave analysis, it will not
necessarily produce larger f wave amplitude.

Although the EASI lead system was not specifically developed for the analysis
of atrial activity, lead ES provides relatively large P wave amplitude [24]. This lead
system uses four electrodes placed on the torso, where the electrodes E, A, and I are
placed at the same sites as in the Frank lead system [19]. The electrode S is placed
over the upper end of the sternum (the manubrium) and the electrode E at the bottom
of the sternum at the level of the fifth intercostal space.

The aforementioned reduced lead systems, except EASI, were developed for
the purpose of enhancing atrial activity, and, therefore, less suitable for evaluating
ventricular beat morphology, except for fundamental information such as the occur-
rence times of the QRS complexes. Since RR interval irregularity, together with
P wave absence and f wave presence, represent the landmark properties of AF, a
single-lead system may even provide sufficient information for AF detection. Con-
sidering that the electrodes of the reduced lead systems are closely positioned to the
right atrium, the spectral content of the f waves is largely related to the right atrium.
However, it remains to be shown, for example, how well AFR, determined from the
surface ECG, agrees with that measured by an intra-atrial recording. Moreover, there
is a lack of studies examining noise immunity of different ECG lead systems.
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2.3 Recording Devices

Formany years, the restingECGand24-h ambulatorymonitoringwere the only avail-
able techniques for analyzing AF. However, the rapid development of electronics and
communication technologies has given rise to novel approaches to AF monitoring
and screening, ranging from invasive devices, providing a convenient way to contin-
uously monitor arrhythmias for months and years, to short-term screening recorders,
see Fig. 2.5 [30]. Contemporary mobile ECG devices (smartphones, smartwatches,
smart wristbands, tablets) can immediately transfer data to the physician via wireless
communication (Bluetooth, Wi-Fi, GSM networks) and Internet. Together with the
rapidly growing cloud-based software, new opportunities are created to collect and
analyze large amounts of data. Sincemostmobile devices can simultaneously acquire
other types of information than the ECG, e.g., physical activity, body position, and
respiration, such information can be used to provide a more complete picture of the
factors initiating and maintaining AF.

Given that there aremany devices on themarket capable of recording theECG, this
section only provides an overview of the most representative technologies applied to
AF detection.

2.3.1 Standard Resting ECG

Since the standard 12-lead ECG is globally recognized, cost-effective, straight-
forward to record, and easy to interpret for a trainedphysician/technician, themajority
of patients with AF are identified using the 12-lead ECG. Its main disadvantage is the
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Fig. 2.5 Types of recording devices used for detection of AF, presented according to monitoring
duration
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short recording time, normally lasting only 10–30 s. Thus, persistent and permanent
AF can be detected with the 12-lead ECG, whereas paroxysmal AF, especially in its
early stages, is likely to go undetected.

2.3.2 Standard Ambulatory Monitors

Since the ambulatory monitor was introduced by Norman Holter in 1961 [31], it has
become widely accepted in clinical applications. The monitor is a portable device
capable of recording the ECG continuously for one or two days during normal daily
activities, usually with a three-lead configuration. Occasionally, seven-day and even
one-month ambulatory monitoring may be prescribed. The ambulatory monitor is a
valuable tool not only for arrhythmia detection, includingAF, but also to evaluate drug
effects on AF recurrence. Once monitoring is finished, the ECG is analyzed offline
using commercial software. Although the software for AF detection has improved
over the years, the results from automated AF detection still need to be manually
reviewed by a physician/technician to ensure that AF episodes are correctly detected.

The major drawbacks of ambulatory monitoring are the adhesive electrodes and
the connecting wires, which can be uncomfortable for certain patients and sometimes
lead to premature termination of monitoring [32]. Moreover, certain patients are
allergic to adhesive electrodes, and therefore other techniques need to be considered.

2.3.3 Cardiac Event Recorders

External cardiac event recorders are portable devices similar to the standard ambu-
latory monitor, but smaller and lighter since a single-lead ECG is usually recorded.
Most cardiac event recorders are not operating continuously, but record when acti-
vated by the patient when symptoms occur, or started automatically when rhythm
abnormalities are detected by an embedded algorithm. Two main types of cardiac
event recorders can be distinguished: continuous loop recorders and symptom event
recorders.

Continuous loop recorders are continuously refreshing, i.e., recording and erasing
the data. Data refreshing is terminated when the device is triggered by the patient
or an algorithm. In such a way, the ECG signal of the entire event, as well as a few
minutes before and after, are stored in the memory. Due to limited storage capacity,
only the onset and the end of the episode are saved if the arrhythmia lasts for a
longer period of time. Similar to the standard ambulatory monitor, the continuous
loop recorder is connected to adhesive electrodes.

Symptom event recorders are, in contrast to continuous loop recorders, not
required to be worn at all times, but can be temporarily attached to the body by
the patient when arrhythmia symptoms are experienced. However, this device is nei-
ther suitable for capturing the very onset of an arrhythmia, nor for detecting nocturnal
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and asymptomatic events. Moreover, when symptoms are severe, e.g., fainting, it is
difficult for the patient to correctly attach the device to the body.

Various studies have demonstrated that cardiac event recorders are prone to false
alarms due to ectopic beats, since runs of such beats may resemble AF. For exam-
ple, a study of the external loop recorder Vitaphone 3100 BT (Vitaphone GmbH,
Mannheim, Germany) showed that each patient in sinus rhythm, in average, had
more than five false positive ECGs during the 24-h recording period, caused by
ventricular and supraventricular premature beats and sinus arrhythmia [33]. Similar
performancewas reported in another studywhere nearly 3,000 events were collected,
and roughly 1,200 were classified as AF by a proprietary algorithm [34]. However,
only 5% were confirmed as AF after manual revision.

2.3.4 Biopatches

The biopatch technology provides a comfortable and safe way to monitor health
status, by employing a leadless, wearable, single-use device which is designed to
record the long-term continuous ECG [35]. In addition to the ECG, this type of
device can acquire other physiological parameters, e.g., skin temperature, accelero-
meter data, and respiration. Due to its minimalistic design, the device can be placed
on body areas associated with less motion artifacts, and thus record signals with
better quality.

The Zio-Patch device (iRhythm Technologies, San Francisco, CA, USA) is a non-
invasive, small size (123 × 53 × 10.7 mm), lightweight (34 g), single-use ECG
monitor, capable of recording the ECG up to 14 days [36]. Unlike standard ambu-
latory monitors, the Zio-Patch can remain attached during showering to ensure con-
tinuous monitoring. The device is attached over the left pectoral muscle with skin
adhesive. Besides continuous monitoring, symptomatic arrhythmia events can be
captured when the patient presses a button on the device. Once monitoring is com-
pleted, the device is mailed back to the manufacturer, where the data are analyzed.
The detection of AF is performed in a two-step procedure: Arrhythmia episodes are
first identified using an algorithm relying on heart rate, rhythm irregularity, and ECG
morphology, and then the detected episodes are reviewed by a technician to eliminate
false positives.

In a large study by the Zio-Patch, including more than 26,700 patients, the mean
wear time was found to be 7.6 ± 3.6 days, thus being about half the expected mon-
itoring time [22]. Although only 16% reached the maximum monitoring duration of
about 13 days, 96% of the patients exceeded the ambulatory monitoring time of 48 h.
Given that nearly 25% of all AF cases were detected after 48 h, this finding justifies
the Zio-Patch for detection of AF episodes which otherwise would have been missed
with standard ambulatory monitoring. In 87% of all patients, the device produced
analyzable signal quality during at least 22h per day.

TheNUVANTMobile Cardiac Telemetry system (Corventis, San Jose, CA, USA)
is another biopatch device that offers prolonged monitoring of arrhythmias [37, 38].
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In contrast to the Zio-Patch, the NUVANT system analyzes the ECG in real-time.
The system consists of a wearable sensor, designed for single-lead recordings, and a
portable transmitter which transmits the data to a proprietary monitoring center via
a cloud-based application. The device incorporates activation functionality allowing
the patient to trigger the device on-demand when symptoms are experienced. The
sensor is activated automatically and starts recording the ECG immediately after
being attached to the body. The data are transmitted whenever rhythm abnormalities
are detected, followed by review of certified technicians. Clinical reports on rhythm
trends and AF burden are then prepared. The sensor lasts up to 7.5 days, however,
multiple sensors can be employed in sequence to extend the monitoring period up to
30 days. Preliminary studies performed by the Corventis team themselves demon-
strated an AF prevalence of 20% among those who used the NUVANT system [37,
38]. However, larger independent clinical studies are needed to establish the clinical
usefulness of this device relative to other monitoring technologies.

Compactness, absence of wires, and water resistance of biopatches contribute to
better patient compliance and signal quality, which in turn lead to that more cases
with AF are detected than with standard ambulatory monitoring. Therefore, fur-
ther shrinking of device size and extended monitoring duration will likely promote
biopatch-based AF monitoring as an alternative to implanted loop recorders. Never-
theless, the clinical implications and the cost effectiveness of biopatches have to be
further investigated.

2.3.5 Handheld Recorders

Handheld recorders rely on the single-lead ECG, acquired by placing the hands
(thumbs, fingers, palms) on two electrodes during a period from 10s to several
minutes. Handheld recorders have been proposed as an alternative screening tool to
pulse palpation. Compared to other ECGmodalities, handheld recorders offer certain
advantages such as low cost, ease of use, and the absence of adhesive electrodes and
connecting wires.

Among the handheld AF screening devices, thumb-ECG recorders are gaining
recognition around the world. The Zenicor thumb-ECG recorder (Zenicor Medical
Systems AB, Stockholm, Sweden) is used by several hundred clinics in Scandinavia.
The device records a 30-s single-leadECGseveral times a day, at predetermined times
as well as when the patient has AF-related symptoms. The signal is transmitted to a
web server via a mobile connection. In such a way, ECGs are stored on the internet,
automatically categorized into clinically useful groups, and, if needed,made available
to a trained technician for evaluation. The Zenicor device was evaluated on a large
population of 7,173 individuals of 75–76 years of age who underwent intermittent
screening during two weeks. The results showed that four times more cases with AF
were detected than with 24-h standard ambulatory monitoring [39, 40]. Based on
information from the thumb-ECG, indicating new onset AF, anticoagulant treatment
was initiated in 93% of all patients.
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The AfibAlert AF monitor (Lohman Technologies, Sussex, WI., USA) is another
commercially available thumb-ECG recorder. TheAfibAlert acquires the ECG in two
different ways: either by pressing thumbs on the electrodes or using wrist electrodes.
The signal is recorded for 45 s, and then analyzed for AF. The preliminary decision
is immediately reported by an LED indicator. If AF is suspected, the patient has
to transmit the ECG to a physician for confirmation of the preliminary decision by
uploading the data through a USB connection. The company website declares an
AF detection accuracy of 94%, however, no clinical study has been published which
supports this figure.

The MyDiagnostick recorder (Applied Biomedical Systems BV, Maastricht, The
Netherlands) is designed to record a palm ECG. The device has the form of a stick
with metallic handles at both ends, serving as electrodes. In order to acquire data for
arrhythmia detection, the user has to hold the metallic handles for one minute. To
reduce the number of false positives, the procedure is repeated twice. The recorded
ECG is then analyzed using an embedded, proprietary AF detection algorithm. The
patient is informed about the outcome of the analysis via an LED indicator. The
MyDiagnostick device was tested on 181 patients, where the majority had confirmed
AF. Thus, a highly exaggerated AF prevalence of 53% was reported when the ECGs
were acquired [41]. Sensitivity of 94% and specificity of 93% resulted when the rec-
ommended protocol of three subsequent measurements was followed (see Sect. 4.5
for the definition of different detection performance measures). Since most patients
had AF, the influence of non-AF ECGs with ectopic beats on the false positive rate
remains to be established.

In summary, handheld devices offer a simple and fastmeans for detectingAF, since
measurements can be performed whenever arrhythmia symptoms are experienced.
Moreover, such devices may be used by a physician/technician to check whether the
patient needs a standard 12-lead ECG for confirmation of AF. On the other hand, the
huge amount of data to be manually reviewed is a significant problem for some of
the handheld ECG recorders. In addition, poor signal quality due to large electrode–
skin impedance and motion artifacts, rapid changes in the ECG signal due to lost
electrode contact, and low f wave amplitude are obstacles which make the analysis
particularly challenging [42].

2.3.6 Smartphone-Based Devices

Smartphone-based devices are emerging tools for screening of general health sta-
tus [43, 44]. In 2016, there were 2.3 billion smartphone users around the world, and
more than 259,000 mobile health applications available on app stores for personal
use. It is highly likely that smartphones incorporating healthcare technologies will
occupy a large part of the medical screening devices in the future. Considering that
smartphones are well-suited for data acquisition, storage, and processing, as well as
for display and transmission of analysis results, they represent an inexpensive means
for mass screening of AF [45, 46].

http://dx.doi.org/10.1007/978-3-319-68515-1_4
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Smartphones are used to acquire the ECG between the fingers of the left and
right hands, placed on the electrodes at the back of the smartphone case. AliveCor
HeartMonitor (AliveCor, San Francisco, CA,USA) andCardiacDesigns ECGCheck
(CardiacDesigns, Park City, UT, USA) have cases with integrated dry electrodes
for acquiring a single-lead ECG. Before a recording is made, special instructions
on arm relaxation are provided with the aim of reducing the noise level and the
amount of artifacts. The ECG is recorded for about one minute and transmitted to
the microphone of the iPhone, using a modulated ultrasound signal. The ECG is
sent to a cardiologist for review when an abnormal rhythm has been identified by a
proprietary algorithm.

Although studies are underway to assess the suitability of this technology for
mass screening [47], its performance remains unclear. For example, the original
study reported excellent performance of the AliveCor Heart Monitor with sensitivity
of 98% and specificity of 97% [48]. However, a subsequent study on two different
groups, cardiac patients and geriatric patients, revealed much lower sensitivities of
55% and 79%, respectively [49]. This dramatic reduction in sensitivity was explained
by errors in the software and the decision taken by the company to favor specificity
over sensitivity [50]. Themotivation behind this decisionwas tominimize the number
of false positives, since the device is sold to patients who will not necessarily seek
ECG revision by certified technicians.

2.3.7 Implantable Devices

Implantable loop recorders are invasive leadless devices used exclusively for diag-
nostic purposes. Such recorders have proved to be useful for diagnosing recurrent
syncope eventswhen the patient temporarily has lost consciousness and then recovers
spontaneously [51]. In case of AF, the implantable loop recorder plays a special role
in certain situations, e.g., when evaluating the success of AF treatment procedures
such as radiofrequency or cryoablation, assessing the efficacy of rate control ther-
apy, or detecting asymptomatic paroxysmal AF episodes after cryptogenic ischemic
stroke.

Several implantable loop recorders with embedded AF detection are available for
clinical use, e.g., Reveal XT (Medronic, Minneapolis, MN, USA), SJM Confirm (St,
Jude Medical, St. Paul, MN, USA), and Sleuth (Transoma Medical, St. Paul, MN,
USA). These devices include two built-in electrodes suitable for recording the bipolar
electrogram, have a thickness of several millimeters, weigh less than 20 g, and are
inserted subcutaneously. Similarly to the external, continuous loop recorder earlier
mentioned, the implantable equivalent involves looping memory, and can operate
either in automated self-activation mode or patient-activated mode using a handheld
control device when symptoms are experienced.

The Reveal XT implantable loop recorder identifies atrial tachycardia and AF on
the basis of Poincaré plot analysis [52], see also Sect. 4.2.2. In addition, the device can
be programmed to detect arrhythmia episodeswith a user-definedminimumduration.

http://dx.doi.org/10.1007/978-3-319-68515-1_4


2 Lead Systems and Recording Devices 39

In a study with 247 patients using a minimum AF episode duration of two minutes,
the sensitivity and the positive predictive value were found to be 88.2% and 73.5%,
respectively. However, these figures increased to 92.1 and 79.6%when the minimum
duration was increased to as much as six minutes [53]. As a result, six minutes has
usually been preferred in clinical studies. Manual review of simultaneously recorded
electrograms showed that false detection due to ectopic beats represented the most
common problem [53, 54]. A more detailed review of the causes showed that 35%
of the false positives were due to activity of the pectoral muscle, 15% due to atrial
and ventricular premature beats, 4% due to false QRS detection, and 1.5% due to
T wave oversensing [55].

Many clinical studies have demonstrated that continuous AF monitoring using
implantable loop recorders is superior to noninvasive techniques. Hence, implantable
cardiac monitors are gaining in popularity, although the false positive rate is usually
high. However, mass implantation of invasive devices is unrealistic due to the high
cost associated with the device and the required surgical procedure, as well as the
potential risk of infection. Another notable drawback is that the device has to be
replaced after 2–3 years of usage, although emerging, energy-effective hardware and
software solutions may, at least in theory, extend the operation time of the device
up to 10 years [56].

Implantable devices, such as the pacemaker, the cardioverter–defibrillator, and
the biventricular pacemaker for cardiac resynchronization therapy are used for ther-
apeutic purposes. However, they can also be programmed to detect arrhythmias such
as AF. This type of device can record the intra-atrial electrogram directly in the heart
via an atrial lead. In contrast to the surface ECG, the intra-atrial electrogram mostly
reflects atrial activations, whereas the ventricular activity usually has lower ampli-
tude (Fig. 2.6). Thus, a device with an atrial electrode not only makes it possible to
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Fig. 2.6 Simultaneously recorded a ECG and b intra-atrial electrogram during AF
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detect episodes of rapid atrial rate, but also to characterize individual episodes with
respect to atrial rate.

Since the dual-chamber cardioverter–defibrillator has an electrode placed in the
right ventricle, both the intra-atrial and intra-ventricular signals are involved in
the detection of atrial tachyarrhythmias. A small study showed that 98% of 132
AF episodes were correctly detected by a dual-chamber cardioverter–defibrillator
Medtronic Jewel AF (Medtronic, Minneapolis, MN, USA) [57]. All false positives
were due to over-sensing of far-field ventricular activity. It should be noted that all
falsely detected episodes were shorter than five minutes, with a mean duration of
2.6 ± 2.0min for atrial tachycardia and3.2 ± 1.6min forAF.This result suggests that
the false positive rate increases for arrhythmic events of shorter duration. Although
AFmay be discriminated from atrial tachycardia or atrial flutter using information on
AFR and irregularity of atrial events, someAF episodes may be incorrectly classified
as atrial tachycardia.

As mentioned above, incorrect AF detection in a dual-chamber cardioverter–
defibrillator may be due to far-field ventricular activity in the intra-atrial electrogram.
In some patients, especially when the atrial electrode is positioned outside the right
atrial appendage, the amplitude of the ventricular activity is very large. Therefore,
to avoid over-sensing of the far-field ventricular activity, the detection sensitivity
of atrial waves has either to be reduced or the post-ventricular atrial blanking pro-
longed [58]. For this reason, in many clinical studies, an episode is flagged as atrial
tachyarrhythmia when the atrial rate exceeds 190 beats per minute for at least six
minutes. Moreover, a rapid atrial rate may be due to other supraventricular tachycar-
dias, such as atrial flutter or atrial tachycardia, or even to bursts of atrial premature
beats. Thus, manual review of intra-atrial signals may not be enough to distinguish
between AF and other arrhythmias.

2.3.8 Non-ECG Devices

Emerging technologies for signal acquisition provide interesting means for record-
ing physiological signals in a less obtrusive way, without the need for disposable
electrodes. Several photoplethysmographic approaches to AF detection have been
proposed, including the built-in camera of an iPhone [59], a web camera [60], an ear-
lobe sensor [61], and a smart wristband [62] to acquire a pulsatile signal, see Fig. 2.7.
Since AF detection based on the RR interval series of the ECG has been found use-
ful (Sect. 4.2), it can be anticipated that AF detection based on the PP interval series
of the photoplethysmogram (PPG) should be equally useful, although the PP inter-
vals do not always match the RR intervals [63, 64]. In fact, the RR-based approach
dominates in PPG-based AF detection, just as it does in ECG-based AF detection,
because information on pulse morphology is more vulnerable to noise and artifacts.

Since a camera is available in any smartphone, the least expensive alternative
to mass AF screening is based on the smartphone. The main idea is to produce a
pulsatile PPG signal from the video obtained by placing the fingertip directly on the

http://dx.doi.org/10.1007/978-3-319-68515-1_4
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Fig. 2.7 Simultaneously recorded a ECG and b photoplethysmogram during AF

camera lens, with the LED flash illuminating the fingertip [46]. The resulting PPG
signal is then processed with respect to AF detection. An iPhone-based prototype
was validated in 76 patients with persistent AF undergoing electrical cardioversion,
based on the pulsatile signal acquired before and after cardioversion [65]. Detection
performance was expressed in terms of sensitivity and specificity, found to be 96%
and 97%, respectively. The Cardiio Rhythm smartphone application (Cardiio, Cam-
bridge, MA, USA) exhibited similar performance, with sensitivity and specificity of
93% and 98%, respectively [45]. In that study, the signal was acquired under the
instruction of a trained observer. However, when acquired without supervision, the
signal quality will most likely deteriorate, leading to reduced performance.

The commercially available smart wristbands facilitate unobtrusive AF monitor-
ing, since the PPG can be acquired intermittently or even continuously for several
days. Using the Empatica E4 smart wristband (Empatica, Milan, Italy), the PPG sig-
nal was acquired at rest for 10 min in 31 patients with persistent AF, 29 with sinus
rhythm, and 9 with non-AF arrhythmias [62]. The sensitivity and specificity of AF
detection were found to be 75% and 96%, respectively.

Given that the oscillometric principle of self-screening blood pressure monitors
involves the analysis of a pulsatile signal, which in turn represents pressure oscilla-
tions in the sphygmomanometer cuff, the same signal can be employed for evalua-
tion of pulse rhythm irregularity. Such an approach is especially attractive for mass
screening, since home blood pressure monitors are widespread among hypertensive
patients at high risk for developing AF. The Microlife BP A200 (Microlife AG,
Widnau, Switzerland) and the Omron M6 (Omron Healthcare, Kyoto, Japan) are
widely used blood pressure monitors with an integrated function for AF detection.
In both monitors, detection is performed during cuff deflation by calculating the
mean and standard deviation of 10 consecutive pulse intervals. Then, the irregularity
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index is computed by dividing the standard deviation by the mean, i.e., the coeffi-
cient of variation. Since these measures are especially sensitive to the presence of
ectopic beats, intervals 25% shorter and 25% longer than the mean are removed from
the series before computation of the irregularity index. The only notable difference
between these two blood pressure monitors lies in their respective recommendations:
three consecutive measurements should be performed using the Microlife BP A200,
whereas only one for the Omron M6.

Several studies have investigated the feasibility of the Microlife BP A200 blood
pressuremonitor to detect AF. The performance differed slightly between the studies,
depending primarily on the number of consecutive measurements taken for decision-
making. Rather high sensitivity of 92–100%and specificity of 89–97%were obtained
when three consecutivemeasurementswere performed [66–69]. However, suchmon-
itors are prone to false alarms due to the presence of ectopic beats or highly variable
pulse rates. For example, respiratory sinus arrhythmia is very common in the younger
population, thus it is not surprising that 18% of the measurements were false posi-
tives for individuals of 13–18 years of age [70]. Hence, it is essential to evaluate the
usefulness of this technique for AF detection, requiring large-scale studies where the
ECG is simultaneously recorded.

Although the idea to detect AF using the PPG is promising, artifacts tend to play an
important role when recordings are made at home, without the supervision of trained
staff. Therefore, reliable artifact detection is necessary to ensure that the workload, as
well as the expenses, generated by many false detections can be held to a minimum.
Another problem arises in situations when the patient has impaired blood flow in
the fingers—a problem commonly encountered in patients suffering from diabetes.
So far, no guidelines exist on how to interpret the PPG signal, and, therefore, the
ECG still needs to be recorded to confirm the presence of AF. As a result, PPG-based
devices are suitable for AF screening, but not for diagnostic purposes.

2.3.9 Monitoring Strategies

At an early stage of arrhythmia progression, AF detection is particularly challenging
because the episodes may be asymptomatic, brief, and infrequent. Therefore, AF is
usually identified during planned examinations of health status or by pronounced
symptoms. Today, pulse palpation followed by a 12-lead ECG or 24-h ambulatory
monitoring is the standardprocedure forAFscreening in individuals over 65years [1].
However, ambulatory monitoring, let alone the 12-lead ECG, is usually insufficient
for detecting paroxysmal AF. Hence, there is an ongoing debate on the monitor-
ing strategies which are better suited for specific tasks, such as, monitoring of AF
recurrence after catheter ablation, cryptogenic ischemic stroke, and coronary artery
bypass grafting [71, 72]. Moreover, when selecting the most appropriate strategy for
AF detection, factors such as cost effectiveness and patient compliance should be
considered as well.
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A comprehensive study was conducted in which various strategies of intermittent
AF monitoring (24-h, 7-, 14-, and 30-day standard ambulatory monitoring) were
investigated in terms of the likelihood to detect at least one AF episode during a one-
year period [72]. Since the study excluded AF episodes shorter than five minutes, the
chance to detect even a single AF episode during the monitoring period increases if
a high-performing algorithm for brief AF detection is applied. The study was based
on mathematical simulations using data from invasive, continuous monitoring of
647 patients. The simulation results showed that in order to identify paroxysmal AF
in half of the monitored patients, four random tests of 24-h ambulatory monitoring
should, in average, be prescribed. To reach a sensitivity of 80%, at least three random
tests of 30-day ambulatory monitoring, five tests of 14 days, or seven tests of 7 days
are needed.

An essential point to be made regarding the temporal occurrence pattern of AF
episodes is that it is considerably more challenging to detect AF with intermittent
monitoring when AF episodes are highly aggregated in time, see Fig. 2.8 [72]. In
such cases 24-h ambulatory monitoring can turn out to be completely ineffective,
requiring extended monitoring to improve the detection rate.

A number of studies have been conducted which compare the standardmonitoring
strategy, i.e., the 12-lead ECG or 24-h ambulatory monitoring, to potentially more
advantageous AF detection strategies [72]. For example, the above-mentioned large
scale population study, involving individuals of 75–76 years of age, showed that
short-term intermittent screening, using the handheld Zenicor ECG recorder for at
least twice a day over two weeks, detected new onset AF in 7.4% of all patients [73].

Another problem is the selection of effective strategy for AF detection after cryp-
togenic ischemic stroke; both intermittent screening and continuous monitoring
are considered. For example, patients having suffered from a stroke or a tran-
sient ischemic attack were screened for one month, using a patient-activated event
recorder [74]. Only patients with a negative outcome of the initial 24-h ambulatory
monitoring were prescribed with screening (one ECG recorded per day of about

(b) (c)(a)

non-AF

AF AF AF

Monitoring time (days) Monitoring time (days)Monitoring time (days)
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

non-AF non-AF

Fig. 2.8 Different temporal occurrence pattern of AF episodes, all three patterns having identical
AF burden (equal to 0.3). a One single episode, b highly aggregated episodes, and c numerous
episodes spread out over the monitoring period. Episodes with AF are indicated with dark areas
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30-s duration). Surprisingly, as many as 9.2% of all cases with new onset AF were
identified using such a simplistic screening approach. It was emphasized in [74] that
the cost of transtelephonic ECG monitoring was almost one third lower than that of
24-h ambulatory monitoring.

Since stroke patients are predisposed to have brief AF episodes, intermittent
screening may result in lower than actual AF detection rates. Hence, continuous
monitoring, using either invasive or noninvasive technologies, has been applied in
several studies. For example, one-monthmonitoring after ischemic stroke, using non-
invasive event-triggered loop recorder, improved the detection rate of paroxysmal AF
by more than five times compared to 24-h ambulatory monitoring [75]. In another
study, patients having suffered from cryptogenic ischemic stroke were prescribed
with continuous AF monitoring using an insertable loop recorder, where half a year
of monitoring yielded up to a sixfold higher AF detection rate compared to 24-h
ambulatory monitoring [76].

These findings clearly demonstrate that 24-h ambulatory monitoring is not par-
ticularly efficient for detecting AF, despite the fact that it represents the standard
procedure in most countries. However, a unified agreement on how each different
situation (opportunistic AF screening, evaluation of cardioversion/catheter ablation
success, AF detection after cryptogenic stroke, monitoring of drug effect) should be
handled remains to be established in order to achieve the highest efficiency of AF
detection.
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Chapter 3
Databases and Simulation

Leif Sörnmo, Andrius Petrėnas and Vaidotas Marozas

3.1 Public ECG Databases

The availability of public databases is essential as it enables researchers to establish
whether a novel method performs better than the existing ones. Many of the public
ECG databases relevant to engineering-oriented research on atrial fibrillation (AF)
are available for download at PhysioNet (www.physionet.org), a free web resource
with a huge collection of physiological signals and software [1]. The Physionet
databases have played, and continue to play, a crucial role in the development of AF
detectors and the evaluation of their performance (Chap. 4), whereas they hardly play
any role in the development of methods for f wave extraction (Chap. 5) and f wave
characterization (Chap.6).

The PhysioNet databases include beat-based annotations such as occurrence time
and type of beat, but often also arrhythmia-based annotations such as type and
onset/end of arrhythmia. Annotations on beat occurrence time may be automated
and provided by a well-performing QRS detector, whereas arrhythmia-based anno-
tations are usually provided by one or several experts, implying a considerable work
effort to annotate a database consisting of long-term continuous ECG recordings.
Unfortunately, information on the annotation process is usually scarce, and details
are almost invariablymissingon the number of annotators involved, the level of exper-
tise among the annotators, and how consensus was reached in cases of disagreement.
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Considering that some ECG databases have evolved into virtually becoming stan-
dards, information on the annotation process should, preferably, be transparent to the
user.

In the following, the most popular public databases employed in engineering-
oriented research are briefly described.

The MIT–BIH Atrial Fibrillation Database (AFDB) consists of 25 10-h, two-lead
ambulatory ECG recordings of patients with AF, mostly paroxysmal [2]. The signals
were acquired using an analog device with a bandwidth of approximately 0.1–40Hz,
sampled at a rate of 250Hz, and quantized with 12-bit resolution over a range of
±10mV. Two of the 25 recordings contain only the RR interval series, but no ECG
signal, and can therefore only be used in RR-based analysis. Information on lead
placement is missing.

The database was manually annotated with respect to type of beat, type and
onset/endof arrhythmia, resulting in a total of 297AFepisodeswith durations ranging
from as few as 3 beats to tens of thousands of beats.

The distributions of AF episode duration and RR intervals provide interesting
information on the properties ofAFDB. Figure3.1a presents the histogramof episode
duration, with an exponential-like decay, except that 29 episodes have durations
exceeding 2000 beats. Together, these 29 episodes account for as much as 82% of
the total time the patients are in AF; when computed in individual patients, this
percentage is commonly referred to as “AF burden.” The fact that a small number of
episodes can dominate the total time a patient is in AF highlights an important
limitation of the commonly used detection performance measures, to be further
discussed in Sect. 4.5.

Figure3.1b presents the histogram of all RR intervals in AFDB, with most
RR intervals ranging from 0.3 to 1.5 s. Asmany as 25% of all RR intervals are shorter
than 0.5 s, thus imposing an important constraint on methods exploring f waves in
the TQ interval; this constraint applies especially to methods for f wave extraction,
see Chap.5. For an RR interval of 500ms and a QT interval with a typical length of
350ms, the TQ interval is only 150ms, which for a dominant atrial frequency (DAF)
of 5Hz implies that less than one f wave is contained in the TQ interval.
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Fig. 3.1 Histograms of a AF episode duration and b RR intervals in AF, determined from the
MIT–BIH AF Database
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The Long-Term AF Database (LTAFDB) consists of 84 two-lead ambulatory ECG
recordings obtained in patients with paroxysmal or persistent AF, lasting from 24
to 25h [3]. The signals were sampled at a rate of 128Hz and quantized with 12-bit
resolution over a range of ±10mV. Information on bandwidth and lead placement is
missing.

The beat-based annotations were automated, whereas the arrhythmia-based anno-
tations resulted from manual review of the output of a commercial system for ECG
analysis. More than 7000 AF episodes are contained in LTAFDB, and therefore it is
the public database with the largest number of episodes.

The temporal occurrence pattern of AF episodes is presented in Fig. 3.2 for four
different patients; the onset and end of an episode are given by manual annotations.
These four examples illustrate that the temporal occurrence pattern can differ dra-
matically between patients.

The AF Termination Database (AFTDB) is a subset of LTAFDB composed of 80
1-min excerpts from patients with spontaneously terminating or persistent AF [4].
The database was compiled for the purpose of predicting spontaneous termination
of AF. The 80 records are divided into a training set with 30 records and two test sets
with 30 and 20 records, respectively.

The Short Single-Lead AF Database (SSAFDB) consists of 12,186 single-lead
ECG recordings obtained from a smartphone-based device, lasting from 9 to 60s [5].
The signals were sampled at a rate of 300Hz, quantized with 16-bit resolution over

non-AF
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AF(c)
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Fig. 3.2 Examples of temporal occurrence patterns of episodes in paroxysmal AF, obtained from
four patients monitored over a 24-h period, being part of the Long-Term AF Database. a A few
long episodes which together extend virtually the entire monitoring period, b numerous, often
short episodes which together extend virtually the entire monitoring period, c many short episodes
aggregated in a 5-h period, and d a short episode followed by a much longer 3-h episode
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a range of ±5mV, with a bandwidth from 0.5 to 40Hz. Although the lead is not
specified, the vast majority is lead I since it is the simplest to record with the device.

The database is divided into a training set with 8,528 recordings and a test set
with 3,658 recordings. Each recording is manually annotated using the following
four categories: 1. Normal sinus rhythm, 2. AF, 3. other rhythm, and 4. too noisy to
classify, with 5076, 758, 2415, and 279 recordings in each of the categories of the
training set. A category applies to the entire ECG recording, even if an arrhythmia
is only partially present. No beat-based annotations are provided.

Since the smartphone-based device is used for home-based screening, and thus
operated by the patient, the quality of the recording is generally much lower than,
for example, in long-term continuous recordings. In addition, f wave amplitude is
generally lower in lead I than in lead V1, which is the preferred lead for f wave
analysis. Signal quality can be quantified using an index which determines the suit-
ability of analyzing f waves in 5-s signal segments [6], see also Sect. 6.5 for a brief
description. The signal quality index is normalized to the interval [0, 1], where 1
represents the highest quality; a suitable cut-off value for acceptable signal quality
is 0.25. Figure3.3a presents the histogram of the signal quality index, computed in
nonoverlapping, 5-s segments of all recordings of SSAFDB annotated as AF. Using
0.25 as the cut-off value, 83% of all recordings in SSAFDB have a signal quality
which is too low for f wave analysis.

The original purpose of compiling SSAFDB was to evaluate the performance of
classifiers designed to handle short ECG segments, whereas long-term ambulatory
ECG databases such as AFDB and LTAFDB have primarily been used to evaluate
performance in terms of how accurately AF episodes can be detected. Thus, different
types of algorithms are evaluated on SSAFDB and AFDB/LTAFDB.

The MIT–BIH Arrhythmia Database (MITDB) contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings, obtained from 47 subjects [7]. The signals
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Fig. 3.3 Signal quality assessed on all AF recordings in a the Short Single-Lead AF Database and
b the Lund AF Database (lead V1), using an index (S) which determines the suitability of analyzing
f waves [6]. The results are presented as relative histograms
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were sampled at a rate of 360Hz and quantized with 11-bit resolution over a range
of ±10 mV. Information on bandwidth and lead placement is missing.

Since only eight recordings contain AF, with a total of 105 episodes, the main
value of this database is to investigate detection performance in the presence of
non-AF arrhythmias such as atrial flutter, bigeminy, and trigeminy.

The MIT–BIH Normal Sinus Rhythm Database (NSRDB) includes 18 long-term
ECG recordings of subjects without significant arrhythmias. Hence, only the speci-
ficity of an AF detector can be investigated with this database, for example, in the
presence of respiratory sinus arrhythmia.

3.2 Non-public ECG Databases

Although public databases have eliminated much of the time-consuming work
involved with data collection, the need to collect databases which are well-matched
to a particular research problem nevertheless remains. This will ensure that meth-
ods development and performance evaluation are carried out on relevant data. For
example, the development of methods for f wave characterization calls for databases
obtained with ECG leads which are more relevant than those of the above-mentioned
public databases. In fact, the collection of matched databases promotes diversity in
research in a way which public databases historically have not done. Although most
matched databases are non-public at the outset, either proprietary or available at a
cost, it can be hoped that they sooner or later become public to benefit a larger group
of researchers.

Considering that many public databases were collected using old recording tech-
nology, whereMITDB is one of the oldest, dating to 1982, another important motiva-
tion for collecting databases is to benefit frommodern recording technology, offering
higher sampling rate, larger bandwidth, lower noise level, more leads, and longer
acquisition period.

The Lund AF Database exemplifies the numerous non-public databases collected
over the years, with the purpose of developing and evaluating methods for f wave
characterization [8]. The database contains 211 12-lead extended ECG recordings
obtained at rest from patients with AF, mostly persistent (in some studies, a 1-min
segment was extracted from each patient in this database to ensure AF presence
throughout the segment). The signals were sampled at a rate of 1000Hz, quantized
with 16-bit resolution over a range of±10 mV, with a bandwidth from 0.1 to 300Hz.
No annotations are provided.

Figure3.4a presents the RR interval histogram of the Lund AF Database, resem-
bling the RR interval histogram of AFDB shown in Fig. 3.1b. Since the histogram in
Fig. 3.4a is obtained from signals recorded at rest, it would likely have been shifted
leftwards towards shorter intervals had the database been recorded during physical
activity, with implications on the length of the TQ interval and related analysis.
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Fig. 3.4 Histograms of a RR intervals and b f wave amplitude in lead V1, determined from 1-min
segments of the Lund AF Database

The histogram of f wave amplitude in lead V1 is presented in Fig. 3.4b. Here,
amplitude is defined as the root mean square (RMS) value of the samples contained
in the TQ interval, beginning 350ms after a QRS complex and ending 50ms before
the preceding QRS complex; no amplitude measurement was made in TQ intervals
shorter than 250ms. Section 6.2 provides an overview of different approaches to
measuring f wave amplitude.

Figure3.3b quantifies that the signal quality in lead V1 of the Lund AF database
is superior to that of SSAFDB. This result is, of course, expected since the former
database was recorded during rest, under the supervision of a technician who made
sure that the electrodes were properly attached. Using a cut-off value of 0.25, 11%
of all recordings have signal quality which is too poor for f wave analysis, to be
contrasted with the above-mentioned 83% of SSAFDB.

3.3 Simulation of Atrial Fibrillation

Although databases with ECG signals are central to methodological development
and evaluation, model-based simulation offers certain advantages such as the pos-
sibility to investigate conditions which are difficult to deal with experimentally and
the possibility to control the properties of the simulated signal by a set of param-
eters. As a result, the agreement between simulated and estimated signals can be
quantitatively assessed and expressed in terms of suitable performance measures. If
desired, these measures can be computed for simulated signals with different signal-
to-noise ratios (SNRs). The simulation advantages were first exploited in the context
of f wave extraction, since none of the public ECG databases lend themselves well
to performance evaluation, and later in the context of detection of brief AF episodes,
since annotated ECG database with such episodes are largely missing.

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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Three f wave simulation models with widely different complexity are briefly
described below. Since none of these models produce a signal with ventricular activ-
ity, the simulated f wave signal is usually added to ECG signals obtained from sub-
jects in normal sinus rhythm, provided that the P waves have been first cancelled. In
doing so, the inherent variation in QRS morphology, e.g., due to respiration, is trans-
ferred from the recorded to the simulated ECG signal—a transfer which is important
in f wave extraction since morphologic variation can have substantial influence on
performance. The RR intervals of normal sinus rhythm are also transferred to the
simulated ECG signal—a transfer whichmay be acceptable when the simulated ECG
signal is investigated for f wave extraction, but clearly unacceptable for AF detection.

The f wave sawtooth model is widely used in algorithmic development, first intro-
duced in [9] and later employed in, e.g., [10–14]. This signal model is defined by a
sum of K amplitude- and frequency-modulated sinusoids with harmonically related
frequencies,

d(n) =
K∑

k=1

ak(n) sin

(
kω0n + Δ f

f f
sin(ω f n)

)
, n = 0, . . . , N − 1, (3.1)

where ω0 = 2π f0 is the fundamental frequency, i.e., the model counterpart to the
DAF. The fundamental frequency ω0 is modulated by ω f = 2π f f with a maximum
deviation of Δ f . The time-varying amplitude ak(n) is defined so that d(n) exhibits
a sawtooth characteristic,

ak(n) = 2

kπ
(a + Δa sin(ωan)) , (3.2)

where a is the sawtooth amplitude, Δa is the maximum modulation amplitude, and
ωa = 2π fa is the modulation frequency of the amplitude. The model in (3.1) offers
certain flexibility since both f wave amplitude and frequency are modulated.

An important limitation of the sawtooth model was brought to light when the
problem of f wave extraction was addressed using an artificial neural network [15]:
the network could learn the predictable changes in amplitude and frequency of the
simulated f wave signal, leading to exaggerated performance figures.

The f wave replication model produces a signal based on the observed samples of
the TQ intervals [16]; no mathematical modeling is involved. Interpolation between
two successive TQ intervals fills in the intermediate QT interval with f wave samples,
using the approach originally described in [9]. The f waves of the first TQ interval
are replicated in the QT interval and subjected to linear weighting, and the f waves in
the second, subsequent TQ interval are replicated in the sameway, but time-reversed.
The interpolated samples of the interveningQT interval result from summation of the
two replicated and weighted signals. Other techniques for TQ-based interpolation
are described in Sect. 5.3.

While the f wave replication model can produce realistic signals, neither the rep-
etition rate nor the amplitude of f waves can be controlled. Another major limitation

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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is that the length of the TQ intervals decreases as the heart rate increases, implying
that the risk of producing unrealistic f wave signals becomes increasingly higher at
higher heart rates.

A much more sophisticated approach to simulating f wave signals is based on
a biophysical model of the atria [17], see also [18, 19]. The model is based on
anatomical information derived from magnetic resonance imaging, accounting for
the entries and exits of the vessels, the locations of the valves connecting the atria
to the ventricles, as well as several other aspects. The electrical activity of the atria
is modeled in terms of membrane kinetics, where the presence of heterogeneities in
action potential duration creates the substrate for sustained AF. Volume conduction
theory is employed to describe the propagation of currents from the electrical sources
of the atria through the passive body tissues to the body surface, influencing the
amplitude and morphology of the simulated multi-lead f wave signals.

Since none of the three above-mentioned simulationmodels account for switching
between non-AF rhythms and AF, they cannot be used when addressing the problem
of detecting AF. To fill this void, a model of paroxysmal AF has been proposed [20],
including not only rhythm switching but also the possibility to chose whether the
simulated signal should be composed of synthetic or real components, described in
Sects. 3.4 and 3.5, respectively.

3.4 Simulation of Paroxysmal AF Using Synthetic
Components

The simulation of multi-lead ECGs in paroxysmal AF is based on phenomenolog-
ical, mathematical modeling of ventricular rhythm, ventricular morphology, atrial
morphology, and rhythm switching, whereas the noise added to the simulated signal
derives from a public database, see Fig. 3.5. Thus, the resulting signal is composed of
synthetic components whose properties are controlled by a set of parameters defin-
ing, e.g., episode duration, variability of the RR interval series in sinus rhythm and
AF, f and P wave morphology, QRST complex morphology, and percentage of atrial
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Fig. 3.5 Simulation of ECG signals using synthetic components. The same model of QRST com-
plexes is employed in sinus rhythm (SR) and AF
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premature beats (APBs). For each new realization of the simulated signal, the model
parameters are generated randomly from uniform distributions in predefined ranges
so that realistic ECG signals with unique intersubject morphologies can be produced.

The simulation model assumes a vectorcardiogram (VCG) lead system initially,
consisting of the orthogonal leads X, Y, and Z. Once suitably processed, these leads
are transformed to the standard 12-lead ECG system. A detailed description of the
simulation model is found in [20], together with a list of the default model parameter
values.

3.4.1 Atrial Fibrillation

Ventricular rhythm. A statistical model of the atrioventricular (AV) node with dual
pathways is used to generate RR intervals in AF [21]. In this model, the ventricles are
assumed to be activated by atrial impulses arriving to theAVnode according to a Pois-
son process with mean arrival rate λa , which is closely related to the DAF. The joint
probability density function (PDF) of the consecutive RR intervals x0, x1, ..., xN−1

is given by

px (x0, x1, ..., xN−1) =
N−1∏

n=0

(εpx,s(xn) + (1 − ε)px, f (xn)), (3.3)

where ε is the probability of an atrial impulse conducted through the slow pathway,
whose refractory period is defined by a deterministic part τs and a stochastic part
τs,p. Hence, the probability of an atrial impulse to take the fast pathway, whose
refractory period is defined by τ f and τ f,p, is (1 − ε). For an atrial impulse taking
the slow pathway, the interval x between two successive ventricular activations, i.e.,
the RR interval, is described by the following PDF [21]:

px,s(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < x < τs,

λa(x − τs)

τs,p
exp

[
−λa(x − τs)

2

2τs,p

]
, τs ≤ x < τs + τs,p,

λa exp

[
−λaτs,p

2
− λa(x − τs − τs,p)

]
, x ≥ τs + τs,p.

(3.4)

The PDF of the fast pathway is described by px, f (x), being identical to (3.4) except
that τs is replaced with τ f and τs,p with τ f,p. Chapter 7 provides a comprehensive
overview of AV node models for simulation of RR intervals in AF, including the
statistical AV node model in [21].

f waves. The f wave sawtooth model in (3.1) is supplemented with a stochastic
component so that more complex, less predictable f waves can be produced [15].

http://dx.doi.org/10.1007/978-3-319-68515-1_7
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Using, for convenience, a continuous-time framework, the f wave model signal fl(t)
of the l-th vectorcardiographic lead is composed of two components,

fl(t) = dl(t) + sl(t), l ∈ {X,Y,Z}, (3.5)

where dl(t) is defined similarly to (3.1),

dl(t) =
K∑

k=1

al,k(t) sin

(
kΩl,0t + ΔF

Fk
sin(2πFkt)

)
, (3.6)

but with the difference that lead dependence is introduced, i.e., Ωl,0 = 2πFl,0 and

al,k(n) = 2

kπ

(
al + Δal sin(Ωa,ln)

)
, k = 1, . . . , K . (3.7)

In paroxysmal AF, the DAF (corresponding to Fl,0) is typically contained in the
interval 3–7Hz [3], while, in persistent and permanent AF, it is typically higher and
contained in the interval 5–12Hz. Moreover, it is well-known that the DAF depends
on anatomical location [22], which in the model is accounted for by setting FX,0 to
a value 5% larger than FY,0, and FZ,0 to a value 5% smaller than FY,0. The mean
arrival rate λa of atrial impulses arriving to the AV node is taken as the average of
the frequencies FX,0, FY,0, and FZ,0.

The stochastic f wave component sl(t) results from multi-bandpass filtering of
white noise, with two passbands symmetrically related to Fl,0 by [0.65Fl,0, 0.95Fl,0]
and [1.05Fl,0, 1.35Fl,0]. The variance of the input white noise σ 2

l,s is taken as a
fraction of the sawtooth amplitude al in (3.7).

The first minutes after AF onset and the last minute before AF termination are
associated with more organized f waves and a lower DAF [23–25], which in the
model is accounted for by using bandpass filters with narrower passbands for the
first three minutes and the last minute of the episode. A set of bandpass filters is used
with gradually wider passbands, starting at [0.8Fl,0, 0.95Fl,0] and [1.2Fl,0, 1.35Fl,0]
and ending at [0.65Fl,0, 0.95Fl,0] and [1.05Fl,0, 1.35Fl,0], respectively. To account
for the lower DAF, Fl,0 is multiplied with a factor which increases linearly from 0.8
to 1 during the first three minutes of an AF episode. Conversely, Fl,0 is multiplied
with a factor which decreases linearly from 1 to 0.8 during the last minute of an AF
episode. Figure3.6 illustrates simulated f waves at the onset, the midpoint, and the
end of an AF episode.

A further generalization of the sawtooth model, to make the f wave signal even
less regular, is to employ an adaptive non-harmonic model in which amplitude and
frequency modulation is described by a random walk whose steps are sampled from
a zero-mean Gaussian distribution [26].
QRST complexes. The three-dimensional, single-dipole ECG model proposed
in [27] is used for simulating QRST complexes, building on the dynamical model
based on three coupled, ordinary differential equations [28]. The three orthogonal
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Fig. 3.6 Simulated f waves at the onset, the midpoint, and the end of an AF episode, produced by
the sawtooth-based model in (3.5)

leads are obtained by projecting the dipole vector onto the recorded leads. The dipole
vector, defined by qX(t), qY(t), and qZ(t), is modeled as a summation of P different
Gaussian functions,

ql(t) =
P∑

p=1

αl,p exp

[
− (t − μl,p)

2

2σ 2
l,p

]
, l ∈ {X,Y,Z}, (3.8)

where each Gaussian is appropriately scaled in amplitude and time with αl,p and
σl,p, respectively, and shifted in time with μl,p. To allow for a wide variety of QRST
morphologies, αl,p, σl,p, andμl,p are assigned uniform distributions [20]. In contrast
to the models in [27, 28], where the aimwas to simulate a signal with recurrent heart-
beats, the aim of the paroxysmal AF simulation model is to produce a single QRST
complex, and, therefore, the VCG loop defined by the orthogonal leads qX(t), qY(t),
and qZ(t) is traversed only once. Amplitude variation is introduced by letting αl,p

vary according to a sinusoidal function whose frequency is randomly chosen in the
interval [0.05, 0.15] Hz to mimic Mayer waves.

The resulting three-lead QRST complex qX(t), qY(t), and qZ(t) is placed at the
occurrence time produced by the AV node model, accompanied by resampling of
the T wave to ensure that the duration fits into the current RR interval. Since the
QT interval is usually shorter in AF than in sinus rhythm, it is set to a fixed value
(360ms) based on observations reported in [29, 30].

3.4.2 Sinus Rhythm

Ventricular rhythm. The RR intervals in sinus rhythm are simulated according to
the technique described in [28], where parasympathetic stimulation (respiratory sinus
arrhythmia) and baroreflex regulation are modeled by a bimodal power spectrum of
the RR interval series, defined by two Gaussian functions
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SRR(Ω) = P1√
2πσ 2

RR,1

exp

[
− (Ω − Ω1)

2

2σ 2
RR,1

]
+ P2√

2πσ 2
RR,2

exp

[
− (Ω − Ω2)

2

2σ 2
RR,2

]
,

(3.9)

whereΩ1 andΩ2 (Ω1 < Ω2) are the mean frequencies with related “variance” σ 2
RR,1

and σ 2
RR,2 and spectral power P1 and P2, respectively. The low- to high-frequency

power ratio is determined by P1/P2. The higher frequency Ω2 is usually related to
the respiratory rate.

The resulting RR interval series is obtained by computing the inverse Fourier
transform of the spectrum SRR(Ω). The desired heart rate and heart rate variability
are set by scaling theRR interval series and adding anoffset value.Very low frequency
oscillations are modeled by a zero-mean component added to the output of the model
in [28]. This component is produced by a third-order autoregressivemodel, identified
from a lowpass filtered (cut-off frequency 0.001Hz) RR interval series taken from
NSRDB [20].

P waves. A linear combination of Hermite functions is used to model P waves in the
orthogonal leads,

pl(t) =
3∑

i=1

wl,iφi (t), l ∈ {X,Y,Z}, (3.10)

where wl,i are lead-dependent weights. The first three Hermite functions are defined
by

φ1(t) = 1√
σP,1

√
π

· exp
[
− t2

2σ 2
P,1

]
, (3.11)

φ2(t) = −
√
2√

σP,2
√

π

t

σP,2
· exp

[
− t2

2σ 2
P,2

]
, (3.12)

φ3(t) = 1√
2σP,3

√
π

(
2t2

σ 2
P,3

− 1

)
· exp

[
− t2

2σ 2
P,3

]
, (3.13)

with mono-, bi-, and triphasic morphology, respectively. The width of φi (t) is deter-
mined by σP,i , which is treated as a lead-independent parameter. The Hermite func-
tions were originally proposed in [31] for modeling of QRS complex morphology,
and later explored for different purposes in ECG analysis, see, e.g., [32–35].

Depending on polarity and morphology, P waves may be classified into three
different types [36], of which P waves of Type 2 are the ones which are considered
for simulation, characterized by positive, monophasic morphology in leads X and Y,
and biphasicmorphology in leadZwith a transition fromnegative to positive polarity.
This type of P wave is predominant in patients with paroxysmal AF [36, 37]. Since
Pwaves aremonophasic in leadsX andY, larger values are assigned towX,1 andwY,1,
whereas a larger value is assigned to wZ,2 to emphasize the biphasic morphology in
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lead Z. To account for the fact that P wave morphology varies over time, wl,i and
σP,i vary according to a sinusoidal function whose frequency is randomly chosen in
the interval [0.05, 0.15] Hz.
QRST complexes. The technique used for simulating QRST complexes in AF is
also used in sinus rhythm. Resampling of the T wave is based on the well-known
Bazett’s formula, setting the corrected QT interval to 420ms [38]. Immediately after
AF termination, T wave duration increases linearly over the next seven beats to
produce a smooth QT interval transition from AF to sinus rhythm. The choice of a
seven-beat transition is ad hoc, since the QT interval transition in AF has not been
much investigated in the literature.

3.4.3 Atrial Premature Beats

Since APBs are frequent in AF patients [39–42], it is important to account for their
presence in the simulation model. Using a simple two-state Markov chain, a certain
percentage of APBs is introduced, chosen from the following four types of unifocal
APBs [43]:

1. APBs with reset of the sinus node. The sum of the length of the preceding and
the subsequent RR intervals is less than twice the normal RR interval, simulated
by 20% shortening of the preceding RR interval and by leaving the subsequent
RR interval unchanged.

2. Interpolated APBs occur in between two adjacent sinus beats, simulated by split-
ting an RR interval into two intervals with 60/40 proportions.

3. APBs with delayed reset of the sinus node, simulated by 20% shortening of the
preceding RR interval and 20% prolongation of the subsequent RR interval.

4. APBs with full compensatory pause, simulated by 20% shortening of the preced-
ing RR interval, and subtracting the shortened RR interval from twice the normal
RR interval to obtain the subsequent RR interval.

The likelihood of generating consecutive APBs, i.e., couplets, triplets, and short
runs, is increased by setting the percentage ofAPBs to a large value. To account for the
fact that P waves associated with APBs often deviate in amplitude and morphology
from normal P waves in sinus rhythm, a new set of parameter values is generated
and used to simulate P waves preceding APBs. The QRST complexes are generated
in the same way as is done in sinus rhythm. Figure3.7 illustrates simulated ECGs
with different types of APBs.

3.4.4 Respiration

To account for the fact that respiration influencesQRSTmorphology through changes
in the electrical axis of the heart, the simulated VCG signal is transformed by a
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Fig. 3.7 Simulated ECGs containing a atrial premature beats (APBs) with reset of the sinus node
(type 1), b interpolated APBs (type 2), c APBs with delayed reset of the sinus node (type 3), and
d APBs with full compensatory pause (type 4)

rotation matrix Q(t), composed of three successive rotations around each of the
axes [44],

Q(t) = QX(t)QY(t)QZ(t). (3.14)

The three rotation matrices are defined by the time-varying angles ϕX(t), ϕY(t),
and ϕZ(t),

QX(t) =
⎡

⎣
1 0 0
0 cosϕX(t) sin ϕX(t)
0 − sin ϕX(t) cosϕX(t)

⎤

⎦ , (3.15)

QY(t) =
⎡

⎣
cosϕY(t) 0 sin ϕY(t)

0 1 0
− sin ϕY(t) 0 cosϕY(t)

⎤

⎦ , (3.16)

QZ(t) =
⎡

⎣
cosϕZ(t) sin ϕZ (t) 0

− sin ϕZ(t) cosϕZ(t) 0
0 0 1

⎤

⎦ . (3.17)

It is assumed that angular variation is proportional to the amount of air in the lungs
during a respiratory cycle, a property modeled as the product of two sigmoidal
functions reflecting inspiration and expiration,

ψ(t) = 1

1 + e−γint

1

1 + eγex(t−δ)
, (3.18)
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where γin and γex define the duration of inspiration and expiration, respectively, and δ

defines the delay between inspiration and expiration. In lead X, the angular variation
across successive respiratory cycles is defined by

ϕX(t) =
∞∑

i=0

ξXψ(t − iTr ), (3.19)

whereTr is the duration of a respiratory cycle (inversely related to thefixed respiratory
frequency, i.e., Tr = 2π/Ωr ), and ξX is the maximum angular variation. The angular
variation in leads Y and Z is determined in a similar way, defined by ξY and ξZ,
respectively. The choice of realistic model parameter values is discussed in [45],
as well as an extension of the model in (3.19) so that a time-varying respiratory
frequency can be accounted for.

In sinus rhythm, the respiratory frequency Ω2 in (3.9), influencing the ventricular
rhythm through the autonomic system, should, preferably, be set to Ωr . In AF, the
autonomic influence of respiration on ventricular rhythm is not modeled since the
cardiorespiratory interaction is negligible [46].

3.4.5 Additive Noise

Three types of noise frequently encountered in ambulatory recordings—baseline
wander, muscle noise, and electrode motion artifacts—can be added to the simu-
lated ECG. These types of noise are extracted from the MIT–BIH Noise Stress Test
Database, composed of a number of 30-min recordings which predominantly contain
baseline wander, electromyographic noise, and electrode motion artifacts [47]. The
two leads of the recordings in this database are labeled leads X and Y, whereas the
noise in lead Z is constructed by computing the square root of the sum of squares of
leads X and Y (an offset value is added before squaring, and the mean is subtracted
after taking the square root).

3.4.6 Transformation from VCG to 12-Lead ECG

Different transformation matrices are applied to f waves, P waves, and QRST com-
plexes when computing the standard 12-lead ECG from the VCG. The f wave trans-
formation is based on the inverse of the Pwave optimized transformationmatrix [48],
multiplied with a diagonal scaling matrix determining the tendency of f wave ampli-
tude in the 12-lead ECG [20]. The diagonal matrix accounts for the fact that f wave
amplitude is typically largest in V1 and then gradually decreases as the leads move
away from the atria. The decrease in amplitude can be explained by a much more
scattered electrical vector in AF than in sinus rhythm, combined with increased dis-
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tance to the electrode site. The resulting simulated 12-lead ECGwith f waves, but not
QRST complexes, is illustrated in Fig. 3.8a, and a real 12-lead ECG, whose f waves
resemble the simulated ones, is illustrated in Fig. 3.8b.

The inverse of the P wave optimized transformation matrix in [48] is used to
reconstruct P waves in the 12-lead ECG, see Fig. 3.9.

The Dower matrix [49, 50] is used to compute the QRST complexes, as well as
the noise, in the 12-lead ECG. However, the transformation of the QRST complexes
and the noise is done separately so that the noise can be scaled in each lead to the
desired RMS value before being added to the 12-lead signal composed of both atrial
and ventricular activity.
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Fig. 3.8 a Simulated f waves produced by the model in (3.5), and b f waves extracted from a real
ECG using an echo state network [15]
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Fig. 3.9 Ten superimposed realizations of P waves in the standard 12-lead ECG, modeled as a
linear combination of the first three Hermite functions using randomly generated weights



3 Databases and Simulation 65

3.4.7 Switching Between Atrial Fibrillation and Sinus
Rhythm

The switching between sinus rhythm and AF is modeled by a two-state continuous-
time Markov chain, where the time d spent in a state, also referred to as episode
duration, is determined by the exponential PDF

p(d) =
⎧
⎨

⎩

βde−βdd , d ≥ 0,

0, d < 0.
(3.20)

The parameter βd defines the rate of episodes. The median duration of an AF episode
is given by

d̄AF = ln 2

βAF
, (3.21)

where βAF denotes the rate of AF episodes, cf. (3.4). The median duration of an
episode with sinus rhythm is assumed to be given by

d̄SR = B

(1 − B)
· d̄AF, (3.22)

where B (0 < B < 1) determines the total time AF is present, and thus B can be
viewed as a descriptor of mean AF burden. The sole parameter controlling episode
duration is d̄AF, and no minimum episode duration is specified.

A more advanced, non-Markovian switching model has been proposed which
account for aspects of AF progression related to genetic disposition, age-, and AF
history-related remodeling [51]. The model can simulate individual AF episodes as
well as the natural progression of AF in patients over a period of decades.

The possibility to generate episodes with varying duration is valuable when simu-
lating arrhythmia progression. Evidence shows that brief episodes progress to longer
episodes [52, 53], implying that it is of interest to evaluate detection performance as
a function of episode duration. Moreover, brief but rare episodes have been observed
in patients after cryptogenic stroke and transient ischemic attack [54–57]. Such sig-
nals can be simulated with the model described in this section, using, for example, a
median episode duration of 30 beats and a low AF burden of 0.001.

3.5 Simulation of Paroxysmal AF Using Real Components

Alternatively, the simulator can produce signals based on real ECG components,
randomly selected from the three databases which are used to characterize ven-
tricular rhythm, atrial activity (f or P waves), and QRST complexes, see Fig. 3.10.
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Fig. 3.10 Simulation of ECG signals using real components, taken from the Long-Term AF
Database (LTAFDB), the MIT–BIH Normal Sinus Rhythm Database (NSRDB), and the PTB Diag-
nostic ECG Database (PTBDB)

These components, together with the above-described noise types, are added to pro-
duce the standard 12-lead ECG.

Ventricular rhythm. The Long Term Atrial Fibrillation Database was used for cre-
ating a set of AF rhythms. A total of 69 different RR interval series were extracted
from the 84 long-term ECG recordings; the 15 remaining recordings were excluded
due to their relatively short duration with AF (<5000 beats). Similarly, the entire
NSRDB, consisting of 18 long-term ECG recordings, was used to create a set of
sinus rhythms. Switching between paroxysmal AF and sinus rhythm is modeled in
the same way as for synthetic components, cf. Sect. 3.4.7.

For each simulated signal, the RR interval series of the prevailing rhythm is
randomly selected from the proper rhythm set, and repeated by concatenation until
the desired length is attained. While heart rate is often higher in AF than in sinus
rhythm, this may not be the case when concatenating randomly selected RR intervals
in sinus rhythm and AF. Therefore, whenever the mean RR interval is shorter in
sinus rhythm than in AF, the mean RR interval in sinus rhythm is adjusted to become
identical to the mean RR interval in AF.

It should be noted that when simulating ECGs using real components, the atrial
and ventricular rates are unrelated since the f waves and the RR interval series are
extracted from different databases.

f and P waves. A set of 20 segmentswith real,multi-lead fwaves is extracted from the
Lund AF database with 12-lead ECGs, acquired from patients with persistent AF [8].
An echo state network was applied for f wave extraction [15], see also Sect. 5.5.3.
LeadV6 was used as reference leadwhen extracting f waves in the remaining 11 ECG
leads, whereas lead V5 was used when extracting f waves in lead V6, see Fig. 3.8b.

In sinus rhythm, the original, real P wave, along with the subsequent QRST com-
plex, is retained, while, in AF, only the QRST complex is retained and a continuous
f wave signal added.

QRST complexes. A set of 100 15-lead ECGs (12 standard leads plus Frank
leads) with sinus rhythm, selected from the Physikalisch–Technische Bundesanstalt
Database, serves as the basis for modeling QRST complexes. Following baseline

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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removal and QRST delineation [58], the original T wave is resampled to have a
fixed width and then adjusted to the prevailing heart rate according to the procedure
described in Sect. 3.4.1. Since the ECGs of this database last for only about two
minutes, the QRST complexes are repeated by concatenation until the desired dura-
tion is achieved. The TQ interval is interpolated using cubic spline interpolation. All
other steps required to generate QRST complexes are similar to those described in
Sect. 3.4.1.

Simulated signals composed of either synthetic or real ECG components are
illustrated in Fig. 3.11.

3.6 Relevance of Simulated Signals

The question whether a simulation model produces realistic signals is not easily
answered since the term “realistic” is difficult to quantify. Historically, this question
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Fig. 3.11 Simulated 12-lead ECGs containing a brief AF episode, composed of a synthetic com-
ponents and b real components. Using synthetic components, the 12-lead ECG is obtained from the
simulated signals in leads X, Y, and Z, following linear transformations. Using real components,
the original 12-lead ECG is taken from the Lund AF database, followed by removal of P waves and
addition of extracted f waves
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has not received much, if any, attention in papers describing simulation models of
the ECG, see, e.g., [28, 31, 59, 60], although the models have turned out to be most
valuable in the development of signal processing algorithms—an observation which
applies particularly to the simulationmodel in [28]. To provide a quantitative answer,
the idea to let expert cardiologists assess blindly the realism of simulated ECG signals
was first materialized in [20], involving not only the simulated ECG signals produced
by the model in Sect. 3.4, but also real ECG signals [20]. The results showed that
the simulated signals were, for the most part, realistic, but they also showed that
the approach to modeling of the QT interval in AF needed improvement. To make
the outcome of expert assessment more powerful, it would have been desirable with
more than two cardiologists so that more far-reaching conclusions could have been
drawn.

In the context of AF detection, an indirect approach to evaluating signal realism
is to analyze simulated signals using some suitable detector, and then compare the
obtained results with those obtained using the same detector on an existing database
containing real ECGs [20]. Neither this approach has been considered in the past,
although it may provide valuable insight into whether the simulated signals are too
“doctored” to be used for the development of AF detectors.

The degree of sophistication of a simulation model is another way to judge model
relevance, hinted at in [17] where the f wave replication model was labeled as
“primitive” and the above-mentioned model of normal sinus rhythm [28] as “sim-
ple,” whereas the biophysical model proposed by the authors themselves was labeled
as “more sophisticated” in producing ECG signals. Considering that the biophysical
model accounts for detailed electroanatomical information, whereas the other two
models do not, such labeling seems reasonable. But does a higher degree of sophis-
tication imply that the model is better suited for the development of signal pro-
cessing algorithms and performance evaluation? The fact that biophysical models
have hardly been considered at all for such purposes provides an answer to this
question, with implementational and computational complexity, difficulty to control
basic signal characteristics such as f wave amplitude and repetition rate, and the lack
of rhythm switching models as probable reasons. From an algorithmic viewpoint, it
is not obvious why biophysical models necessarily produce ECG signals which are
more relevant than those of phenomenological models, such as the ones described
in Sects. 3.4 and 3.5.
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Electrocardiogram modeling during paroxysmal atrial fibrillation: application to the detection
of brief episodes. Physiol. Meas. 38, 2058–2080 (2017)

21. V.D.A. Corino, F. Sandberg, L.T. Mainardi, L. Sörnmo, An atrioventricular node model for
analysis of the ventricular response during atrial fibrillation. IEEE Trans. Biomed. Eng. 58,
3386–3395 (2011)

22. M.S. Guillem, A.M. Climent, J. Millet, Á. Arenal, F. Fernández-Avilés, J. Jalife, F. Atienza, O.
Berenfeld, Noninvasive localization of maximal frequency sites of atrial fibrillation by body
surface potential mapping. Circ. Arrhythm. Electrophysiol. 6, 294–301 (2013)

23. F. Ravelli, M. Masè, M.D. Greco, L. Faes, M. Disertori, Deterioration of organization in the
first minutes of atrial fibrillation: a beat-to-beat analysis of cycle length and wave similarity. J.
Cardiovasc. Electrophysiol. 18, 60–65 (2007)

24. R. Alcaraz, J.J. Rieta, Non-invasive organization variation assessment in the onset and ter-
mination of paroxysmal atrial fibrillation. Comput. Methods Programs Biomed. 93, 148–154
(2009)



70 L. Sörnmo et al.

25. M. Masè, M. Marini, M. Disertori, F. Ravelli, Dynamics of AV coupling during human atrial
fibrillation: role of atrial rate. Am. J. Physiol. Heart Circ. Physiol. 309, H198–H205 (2015)

26. J. Malik, N. Reed, C.-L. Wang, H.-T. Wu, Single-lead f-wave extraction using diffusion geom-
etry. Physiol. Meas. 38, 1310–1334 (2017)

27. R. Sameni, G.D. Clifford, C. Jutten,M.B. Shamsollahi,Multichannel ECG and noisemodeling:
application to maternal and fetal ECG signals. J. Adv. Signal Process., 1–14 (2007)

28. P.E. McSharry, G.D. Clifford, L. Tarassenko, L.A. Smith, A dynamical model for generating
synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50, 289–294 (2003)

29. G.R. Pai, J.M. Rawles, The QT interval in atrial fibrillation. Brit. Heart J. 61, 510–513 (1989)
30. D.L. Musat, M. Adhaduk, M.W. Preminger, A. Arshad, T. Sichrovsky, J.S. Steinberg, S. Mittal,

Correlation of QT interval correction methods during atrial fibrillation and sinus rhythm. Am.
J. Cardiol. 112, 1379–1383 (2013)

31. L. Sörnmo, P.O. Börjesson, M.E. Nygårds, O. Pahlm, A method for evaluation of QRS shape
features using a mathematical model for the ECG. IEEE Trans. Biomed. Eng. 28, 713–717
(1981)

32. P. Laguna, R. Jané, S. Olmos, N.V. Thakor, H. Rix, P. Caminal, Adaptive estimation of QRS
complex by the Hermite model for classification and ectopic beat detection. Med. Biol. Eng.
Comput 34, 58–68 (1996)

33. T.H. Linh, S. Osowski,M. Stodolski, On-line heart beat recognition usingHermite polynomials
and neuro-fuzzy network. IEEE Trans. Instrum. Measure. 52, 1224–1231 (2003)

34. H.Haraldsson, L. Edenbrandt,M.Ohlsson,Detecting acutemyocardial infarction in the 12-lead
ECG using Hermite expansions and neural networks. Artif. Intell. Med. 32, 127–136 (2004)

35. A. Sandryhaila, S. Saba, M. Puschel, J. Kovacevic, Efficient compression of QRS complexes
using Hermite expansion. IEEE Trans. Signal Process. 60, 947–955 (2012)

36. R. Havmöller, J. Carlson, F. Holmqvist, A. Herreros, C. Meurling, S.B. Olsson, P.G. Platonov,
Age-related changes in P wave morphology in healthy subjects. BMC Cardiovasc. Disord. 7,
22 (2007)

37. F. Holmqvist, M.S. Olesen, A. Tveit, S. Enger, J. Tapanainen, R. Jurkko, R. Havmöller,
S. Haunsø, J. Carlson, J.H. Svendsen, P.G. Platonov, Abnormal atrial activation in young
patients with lone atrial fibrillation. Europace 13, 188–192 (2011)

38. H.C. Bazett, An analysis of the time relations of electrocardiograms. Heart 7, 353–370 (1920)
39. S.-A. Chen, M.-H. Hsieh, C.-T. Tai, C.-F. Tsai, V.S. Prakash, W.-C. Yu, T.-L. Hsu, Y.-A. Ding,

M.-S. Chang, Initiation of atrial fibrillation by ectopic beats originating from the pulmonary
veins: electrophysiological characteristics, pharmacological responses, and effects of radiofre-
quency ablation. Circulation 100, 1879–1886 (1999)

40. D. Wallmann, D. Tüller, K. Wustmann, P. Meier, J. Isenegger, M. Arnold, H.P. Mattle, E.
Delacrétaz, Frequent atrial premature beats predict paroxysmal atrial fibrillation in stroke
patients: an opportunity for a new diagnostic strategy. Stroke 38, 2292–2294 (2007)

41. M. Weber-Krüger, K. Gröschel, M. Mende, J. Seegers, R. Lahno, B. Haase, C.-F. Niehaus,
F. Edelmann, G. Hasenfuß, R. Wachter, R. Stahrenberg, Excessive supraventricular ectopic
activity is indicative of paroxysmal atrial fibrillation in patients with cerebral ischemia. PLoS
ONE 8, e67602 (2013)

42. D.J. Gladstone, P. Dorian, M. Spring, V. Panzov, M. Mamdani, J.S. Healey, K.E. Thorpe,
for EMBRACE Steering Committee and Investigators, Atrial premature beats predict atrial
fibrillation in cryptogenic stroke: results from the EMBRACE trial. Stroke 46, 936–941 (2015)

43. T. Thong, J. McNames, M. Aboy, B. Goldstein, Prediction of paroxysmal atrial fibrillation by
analysis of atrial premature complexes. IEEE Trans. Biomed. Eng. 4, 561–569 (2004)

44. M. Åström, E. Carro, L. Sörnmo, P. Laguna, B. Wohlfart, Vectorcardiographic loop alignment
and the measurement of morphologic beat-to-beat variability in noisy signals. IEEE Trans.
Biomed. Eng. 47, 497–506 (2000)

45. R. Bailón, L. Sörnmo, P. Laguna, A robust method for ECG-based estimation of the respiratory
frequency during stress testing. IEEE Trans. Biomed. Eng. 53, 1273–1285 (2006)
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Chapter 4
Detection of Atrial Fibrillation

Leif Sörnmo, Andrius Petrėnas and Vaidotas Marozas

4.1 Introduction

The detection of episodes of atrial fibrillation (AF) has been dealt with for more
than three decades in research, and yet the challenge remains to develop a detector
fully capable of handling all the problems associated with the analysis of continuous
long-term ECG recordings as well as of recordings acquired by handheld devices for
AF screening. Unacceptably high false alarm rates have been reported, mostly due
to the presence of ectopic beats and noisy signal segments, but also due to non-AF
arrhythmias manifested by rhythms patterns resembling those of AF, see, e.g., [1].
For the human reader, the following three properties are essential when detecting
AF episodes:

1. the presence of a highly irregular rhythm,
2. the absence of P waves, and
3. the presence of f waves.

These properties are, to various extents, explored when developing algorithms for
AF detection.
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Translating “highly irregular rhythm” into a detection parameter is challenging,
since not much is known a priori about the features which are best suited for char-
acterizing irregularity in AF. An abundance of detection parameters have been pro-
posed in the literature, many of them reviewed in this chapter, and each parameter is
designed to capture some specific feature of rhythm irregularity. An early study on
the characterization of irregularity in AF, without also addressing the AF detection
problem, posed the fundamental question whether the series of RR intervals in AF
is random or deterministic [2]. The results in that study showed that the RR inter-
vals are not entirely unpredictable, as evidenced by the nonzero correlation between
the observed and the predicted RR intervals at different correlation lags. However,
these findings did not apply to all patients of the analyzed data set, and, therefore,
parameters related to prediction/correlation are unlikely to be good candidates for AF
detection. In another study, spectral analysis demonstrated that the RR interval series
during AF has a white noise-like spectrum when analyzed on a minute-by-minute
scale [3].

Heart rate may be considered in AF detection as it tends to be higher in AF
episodes than in sinus rhythm. Although it is obvious that heart rate alone cannot be
used for detection, the power of a detection parameter describing rhythm irregularity
may still be boosted by integrating information on heart rate into the definition of
a parameter. Heart rate is usually characterized by the mean of the RR intervals
contained in a detection window.

The detection of AF is compounded by the fact that certain arrhythmias are mani-
fested byRR interval patterns closely resembling those observed inAF. This problem
is particularly pronounced when all detection parameters describe rhythm charac-
teristics. Hence, it is highly desirable that the detector can recognize the character-
istics of confounding non-AF rhythm patterns so that the number of false alarms is
minimized. Runs of ventricular premature beats (VPBs), frequent atrial premature
beats (APBs), and atrial flutter, as well as bigeminy and trigeminy, are all important
sources to false alarms; representative RR interval series for some of these confound-
ing rhythms are displayed in Fig. 4.1. Another source of false alarms is inaccurate
QRS detection, e.g., caused by muscle noise, motion artifacts, or large-amplitude
T waves. Moreover, the risk of detecting non-AF rhythm patterns becomes increas-
ingly higher as the detection window becomes increasingly shorter, which is required
to detect short AF episodes.

When information on P waves and/or f waves is considered in AF detection, it
should be paired with information on signal quality, indicating to what degree wave
measurements can be trusted. Otherwise, garbage measurements may completely
disrupt detection performance. Given that many clinical studies explore information
derived from continuous long-term ECG recordings, often characterized by a sub-
stantial variation in noise level, information on signal quality should be an integral
part of the decision-making process.

An AF episode of at least 30 s duration is considered clinically significant—a def-
inition which was published in the ACC/AHA/ESC 2006 guidelines for management
of AF patients [4], and in widespread use among clinicians. The motivation behind
30s as minimum duration was not clearly stated, although the guidelines pointed
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Fig. 4.1 Illustration of RR interval patternswhichmay confound detection of AF episodes. aMulti-
ple ventricular premature beats, including bigeminy and trigeminy, b atrial flutter surrounded byAF,
c second degree atrioventricular block, d episode of ventricular flutter (VFL), e sinus bradycardia,
and f episode of a composite arrhythmia including AF, atrial flutter, atrial bigeminy, supraventric-
ular tachycardia, atrioventricular junctional rhythm, and atrial premature beats. All examples are
taken from the MIT–BIH Arrhythmia Database

out that AF episodes briefer than 30s may be relevant in “certain clinical situa-
tions involving symptomatic patients, pre-excitation or in assessing the effectiveness
of therapeutic interventions.” Interestingly, the more recent guidelines published in
2014 [5] did not mention anything about minimum episode duration, whereas the
2016 guidelines [6] brought back the 30s minimum duration previously published
in 2006.

In recent years, the significance of AF episodes briefer than 30s has received
increasing attention in clinical research, especially concerning issues related to the
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future risk of stroke and its prevention.1 It has been suggested that such brief episodes
are directly coupled to the formation of atrial thrombus, and, therefore, may be
viewed as biomarkers of prolonged episodes occurring outside of the monitoring
period [12–14].Whenmonitoring is performed during amonth-long period, a patient
with numerous brief episodes can very well have a higher AF burden than a patient
with a few episodes which all exceed 30s, meaning a higher thromboembolic risk
for the patient with brief episodes [15], see also [16] and page 43. The concept “AF
burden” is defined as the proportion of the total recording time a patient is in AF. The
minimum duration of an episode which still convey clinically significant information
remains to be established.

Long-term AF monitoring requires automated event detection for efficient and
practical handling. Thus, the properties of the detector play a central role as they
impose a lower limit on how brief an episode can be and still be detected. Most
detectors described in the literature have a design that precludes the detection of
episodes briefer than 30s due to the principle adopted for detection. For exam-
ple, AF detection based on RR interval histogram analysis requires a large number
of RR intervals to ensure that the histogram is reasonably reliable. Indeed, some
ECG-based detectors are blind to episodes briefer than two minutes, whereas, in
implantable devices, a minimum episode duration of as much as six minutes has
been used [17, 18]. Clinical studies reporting results on the presence of episodes
briefer than 30s have relied on commercial detectors, implementing proprietary
algorithms whose detection performance have not been published [12, 13, 19, 20].
Therefore, manual review of possible AF events briefer than 30s has been required to
carry through the study [12]. Consequently, it is of substantial interest to design and
evaluate AF detectors which facilitate the investigation of the clinical significance
of brief episodes.

The duration of an AF episode is highly variable, extending from less than 30s
up to seven days; episodes extending beyond seven days are designated as persistent
AF [4]. Similar to the problemof detectingQRS complexes,where a least informative
approach is often recommendedwith respect to assumptions on signal properties [21],
an AF detector should not involve firm assumptions on episode duration, nor on the
minimum distance between two subsequent AF episodes. By merging two detected
episodes, even if separated by just a few seconds, clinically relevant information
could be excluded.

With the advent of handheld and smartphone-based devices for AF screening
comes new possibilities to identify previously undetectedAF [22–29], cf. Sects. 2.3.5
and 2.3.6, but also new challenges related to the signal quality of such patient-
operated devices which, in general, is poorer than the quality associated with the
clinical modalities, see Fig. 4.2 for an illustration of poor signal quality. Since hand-
held and smartphone-based devices are designed to record a single lead, not necessar-
ily reflecting atrial activity, rhythm-based detection is the typical mode of operation,
with information on f and P wave morphology as a bonus.

1Paroxysmal AF manifested by episodes briefer than 30s is sometimes referred to as occult parox-
ysmal AF, especially when asymptomatic or undetected by conventional methods [7–11].

http://dx.doi.org/10.1007/978-3-319-68515-1_2
http://dx.doi.org/10.1007/978-3-319-68515-1_2
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Fig. 4.2 Five examples of poor-quality ECGs recorded using a smartphone-based device. The sig-
nals are part of the database made available for the PhysioNet/Computing in Cardiology Challenge
2017 [30]

In this chapter, themain design principles used inAFdetection are reviewed, either
exploring rhythm information only, i.e., the RR interval series, (Sect. 4.2) or infor-
mation on both rhythm and atrial wave morphology (Sect. 4.3). Aspects on detector
implementation are briefly considered in Sect. 4.4, and different performance mea-
sures used in AF detection are described in Sect. 4.5. Although several reflections on
performance are interspersed throughout the chapter, Sect. 4.6 has detection perfor-
mance as its main theme, with a discussion on aspects which need to be considered
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when evaluating performance. The chapter ends with a discussion on different types
of ECG-derived information which may be explored to improve detection perfor-
mance (Sect. 4.7).

4.2 Rhythm-Based AF Detection

Since reliable information on the absence/presence of P and f waves is difficult
to extract at low signal-to-noise ratios (SNRs), the vast majority of AF detectors
rely entirely on parameters quantifying RR interval irregularity, e.g., the degree of
randomness, variability, and complexity. Another important explanation to the dom-
inance of rhythm-based detectors is that their implementation in hardware requires
far less energy than do detectors which also involve morphologic information. The
RR interval series constitutes the sole input data to most detectors implemented in
an implantable device, since morphologic information is difficult to extract from
invasive recordings.

Over the years, detector design has been based on ad hoc principles, involving
one or a few parameters which are fed to a simple classifier, while neither model-
based statistical detection nor physiological considerations have played a significant
role in the design. Nonetheless, it is obvious from the results listed in Table4.1 that
ad hoc principles have helped to push the limits of detection performance as both
sensitivity and specificity have improved; for a definition of these two performance
measures, see Sect. 4.5.2 Still, further improvement of detector performance is war-
ranted so that, for example, the problem of false alarms due to frequent ectopic beats,
together masquerading as an AF episode, non-AF arrhythmias, or noisy signals can
be adequately addressed.

Apart from using the RR interval series x(0), . . . , x(N − 1) itself as detector
input, the first difference,

Δx(n) = x(n) − x(n − 1), n = 1, . . . , N − 1, (4.1)

sometimes also serves as input, where N is the number of RR intervals and n is the
interval index (and thus not ECG sample index). Unless the ECG recording is very
short, i.e., on the order of 10–20s, the input data is usually processed using a sliding
time window approach in which the detection parameters are repeatedly computed
as the window slides forward in time. Sliding by one RR interval at a time offers the
best time resolution of episode onset and end; however, it may be necessary to take
larger “slides” to reduce the amount of computations, for example, 50 intervals at a
time [36].

The main principles explored for rhythm-based AF detection are described in
the following. To simplify the description, detection parameters are assumed to be

2Several other detectors have been proposed besides those listed in Table4.1. However, for various
reasons, their respective performance was not evaluated on AFDB.
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Table 4.1 Performance of rhythm-based AF detectors expressed in terms of sensitivity (Se)
and specificity (Sp), using the MIT–BIH Atrial Fibrillation Database (AFDB) for evaluation,
see Sect. 3.1. The subset AFDB1 is identical to AFDB, except that records 4936 and 5091 are
excluded for reasons of incorrect annotations. The detectors are ordered with respect to their year
of publication

Method by Year Database Se (%) Sp (%)

Tateno and Glass [31] 2001 AFDB 94.4 97.2

Dash et al. [32] 2009 AFDB1 94.4 95.1

Lian et al. [33] 2011 AFDB 95.8 96.4

Lake and Moorman [34] 2011 AFDB 91 94

Huang et al. [35] 2011 AFDB 96.1 98.1

Shouldice et al. [36] 2012 AFDB 92 96

Lee et al. [37] 2013 AFDB1 98.2 97.7

Zhou et al. [38] 2014 AFDB 96.9 98.3

Asgari et al. [39] 2015 AFDB 97.0 97.1

Petrėnas et al. [40] 2015 AFDB 97.1 98.3

Zhou et al. [41] 2015 AFDB 97.4 98.4

computed in a fixed window, however, it is straightforward to replace it with a sliding
window. The interested reader may want to follow up with some other rhythm-based
detectors proposed over years [42–47].

4.2.1 Irregularity Parameters

Table4.2 presents a list of parameters considered in the design of AF detectors,
grouped into five categories, namely statistical dispersion, entropy, parameters based
on symbolic dynamics, parameters based on the Poincaré plot, and parameters based
on the time-varying coherence function. Of these categories, statistical parameters
reflecting dispersion, e.g., the root mean square of successive differences, the mean
of absolute successive differences, and the coefficient of variation, are the most com-
monly used. Some detectors base their decisions on just one parameter, combined
with simple thresholding, whereas other detectors rely on a combination of parame-
ters as input to the classifier. Certain parameters are intimately related to a statistical
test, for example, the number of turning points, and, therefore, the test is described
togetherwith the parameter, instead of in Sect. 4.2.6where different types of classifier
are described.

Statistical Dispersion Parameters

The coefficient of variation (CV) of x(n) has been used in AF detection [31, 48],
defined by

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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Table 4.2 List of parameters used in rhythm-based AF detection, grouped into five different cat-
egories: statistical dispersion, entropy, symbolic dynamics, Poincaré plot-based, and time-varying
coherence function

Detection parameter Publication

Coefficient of variation [31, 48]

Root mean square of successive differences [32, 37]

Normalized mean of absolute successive differences [48]

Number of turning points [32]

Histogram-based parameters [31, 35]

Shannon entropy [32, 37, 38]

Sample entropy [34, 49]

Simplified sample entropy [40]

Symbolic dynamics [38, 41]

Poincaré plot of x(n) versus x(n − 1) + bin count [50]

Poincaré plot of Δx(n) versus Δx(n − 1) + bin count [51]

Poincaré plot of x(n) versus Δx(n − 1) + bin count [33]

Time-varying coherence function [37]

PCV = σx

mx
, (4.2)

where mx and σx denote the mean and the standard deviation of x(n), respectively.
The parameter PCV describes dispersion but also reflects changes in heart rate since
RR interval shortening, often occurring in an AF episode, is related to a smaller mx .
UsingΔx(n) instead of x(n) in (4.2), the resulting meanmΔx becomes close to zero,
and, therefore, to avoid division with zero, as well as to maintain the dependence on
changes in heart rate, it is substituted bymx . The performanceof two single-parameter
detectors, both based on PCV but computed either from x(n) or Δx(n), were studied
in [31]; the two detectors were found to have about the same performance.

The root mean square of successive differences (RMSSD) is defined by

PRMSSD =
√
√
√
√

1

N − 1

N−1
∑

n=1

Δx2(n). (4.3)

Since this parameter does not reflect changes in heart rate, a heart rate dependent
detection threshold can be introduced to implicitly handle such changes [32].Accord-
ingly, PRMSSD can alternatively be interpreted as a heart rate normalized parameter
applied to a fixed threshold test. Thus, the test involving a heart rate normalized
PRMSSD is identical to PCV, with the mean and standard deviation of Δx(n) inserted
in (4.2).

Yet another dispersion parameter is the normalized mean of absolute successive
differences (NMASD) [48], defined by
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PNMASD =

1

N − 1

N−1
∑

n=1

|Δx(n)|

mx
. (4.4)

The motivation for using PNMASD instead of PCV, when based on Δx(n), is unclear
as the former parameter represents an approximation of the latter. Therefore, it is
not surprising that the detection performance of PNMASD was found to be almost the
same as that of PCV [48].

Thus, it may be concluded that the three dispersion parameters in (4.2)–(4.4)
convey similar information. As shown below, yet another detection parameter con-
veys information on RR interval dispersion, though developed in the context of the
Poincaré plot.

Number of Turning Points

The turning point test is a nonparametric, statistical test to determine whether the
samples of a time series can be modeled by independent and identically distributed
random variables. In a completely random series, any three successive samples are
equally likely to occur in any of the six possible orders. In four of the orders, a turning
point exists if the middle sample is a local maximum or a local minimum. Thus, the
probability of a turning point in a three-sample series is 2/3.

For a series with N samples, the number of turning points NTP can be counted
and compared to the expected number of turning pointsmTP of a completely random
series. If NTP is too many standard deviations σTP away from mTP, the series cannot
be considered as completely random. Making use of the result that the mean and the
standard deviation of NTP are given by [52]

mTP = 2(N − 2)

3
, (4.5)

σTP =
√

16N − 29

90
, (4.6)

respectively, and that NTP obeys an asymptotically normal distribution for a suffi-
ciently large N , a two-sided statistical test can be used.When the number of observed
turning points falls outside the 95% confidence limits, defined by mTP ± 1.96σTP,
the hypothesis stating that the series is completely random can be rejected.

InAFdetection, the number of observed turning points, togetherwith other param-
eters, is employed for characterizing RR interval irregularity in AF [32]. Rather than
using a statistical test with 95% confidence limits, the limits are determined to opti-
mize detection performance with respect to sensitivity and specificity. When the
number of turning points falls outside the optimized limits, the RR interval series is
likely to exhibit periodicity, for example, due to respiratory-modulated sinus rhythm.
Since it has been shown that RR intervals in AF may exhibit certain correlation [2],
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the turning point test loses some of its power in detecting random RR interval series.
Moreover, the turning point information is likely to cause false alarms in the presence
of ectopic beats and rapid changes in rhythm, and, therefore, it is less suitable for
AF detection.

Histogram-Based Parameters

Since RR interval histograms determined in sinus rhythm or AF exhibit considerable
differences in shape, their shapes have been explored for AF detection. However, to
make the histogram approach work, the bins must be sufficiently well-populated so
that a histogram can be produced which is representative of the prevailing rhythm.
This requirement implies that a large number of RR intervals has to be used for his-
togram construction—100 beats appears to be a minimum number [31, 35]—which,
on the other hand, implies lower accuracy of the estimated onset and end times of
an AF episode. If fewer and wider bins are used to allow a shorter window, the his-
togram becomes increasingly inadequate for discrimination between different types
of cardiac rhythms. Therefore, an inherent limitation of histogram-based detection
is the need of a long window, which thus precludes the detection of brief episodes.

A straightforward approach to histogram-based detection is to define a set of
heuristic features which characterize the histogram, e.g., the height and the number
of nonempty bins. Since a histogram in AF is usually much broader in shape than a
histogram in sinus rhythm,AF is characterized by a lower height and fewer nonempty
bins. If a change in heart rate occurs within the detection window, a histogram in
sinus rhythm will broaden and become increasingly similar to the shape of an AF
histogram. To some extent, however, this transitional problem can be avoided using
theΔRR interval histogram, since differencing not only removes slow trends present
in the RR interval series, but it also makes the histogram span over a smaller range
of values.

A more sophisticated approach to histogram-based detection is to compare the
RR interval histogram of the detection window with a set of template histograms,
stratified according to the mean RR interval length [31].3 Each template histogram is
constructed from all the RR intervals contained in (nonoverlapping) windows with
a mean RR interval length falling inside an interval with predefined limits, ranging,
for example, from 350–399 to 1100–1149 ms in steps of 50ms [31].Windows whose
mean length falls outside any of the predefined intervals are discarded from further
analysis. The template histograms are constructed prior to detection, preferably from
a huge AF database to ensure that the histograms are sufficiently representative of
the underlying probability density function (PDF); the same procedure applies to
ΔRR intervals.

3The relationship between histogram shape and mean heart rate has previously been investigated in
noninvasive studies on atrioventricular node physiology in AF, leading to the concept of heart rate
stratified histograms [53, 54].
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In AF detection, the observed RR interval histogram is computed in a sliding
detection window and compared to each of the template histograms [31]. For this
comparison, the nonparametric Kolmogorov–Smirnov test can be used since it mea-
sures the probability of the observed RR intervals being drawn from the same pop-
ulation as the fixed data set, i.e., the RR intervals used for constructing the template
histograms [55]. This test involves a statistic defined by the largest distance between
the cumulative histogram of the observed data set and the cumulative template his-
togram, assessing whether the two cumulative histograms are different, see Fig. 4.3.
The Kolmogorov–Smirnov test is suitable to use when two cumulative probability
distributions differ in a global fashion near the center, but less suitable when the
two distributions differ with respect to the number of peaks. For example, the largest
distance between a bimodal and a unimodal cumulative probability distribution, both
determined in AF, may not be large enough to show that the two data sets come from
different populations. In such cases, theAnderson–Darling test is a better choice since
it makes use of a weighted sum of the squared deviations between the two cumulative
probability distributions, rather than just the largest distance at one single point [55].

Poor performance was reported when the RR series was used as input to the
Kolmogorov–Smirnov test, with sensitivity and specificity of 66.3% and 99.0%,
respectively [31]. Using instead ΔRR intervals as input, the sensitivity improved
dramatically to 94.4%, whereas the decrease in specificity to 97.2% was relatively
modest. While the authors did not provide any specific explanation to this improve-
ment, it may be that the use of ΔRR intervals leads to better performance since the
related histogram is more unimodal than that of the RR intervals, and therefore better
suited for use with the Kolmogorov–Smirnov test.
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Fig. 4.3 The Kolmogorov–Smirnov test requires that the largest distance between two cumulative
histograms is determined. In this example, both histograms belong to RR intervals in AF. The largest
distance is marked with an arrow
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The multi-template histogram approach offers the advantage of providing a much
more detailed characterization of the shape of the RR interval distribution than does
the single template histogram inwhich all RR intervals aremerged.On the other hand,
it is well-known that the shape of RR interval histograms exhibits considerable intra-
as well as inter-patient variability, and unimodal as well as bimodal shapes are often
observed in AF [56–58]. Consequently, an AF detector relying on a set of template
histograms is likely to perform less satisfactory when these types of variability are
pronounced.

Another approach to histogram-based AF detection is to compare twoΔRR inter-
val histograms determined from the first and the last part of the detection win-
dow [35], thus replacing the above-mentioned comparison to template histograms.
The sum of the squared difference between the corresponding bin counts of the two
histograms is used as a detection parameter: this difference remains small as long
as the same rhythm persists, but increases when a transition from sinus rhythm to
AF occurs, or vice versa. Since the information carried by the squared difference
turned out to be insufficient for achieving satisfactory detection performance, the
number of nonempty bins, the height of the histogram, and the standard deviation of
the ΔRR intervals were also used as detection parameters to improve discrimination
between sinus rhythm and AF.

Shannon Entropy

The Shannon entropy quantifies the uncertainty (unpredictability) of the information
content of a “message” such as the RR interval series [59]. In statistical terms, the
entropy increases as the PDF becomes increasingly uniform, and decreases when
the PDF becomes increasingly concentrated around a certain value. In other words,
large entropy indicates low predictability of the information content, and vice versa.
The Shannon entropy (ShEn) is defined by

IShEn = −
B

∑

i=1

p(xi ) log2(p(xi )), (4.7)

where the message is synonymous to the outcome of a random variable x assum-
ing B different values, i.e., (x1, . . . , xB); the probability of each value is given by
p(xi ). Since IShEn ranges from 0 to log2(B), the right hand side of (4.7) is some-
times normalized with log2(B) to facilitate interpretation. In practice, the probability
p(xi ) is estimated from the message itself, usually by computing the histogram. The
probability of the i-th bin is estimated by

p̂(xi ) = N (i)

N
, (4.8)

where N (i) denotes the count of the i-th bin.
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TheShannon entropy IShEn has been considered inAFdetection since it is typically
much larger in AF than in sinus rhythm [32]. The computation of IShEn is based on a
modified RR interval series in which the longest and the shortest RR intervals are first
removed to reduce the influence of outlier values. The histogram is constructed from
the remaining RR intervals, with the bins equally spaced over an interval defined by
the shortest and longest RR intervals of the modified series. The authors concluded
that at least 16 bins should be used to obtain IShEn with reasonable accuracy.

It has been found that IShEn is associated with a degradation in performance at
higher heart rates, i.e., from about 90 beats per minute (bpm) and higher [49]. This
finding can be explained by noting that the probability distribution p̂(xi ) becomes
increasingly narrower as the heart rate increases, illustrated by the following example
where the variation in heart rate, set to 5bpm, is identical at different heart rates. For
a heart rate of 60bpm, the RR intervals corresponding to 55 and 65bpm have the
lengths 1090 and 923ms, respectively, and thus the difference in length is 167ms. On
the other hand, for a heart rate of 120bpm, the RR intervals corresponding to 115 and
125bpm have the lengths 521 and 480ms, respectively, i.e., the difference in length
has shrunk to 41ms. Since IShEn is computed from the RR intervals, and not from the
instantaneous heart rate, it is obvious that the power of IShEn to discriminate AF from
sinus rhythm becomes increasingly worse as the heart rate becomes increasingly
higher.

Rather than computing IShEn directly from theRR interval series, theΔRR interval
series can be mapped to a symbolic series, defined by an alphabet, containing only
10 symbols, which is used for computation of IShEn [38]. The mapping function
quantizes the changes present in the RR interval series by relating the changes to
a “reference RR series” resulting from lowpass filtering of the RR interval series.
The quantization grid is dynamic in the sense that it is defined by the properties of
another, even more lowpass filtered version of the RR interval series; linear, time-
invariant lowpass filters are employed, where the lowpass filters are obtained by ad
hoc design. The results suggested that the use of symbolic dynamics provides a path
to better performance, probably explained by the quantization operation which helps
to improve the separation between normal beats and beats in AF when described
by IShEn.

In a subsequent study, bearing considerable resemblance to the one in [38], the
authors delved further into the use of symbolic series and Shannon entropy [41].
The main difference between the two detectors is that the instantaneous heart rate is
employed, rather than the RR interval series, for generating a symbol series, using a
quantization grid with fixed steps. While the authors do not provide any explanation
to why the instantaneous heart rate leads to slightly better detection performance,
this result seems plausible since the above-mentioned limitation, i.e., when IShEn is
computed from the RR interval series at different heart rates [49], is then sidestepped.
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Sample Entropy

While the Shannon entropy is based on the probability of a certain RR interval
length to occur, the sample entropy (SampEn) reflects self-similarity of a signal, and
therefore used as a measure of signal complexity [60, 61]. The sample entropy is
defined as the negative natural logarithm of the conditional probability of a signal
repeating itself for m samples within the tolerance r will also repeat itself for m + 1
samples, where self-matches are excluded [60],

ISampEn = − ln

(
B(m + 1, r)

B(m, r)

)

, (4.9)

where B(m, r) is the probability of pairs of sequences which match form samples. A
small value of ISampEn indicates that the signal repeats itself and therefore is regular,
whereas a large value indicates a complex (irregular) signal. In terms of AF detection,
this means that a transition from sinus rhythm to AF is manifested by a considerably
increase in ISampEn, and vice versa.

To estimate the probability B(m, r), the RR interval series x(0), . . . , x(N − 1) is
first divided into m-length subsequences, described by the vectors

x(i) =
⎡

⎢
⎣

x(i)
...

x(i + m − 1)

⎤

⎥
⎦ , i = 0, . . . , N − m − 1. (4.10)

Similarity between two subsequences, beginning at i and j , respectively, is measured
by the maximum norm, defined by

‖x(i) − x( j)‖∞ = max
k=0,...,m−1

|x(i + k) − x( j + k)|, i, j = 0, . . . , N − m − 1.

(4.11)

Two subsequences are considered similar when ‖x(i) − x( j)‖∞ is within a fixed
tolerance r . Accordingly, the average number of similar subsequences is given by

B̂i (m, r) = 1

N − m − 1

N−m−1
∑

j=0, j �=i

H(r − ‖x(i) − x( j)‖∞), (4.12)

where self-matches are excluded. The maximum number of similar subsequences is
equal to N − m − 1. The Heaviside step function H(z) is defined by

H(z) =
{

1, z ≥ 0,
0, z < 0.

(4.13)

The probability of two m-length subsequences being similar is estimated by
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B̂(m, r) = 1

N − m

N−m−1
∑

i=0

B̂i (m, r)

= 1

(N − m)(N − m − 1)

N−m−1
∑

i=0

N−m−1
∑

j=0, j �=i

H(r − ‖x(i) − x( j)‖∞). (4.14)

Since an estimate of B(m + 1, r) is required before ISampEn can be computed, (4.11)–
(4.14) are also evaluated for m + 1.

When computing ISampEn in a short window, required for detection of brief AF
episodes, the likelihood that none of the few subsequences match is high, especially
for a small r . Accordingly, the denominator B̂(m, r) in (4.9) may become zero,
leading to that ISampEn is undefined. In order to address this problem, the probabilities
in (4.9) can be converted to probability densities by division of the volume of the
matching regions [62],

− ln

(
B(m + 1, r)

(2r)m+1

)

+ ln

(
B(m, r)

(2r)m

)

= − ln

(
B(m + 1, r)

B(m, r)

)

+ ln(2r). (4.15)

This conversion, serving as a normalization, allows direct comparison of sample
entropies computed for different values of r . As a result, the standard approach to
selecting r , i.e., an r taken as a fraction of the standard deviation of the input data [60],
may be replaced by an approach in which r is data-dependent. The operating value
of r is then determined by incrementing r until B(m, r) becomes nonzero; in AF
analysis 30ms has been used as initial value of r , after which r is incremented in
steps of 5 ms.

Based on statistical analysis of different RR interval series in AF, it has been
observed that the mean RR interval length m̄x provides predictive information on
AF independently of ISampEn [34]. In AF detection, this observation can be accounted
for by simply subtracting the logarithm of m̄x from the expression on the right hand
side of (4.15), leading to a new entropy measure, labeled the coefficient of sample
entropy (CSampEn) and defined by [34]

ICSampEn = ISampEn + ln(2r) − ln(m̄x ). (4.16)

The inclusion of m̄x implies that ICSampEn, as desired, increases in AF when the heart
rate is usually higher, whereas it decreases in sinus rhythm when the heart rate is
usually lower.

Before ICSampEn can be computed, the subsequence length m needs to be deter-
mined. Use of the shortest possible subsequence, i.e., m = 1, may be motivated by
the observation that the autocorrelation function of RR intervals in AF is essentially
zero for nonzero lags [3]. Another, more straightforward motivation is that better
detection performance is obtained for m = 1 than for a larger m [34]; for additional
aspects on the choice of m and r , see Sect. 6.4.4.

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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It should be pointed out that ISampEn was preceded chronologically by the approx-
imate entropy IApEn [63], defined in the same way as ISampEn except that self-matches
are included in (4.12). However, it has been shown that IApEn is biased, heavily
dependent on the number of samples N , and lacks relative consistency [60], and
therefore less used than ISampEn.

A variation on ISampEn is the fuzzy entropy where the Heaviside function H(z) in
(4.13) is replaced by a function which fuzzifies the samples and thereby avoids that
similarity of subsequences is treated as either/or [64]. The use of fuzzy entropy has
found its way into the analysis of heart rate variability [65] and f wave characteriza-
tion [66], whereas it remains to be shown whether it can provide better performance
in AF detection.

Probability of Pairs of Matching RR Interval Subsequences

A simpler approach to entropy-based AF detection is to only consider the probability
B(m, r), forming part of the definition of ISampEn in (4.9) [40, 67]. This approach is
advantageous from an implementation viewpoint since B(m + 1, r) is not needed,
and neither the ratio of probabilities nor the natural logarithm have to be computed.
Another advantage is that the problem of an undefined ISampEn is circumvented. In
this approach, the maximum norm in (4.12) is replaced with the Euclidean norm
between two m-length subsequences. The following expression is used in place of
B̂(m, r) [67],

Ĉ(m, r) = 2

(N − m)(N − m − 1)

N−m−1
∑

i=0

N−m
∑

j=i+1

H(r − ‖x(i) − x( j)‖), (4.17)

where the Euclidean norm is denoted ‖ · ‖ and the normalization factor is given by
the maximum value of the double sum. The estimator Ĉ(m, r) differs from B̂(m, r)
with respect to the difference between x(i) and x( j) which is only counted once
in Ĉ(m, r); self-matches are avoided in both estimators.4

An AF detector based on B(m = 1, r) has been proposed in [40], offering the
additional implementation advantages that neither the maximization in (4.11) nor the
Euclidean distance in (4.17) need to be performed. The probability of two RR inter-
vals differing less than r is estimated by

B̂(m = 1, r) = 2

(N − 1)(N − 2)

N−2
∑

i=0

N−1
∑

j=i+1

H(r − |x(i) − x( j)|). (4.18)

Before application of a detection threshold, the probability B̂(m = 1, r) is divided by
an estimate of the mean length of the RR intervals contained in the detection window

4It should be noted that Ĉ(m, r) constitutes an essential part of the correlation dimension, a measure
introduced to describe the dimensionality of the space occupied by a set of random samples [68].
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to emphasize that AF is usually accompanied by a higher heart rate [40]. Thus, the
resulting detection parameter, denoted the simplified sample entropy (SSampEn), is
defined by

ISSampEn = B̂(m = 1, r)

m̄x
, (4.19)

where m̄x is obtained from exponential averaging of the RR intervals, excluding
the RR intervals related to ectopic beats which previously have been flagged by a
simple algorithm, see Sect. 4.2.5. The ratio in (4.19) bears considerable resemblance
to the coefficient of variation in (4.2), since the numerator is a dispersion measure
(though thresholded and therefore not changing in the same continuous way as does
the standard deviation in (4.2)) and the denominator is given by the mean of the
RR intervals.

Another possible approach to accounting for information on heart rate in (4.18)
is to replace the fixed tolerance r with a tolerance defined as a function of the heart
rate in the detection window, i.e., r → r(m̄x). If a fixed r is still preferred, it can, as
already mentioned, be taken as a fraction of the standard deviation determined from
a huge data set [60].

4.2.2 Poincaré-Based Parameters

The scatter plot of successive pairs of RR intervals (x(n), x(n + 1)), known as the
Poincaré plot, is a simple technique for characterizing different types of cardiac
rhythms. This type of plot was introduced for analyzing nonlinear aspects of heart
rate variability, constructed from a series of RR intervals spanning over a long time
period, i.e., up to several days [69–72]. The Poincaré plot has also served as the
guiding design principle when developing AF detectors, but then a much shorter
time period determined by the detection window is subject to analysis, i.e., typically
ranging from 60 to 120s. Since the Poincaré plot constructed from the RR intervals
in AF is much more scattered than the plot constructed from normal sinus rhythm
and atrial or ventricular ectopic rhythms, illustrated in Fig. 4.4, the challenge to be
addressed is one of translating the scattering observed in AF to a set of detection
parameters. The following two approaches have been pursued:

1. parameters reflecting the density of points in different regions of the Poincaré
plot [33, 51, 73], and

2. parameters providing a geometrical characterization of the points in the Poincaré
plot [50].

In addition to relying on (x(n), x(n + 1)) as the basis for producing a Poincaré plot,
these two approaches can alternatively rely on (Δx(n),Δx(n + 1)) or (x(n),Δx(n))

which also convey information on beat-to-beat irregularity in the RR interval series.5

5Yet another approach proposed for characterizing the Poincaré plot is the complex correlation
measure, quantifying the point-to-point (temporal) variation of the RR series [74], see also [75].
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Fig. 4.4 Poincaré plots definedby (x(n), x(n + 1)) and (Δx(n),Δx(n + 1)) (left and right column,
respectively), resulting from a normal sinus rhythm, b sinus rhythm with ectopic beats, and c AF.
All plots are based on 128 RR intervals

The first AF detector to explore the point density of a Poincaré plot was defined
by (Δx(n),Δx(n + 1)) [51, 76]. Hence, the proposed analysis is not confined to just
the first quadrant, as is the case for (x(n), x(n + 1)), but covers all four quadrants
sinceΔx(n) can assume both positive and negative values. The quadrants are divided
into a square grid, where the cells are treated as bins of a two-dimensional histogram;
the bin size is a design parameter which should be set to a small value, e.g., 25ms.

However, this measure has not received any attention in AF detection, probably because it is better
suited for discriminating between ectopic rhythms and normal sinus rhythm than between AF and
normal sinus rhythm.
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Moreover, the Poincaré plot is divided into different regions defined so that their
respective populations of points correlate with different rhythms, as manifested by
the pattern of the three successive RR intervals required for computing Δx(n) and
Δx(n + 1), see Fig. 4.5. First, the total number of bins populated by at least one point
(“nonzero bins”) is computed for all regions, excluding a circular region enclosing
origo which is populated by points related to normal sinus rhythm. Then, the total
number of bins is corrected by not only subtracting the number of points in region 0,
but also a number reflecting the presence of APBs; APBs tend to cluster in certain
regions since they are often accompanied by a compensatory pause. AnAF episode is
detected whenever the corrected total number of bins exceeds a predefined threshold,
provided that the number of points reflecting the presence of atrial tachycardia falls
below another predefined threshold. The presence of atrial tachycardia is determined
by a heuristic combination of the number of points found in different regions relevant
to this particular arrhythmia, see Fig. 4.5; for a detailed description of the algorithm,
see [51, 76].

Using the Poincaré plot defined by (x(n),Δx(n)), a much simpler approach to AF
detection has been proposed in [33], particularly well-suited for use in implantable
loop recorders. This approachwas later applied toAF detection in polysomnographic
recordings [73]. In the plot, thefirst and the fourth quadrants are analyzed sinceΔx(n)

can assume both positive and negative values. Again, the two quadrants are divided
into a square gridwith cells treated as bins.All binswith at least one point are counted,
and an AF episode is detected whenever the total count exceeds a predefined, fixed
threshold. Obviously, manymore bins will be nonzero for an irregular rhythm such as
AF than for normal sinus rhythm. In contrast to [51], this approach does not require
that the Poincaré plot is divided into different regions, thereby simplifying detector
implementation. The count of nonzero bins defines the detection parameter PNZPP.
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Fig. 4.5 Definition of regions in a Poincaré plot defined by (Δx(n),Δx(n + 1)) [51]. Normal sinus
rhythm usually populates the circular, origo-centered region 0, whereas AF populates all regions
except region 0. Atrial tachycardia usually populates regions 6, 7, 9, and 11, whereas atrial and
ventricular premature beats usually populate regions 1–4
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As already pointed out, histogram-based detectors suffer from the disadvantage of
requiring a large number of RR intervals to achieve adequate performance, especially
when a two-dimensional histogram is analyzed. Therefore, it is not surprising that
a 2min detection window is recommended to ensure that the different regions of
the Poincaré plot (which may be viewed as a counterpart to histogram bins) are
reasonably well-populated [51]. When neither histogram shape nor population size
are of importance, a much shorter detection windowmay be employed, e.g., 64 beats,
without having to trade much in performance [33]. The introduction of regions offer,
on the other hand, ameans to detect other rhythms thanAF, e.g., atrial flutter orAPBs.
It should be pointed out that the relative advantage of using a Poincaré plot defined
either by (x(n),Δx(n)) or (Δx(n),Δx(n + 1)), rather than by (x(n), x(n + 1)),
remains to be established.

The second approach to Poincaré-based AF detection involves parameters provid-
ing a geometrical characterization of how the points (x(n), x(n + 1)) populate the
plot [50]; see also [77] where some of the original ideas appeared. As will be obvi-
ous from the following, detection parameters involving distances in the Poincaré plot
are related to the statistical dispersion measures described earlier. Accordingly, the
main merit of the Poincaré plot seems to be its use as a conceptual tool for designing
parameters, while the plot itself does not providemuch novel information. In contrast
to the Poincaré-based detector proposed in [51], the geometrical parameters do not
treat any particular region of the Poincaré plot as more likely to be populated when
AF is present, but simply quantifies certain type of dispersion of the RR interval
series.

In normal sinus rhythm, the points of the Poincaré plot are typically dispersed
around the line of identity, i.e., x(n) = x(n + 1), forming a cluster whose shape
resembles an ellipse. One of the axes of the ellipse, usually the major axis, has the
same orientation as the line of identity, whereas the other axis is perpendicular. The
dispersion of points along these two axes is quantified by first performing a 45◦
rotation of (x(n), x(n + 1)), defined by

[

y(n + 1)
y(n)

]

=
[

sin π
4 cos π

4
cos π

4 − sin π
4

] [

x(n + 1)
x(n)

]

, n = 0, . . . , N − 2, (4.20)

where y(n) lies on the axis perpendicular to the line of identity. Then, the standard
deviations σy,0 and σy,1 of y(n) and y(n + 1), respectively, describe the shape of the
cluster. The standard deviations are defined by

σy, j =
√
√
√
√

1

N − 1

N−2
∑

n=0

(y(n + j) − m̄ y)2, j = 0, 1, (4.21)

where m̄ y denotes the mean value of y(n). In a broader sense, σy,0 may be interpreted
as a parameter characterizing the short-term variability of the RR intervals, whereas
σy,1 characterizes long-term variability [71, 78].
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On the other hand, the point distribution in AF differs significantly from that in
normal sinus rhythm, implying that the assumption of a cluster with elliptic shape
looses its meaning. Still, σy,0 has been employed as a detection parameter to quan-
tify short-term variability [50], see also [79], but not σy,1 since it reflects a much
coarser time scale than does σy,0. The transformation in (4.20) implies that succes-
sive RR intervals should be differenced,

y(n) = 1√
2
(x(n + 1) − x(n)) = Δx(n)√

2
, (4.22)

and, therefore, the mean value of y(n) is close to zero. Hence, the standard deviation
σy,0 is well-approximated by

σy,0 ≈
√
√
√
√

1

2(N − 1)

N−1
∑

n=1

Δx2(n), (4.23)

which describes the dispersion of points around the diagonal line in the Poincaré
plot. It is evident that σy,0, apart from different normalization factors, is identical to
PRMSSD in (4.3) and employed in [32] but then without any reference to the Poincaré
plot. When distance measures are used for characterizing the plot (x(n), x(n + 1)),
the differenced RR interval series Δx(n) is a quantity appearing naturally.

The idea of fitting an ellipse to the Poincaré plot stems from the analysis of long-
term ECG data. When adapting this idea to AF detection, the resulting plot must
be based on much fewer RR intervals (i.e., only those inside the detection window),
leading to that the shape of the Poincaré plot becomes dot-like rather than ellipse-like,
see Fig. 4.4. Still, the ellipse-inspired analysis of RR intervals has been considered
for AF detection.

Another geometrical detection parameter inspired by the Poincaré plot is based
on the Euclidean distance between two successive points (x(n), x(n + 1)) and
(x(n + 1), x(n + 2)), describing the local rate of change in theRR interval series [50].
This parameter, denoted σc, is defined as the mean of all Euclidean distances con-
tained in the detection window,

σc = 1

N − 2

N−2
∑

n=1

√

Δx2(n) + Δx2(n + 1)), (4.24)

= 1

N − 2

N−2
∑

n=1

√
√
√
√

1
∑

k=0

Δx2(n + k), (4.25)

which, similar to σy,0, represents a measure of RR interval dispersion. Before use
in AF detection, both σy,0 and σc have been “normalized” by the mean RR interval
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length m̄x ,6 exemplified by

σ ′
y,0 = σy,0

m̄x
. (4.26)

Thus, similar to the coefficient of sample entropy in (4.16) and the simplified and
heart rate modified sample entropy in (4.19), the parameters σ ′

y,0 and σ ′
c are designed

so that an increase in heart rate contributes to improved detection performance.

4.2.3 Time-Varying Coherence Function

A linear systems approach to AF detection is provided by exploring the difference in
spectral coherence of the RR intervals in two adjacent windows: the spectral coher-
ence remains high as long as normal sinus rhythm is present in bothwindows,whereas
it changes rather abruptly at the time when an AF episode either begins or ends. This
approach was proposed in [37], benefitting from previously presented results on
how to estimate the time-varying coherence function (TVCF) from the time-varying
transfer functions obtained from the samples of two adjacent windows [80].

Assuming that the data in the two windows are viewed as the input and output
signals of a linear system, denoted x(n) and y(n), respectively, the time-varying
coherence function is defined by

Cxy(ω, n) = |Sxy(ω, n)|2
Sx (ω, n)Sy(ω, n)

, (4.27)

where Sxy(ω, n) is the time-varying cross-spectrum between x(n) and y(n), and
Sx (ω, n) and Sy(ω, n) are the time-varying spectra of x(n) and y(n), respectively.
Conversely, when y(n) is viewed as the input signal and x(n) as the output signal,
the time-varying coherence function is defined by

Cyx (ω, n) = |Syx (ω, n)|2
Sx (ω, n)Sy(ω, n)

. (4.28)

Accounting for the fact that the time-varying coherence function can be computed
both forwards and backwards, an overall TVCF can be defined by

C2(ω, n) = Cxy(ω, n)Cyx (ω, n). (4.29)

Introducing the two time-varying transfer functions characterizing the linear system
when either x(n) or y(n) is the input signal,

6In [50], the computation of m̄x includes all RR intervals in the window except the first and last
RR intervals, i.e., x(0) and x(N − 1); however, the interpretation of m̄x is similar to that otherwise
used in this chapter.
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Hx→y(ω, n) = Sxy(ω, n)
Sx (ω, n)

, (4.30)

Hy→x (ω, n) = Syx (ω, n)

Sy(ω, n)
, (4.31)

the overall TVCF can be expressed as [80]

C2(ω, n) = |Hx→y(ω, n)Hy→x (ω, n)|2. (4.32)

The two filters Hx→y(ω, n) and Hy→x (ω, n) can be determined using a model-based
approach inwhich the samples of the twowindows are assumed to be characterized by
an autoregressive moving average (ARMA)model. This approach is preferred over a
spectrogram-based approach due to its better frequency resolution, provided that the
ARMA model is adequate for the analyzed data. Both the model parameters and the
model order are determined using an optimization technique developed especially
for the identification of time-varying linear systems [81]. Results have demonstrated
that the model order estimate depends on the length of the detection window: longer
windows require higher model orders.

Figure4.6 illustrates one of the essential properties of C2(ω, n), namely that the
variation across the frequency axis is almost nonexistent in normal sinus rhythm,
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taining a transition from normal sinus rhythm (NSR) to AF (ω = 2π f ). Both detection windows
contain 128 beats, and slide with 128 beats at a time. (Reprinted from [37] with permission)
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whereas the variation increases at the onset of the AF episode—an increase which
becomes more pronounced at higher frequencies. Based on this observation, the
variance ofC2(ω, n) is computed across the frequency axis for each beat n, and used
as detection parameter.

4.2.4 Parameter Time Series Exemplified

For an 80-min ambulatory ECG recording with two AF episodes and several runs
of ectopic beats, the time series of different detection parameters are displayed in
Fig. 4.7. The series are computed using a 128-beat sliding detection window, except
for ISSampEn which is computed using an 8-beat window [40]; the window slides one
beat at a time.

A number of observations can be made from Fig. 4.7, first and foremost that nor-
mal sinus rhythm and AF episodes are easily distinguished in all series. Another
observation is that the impact of the runs of ectopic beats, for example, those occur-
ring before the second AF episode, differ quite considerably between the series:
while the impact is small for ISSampEn, it is quite substantial for PCV and PNMASD

since the ectopic beats are manifested by parameter values which actually exceed
those belonging to the AF episodes. Thus, to reduce the number of false alarms,
techniques for handling the influence of ectopic beats need to be implemented, see
Sect. 4.2.5. Yet another observation to be made from Fig. 4.7 is that IShEn has more
pronounced “background” fluctuations in normal sinus rhythm than the other detec-
tion parameters.

4.2.5 Ectopic Beat Handling

An important aspect to address in rhythm-based AF detection is the presence of
ectopic beats, often abundant in numbers. The inclusion of a processing block exclud-
ing or flagging RR intervals related to VPBs and APBs can, as already pointed out,
considerably improve the specificity of a detector. At the same time, ectopic beat han-
dling must not alter the RR intervals which form an AF episode so that the sensitivity
is lowered.

In many detectors, no explicit strategy is implemented for handling ectopic beats,
but the parameters characterizing rhythm irregularity are fed directly to the classifier,
see, e.g., [34, 36, 46–48]. When theΔRR interval histogram constitutes the basis for
detection, rhythms with frequent VPBs are sometimes falsely detected as AF when
the Kolmogorov–Smirnov test is involved [31]. The source of the problem is the
compensatory pause which accompanies most types of VPB, leading to a negative
ΔRR interval immediately followed by a positive. Consequently, the histogram bears
resemblance to a histogram determined in AF. It has been noted that the cumula-
tive RR interval histogram determined from rhythms with frequent VPBs exhibits a
“prominent shoulder” at around 400–600ms, while the AF histogram usually does
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not [31]. Preliminary results showed that the number of VPB-related false alarms
can be reduced by introducing a test on the height and width of a potential shoulder;
however, no details have been provided on how to implement a test for identifying a
prominent shoulder.

When the Poincaré plot is the starting point for computing a detection parameter,
the bin population pattern may be considered for singling out ectopic beats. For
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example, bigeminy is manifested by clustered points populating just a few bins
[33, 51], whereas AF is manifested by points which are much more scattered. When
the Poincaré plot is defined by (x(n), x(n + 1)), changes in heart rate within the
detection window smears the clustered points related to ectopic beats, which in turn
increases the number of false alarms; this problem is likely to be less pronounced
when the plot is defined by (Δx(n),Δx(n + 1)).

One of the first rhythm-based detectors to involve handling of ectopic beat was
described in [32], see also [37], embracing three different ratio series defined by
successive RR intervals. In order to eliminate a VPB, preceded by a short RR interval
x(n) and followed by a compensatory pause x(n + 1), the following three conditions
need to be fulfilled for x(n) and x(n + 1) to be excluded from the RR interval series:

x(n)

x(n − 1)
< γ1, (4.33)

x(n + 1)

x(n)
> γ99, (4.34)

x(n + 1)

x(n + 2)
> γ25. (4.35)

The thresholds γ1, γ25, and γ99 denote the 1st, 25th, and 99th percentiles, respec-
tively, of the RR interval ratio histogram of the current detection window. Obviously,
these percentiles are increasingly difficult to determine with sufficient reliability as
the window becomes shorter. The application of the conditions in (4.33)–(4.35) is
illustrated in Fig. 4.8a and b for anRR interval series containing bigeminy and ectopic
beats, and then followed by an AF episode. The ectopic beats are eliminated in the
thinned output series, whereas the episode of bigeminy is characterized by much
flattened RR intervals and reduced irregularity of AF.

Median filtering may be used to eliminate occasional ectopic beats from the
RR interval series, while preserving the sharp changes that typically characterize
the onset and end of an AF episode. Such filters have been implemented with lengths
ranging from 3 [40] to 17 [38], where longer median filters offer better elimination
of ectopic beats, but increases the risk of missed brief AF episodes. Therefore, bear-
ing in mind the growing interest in detection of brief episodes, short median filters
are to be preferred. Figure4.8c and d illustrate how the RR interval series is altered
when using 3- and 17-point median filters, respectively. The ectopic beats are elim-
inated in the filtered output, but the episode of bigeminy is largely unaltered and the
irregularity of AF is much reduced, especially for the 17-point filter.

In addition to eliminating ectopic beats with median filtering, a set of ad hoc tests,
similar to those in (4.33)–(4.35), have been suggested which are also based on the
series of ratios of successive RR intervals [35]. The sequence of RR interval ratios
is determined for common non-AF arrhythmias, e.g., bi- and trigeminy, and used to
build a database with template patterns. The sequence of ratios inside the detection
window is correlated to all the template patterns, and the presence of AF is ruled
out whenever a sufficient number of correlation matches are found. In this approach,
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ectopic beat handling is part of the classifier, since no processedRR interval sequence
results. Several thresholds need to be set before the tests can be applied—settings
whose influence on performance remain to be established.

A simple flag function has been proposed to indicate whether the observed rhythm
is likely to be in AF, defined by [40]
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b(n) =
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∑
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− 1

⎞

⎟
⎟
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⎟
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2

, n = M, . . . , N − 1, (4.36)

where n is the end time of the sliding detection window, M is an even-valued integer,
and xm(n) is the output of a three-point median filter. For regular rhythms as well as
for bigeminy, the ratio in (4.36) is approximately equal to 1 since xm(n) and x(n)

resemble each other; thus, b(n) is approximately equal to 0. On the other hand, in
AF, the variability in xm(n) is lower than that in x(n) due to the median filtering, and,
as a consequence, b(n) increases to indicate AF presence. The squaring operation in
(4.36) is introduced to improve the differentiation of AF from non-AF rhythms. In
contrast to the criteria in (4.33)–(4.35), resulting in the exclusion of RR intervals, the
purpose of b(n) is to serve as a weighting function suitable for use in signal fusion.
Figure4.8e illustrates the behavior of b(n) in the presence of an episode of bigeminy,
being flagged by values close to zero.

Given that rhythm-based AF detection is the predominant mode of operation in
mHealth monitoring devices and implantable loop recorders, further development of
techniques for better handling ectopic beats is warranted.

4.2.6 Classification

Themost common approach to designing a classifier is to simply apply one or several
threshold tests to the parameters (“features”) selected for AF detection. Information
on RR interval irregularity is often condensed into one single feature, see, e.g., [31,
33, 34, 38, 40], but as many as nine features, with nine accompanying threshold
tests, have also been considered [35]. The threshold values can be determined by
optimizing a suitable performancemeasure, e.g., the area under the receiver operating
characteristic (ROC) (Sect. 4.5),with respect to the features of interest using a training
data set. The optimized thresholds are then used to evaluate performance on a test data
set. Alternatively, the determination of a threshold may be based on some underlying
statistical assumptions associated with the feature [31].

When the classifier involves many features, the question arises whether a feature
conveys unique information or correlates with the other features. If correlated, which
is often the case, the features can be decorrelated using principal component analysis
(PCA) so that only the most relevant features are retained, i.e., the dimensionality of
the feature vector is reduced. It is well-known that low-dimensional feature vectors
generalize better to data not presented during training, thereby leading tomore robust
detection performance [82]. Another obvious advantage is that fewer features imply
less computations. Although feature selection has been considered in AF detection,
then involving an improved version of the sequential forward floating selection algo-
rithm [46], this approach has yet to find its way into AF detection on a broader
scale.
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A simple approach to understanding the relevance of individual features in multi-
feature threshold testing is to establish their relative contribution to detection perfor-
mance, for example, by determining the performance with and without a test involv-
ing a certain feature. Such an insight may help to render the detector structure more
effective, of particular importance when the detector is aimed at implementation in
a low power device. In rhythm-based AF detection, no study has yet reported on the
significance of individual tests, whereas one study has presented results on rhythm
andmorphology based detection, demonstrating that rhythm irregularity plays amore
significant role in detection [83].

Another, even simpler, approach to understanding the relevance of a feature is to
determine the histograms of the feature for RR intervals observed in either AF or
non-AF rhythms, using some suitable database [38, 40, 41, 49]. Then, the extent by
which these two histograms overlap serves as a preliminary indication of the feature’s
discriminatory power. The histograms of different parameters, previously described
in this chapter, are presented in Fig. 4.9. Using AFDB, the parameters are computed
from the RR intervals contained in a sliding 128-beat window, except ISSampEn which
is computed in a sliding 8-beat window. Visual inspection of Fig. 4.9 shows that
the least histogram overlap is exhibited by ISSampEn, and therefore this parameter is
particularly well-suited for AF detection. Interestingly, the simple-structured feature
PNZPP, defined by the number of nonzero bins in the Poincaré plot, is also associated
with a small overlap. On the other hand, IShEn is associated with the largest overlap,
thus questioning its suitability for use in AF detection. When the Shannon entropy
is computed from a symbolic sequence, determined either from the RR intervals or
the instantaneous heart rate, the histogram overlap has been found to decrease, see
[38, 41].

In addition to using a traditional classifier definedby a set of threshold tests, pattern
classification techniques have been investigated for AF detection, including support
vector machines (SVMs) [39, 50, 84] and linear discriminant analysis (LDA) [36];
the former technique has the advantage of offering better flexibility as the decision
boundaries can be nonlinear [85]. In these studies, the dimension of the feature vector
ranges from 2 to as large as 24. It should be noted that LDA-based classification
requires many more computations for training than does simple threshold testing, as
the sample mean vector and the covariance matrix for both non-AF and AF data are
needed to compute the discriminant function. For SVM, only two design parameters
need to be set, both related to the degree with which misclassifications should be
penalized [50, 84].

From Table4.1, it is evident that detection based on a single threshold test offers
performance superior to detection based on a classifier incorporating multi-threshold
tests or an SVM. For example, the single-test detector in [40] performs better than
does the detector using an SVM [39]. At a first glance, this result may stand out as
unexpected as an SVM offers so much more freedom with respect to the location
of the decision boundaries, and therefore an SVM should perform better. A possible
explanation to this result may be that the SVM does not generalize well from training
to testing when a small or nonrepresentative training set has been used. Amore likely
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Fig. 4.9 Histograms for six different detection parameters, determined either in AF (thick line)
or non-AF (thin line). a Coefficient of variation PCV, b normalized mean of absolute successive
differences PNMASD, cShannon entropy IShEn,d coefficient of sample entropy ICSampEn, e simplified
sample entropy ISSampEn, and f number of nonzero bins in the Poincaré plot PNZPP. The values
used to compute the parameter time series displayed in Fig. 4.7 were also used in this figure

explanation, though unrelated to the SVM, is that less powerful features were used,
leading to inadequate handling of non-AF rhythms.

Detectors involving machine learning techniques have yet to demonstrate per-
formance exceeding that of classical threshold-based AF detection. However, this
relation may very well change in the future since databases for training are contin-
uously growing—a change which implies time-consuming and meticulous work by
expert cardiologists to ensure that the databases are adequately annotated.

None of the above-mentioned approaches to classification offer built-in immunity
to non-AF rhythms such as bi- and trigeminy, frequentAPBs andVPBs, supraventric-
ular tachycardia, and atrioventricular junctional rhythms, and, therefore, ectopic beat
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handling prior to classification will have significant repercussions on performance.
This aspect is illustrated by considering the performance of the detector in [40] when
implemented with and without such handling. In that detector, the fusion of ISSampEn,
computed using a sliding 8-beat window, and b(n), indicating the likelihood of AF
presence, results in a parameter which is subjected to simple thresholding. Using
the MIT–BIH Normal Sinus Rhythm Database (NSRDB), containing several occur-
rences of bigeminy, cf. Sect. 3.1, the incorporation of b(n) in the detector leads to
a dramatic improvement in performance since the specificity increases from 93.2
to 98.6%, whereas the sensitivity remains essentially the same (this is a previously
unpublished result).

4.3 Rhythm and Morphology Based AF Detection

AlthoughAF is accompanied by changes in both rhythm and atrial wavemorphology,
rhythm-based detection continues to be the preferred mode of operation since the
RR intervals can be determinedmuchmore reliably in noisy signals than information
on atrial activity [38, 86]. Since rhythm-based detectors tend to produce false alarms
in sinus rhythms with ectopic beats, complete atrioventricular block, as well as in
patients with prescribed ventricular rate-controlling medication, it is natural to also
analyze whether P waves are absent and/or f waves are present so that the false
alarm rate can be reduced. Thus, information on atrial wave morphology needs to be
included in the decision process, illustrated by the block diagram of an AF detector
in Fig. 4.10a. While the performance of rhythm-based AF detectors is not critically
dependent on the lead selected for signal processing, lead selection is crucial when
morphologic information is involved since f waves have much lower amplitude in
leads positioned farther away from the atria; such lead-dependence is less pronounced
for P wave amplitude.

Only a handful of AF detectors have been designed in which information on
both rhythm and atrial wave morphology are subject to analysis. The performance
reported in the literature must be regarded as rather disappointing since, indeed,
none of the detectors achieve performance superior to that of a well-performing
rhythm-based detector, see Table4.3. This result may be explained by the use of
detector structures not accounting for the fact that the noise level usually changes
over time. As a consequence, measurements characterizing atrial activity are not
always reliable, but may actually contribute to worsen the performance rather than
to improve it [87]. Hence, an important guiding design principle is to account for the
prevailing noise level in the detector structure, implying that information on atrial
activity becomes less influential when decisions are made at higher noise levels, and
vice versa. Ultimately, when the noise level exceeds a certain threshold, the detector
structure should simplify to one based on only the RR interval series, cf. Sect. 4.2.
Pursuing the design of a detector accounting for noise calls for the development of
a noise level estimator. The noise-dependent mode of operation of an AF detector is
described by the block diagram in Fig. 4.10b.

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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This section provides an overview of the building blocks required for processing
information on atrialwavemorphology, aswell as for estimating the noise level. Some
detectors explore information on either P waves or f waves, while others explore both
types of waves.

4.3.1 P Wave Detection Information

The problem of P wave detection/delineation has been thoroughly treated in the liter-
ature, with emphasis on automated interpretation of diagnostic ECGs where highly
accurate measurements of P wave amplitude and duration are of critical impor-
tance [91–93]. The prediction of patients prone to AF based on P wave morphology
represents another, more immediate application where accurate measurements are



4 Detection of Atrial Fibrillation 105

Table 4.3 The performance of five detectors based on both rhythm and morphology, together
with the performance figures of rhythm-based detection already presented in Table4.1. The subset
AFDB1 is defined in Table4.1, AFDB2 is identical to AFDB, except that records 00735 and 03665
are excluded since they do not include ECG signals, only RR interval information, AFDB3 contains
only 20 of the 25 records since five records do not have sufficient sinus rhythm data for training, and
AFDB4 excludes a huge number of unspecified non-AF segments to balance the sizes of AF and
non-AF records. The difficulties associated with comparing detection performance are considered
in Sect. 4.6, applying especially to the best-performing detector

Method by Year Database Se (%) Sp (%)

Dash et al. [32] 2009 AFDB1 94.4 95.1

Lian et al. [33] 2011 AFDB 95.8 96.4

Lake and Moorman [34] 2011 AFDB 91 94

Huang et al. [35] 2011 AFDB 96.1 98.1

Shouldice et al. [36] 2012 AFDB 92 96

Lee et al. [37] 2013 AFDB1 98.2 97.7

Zhou et al. [38] 2014 AFDB 96.9 98.3

Asgari et al. [39] 2015 AFDB 97.0 97.1

Petrėnas et al. [40] 2015 AFDB 97.1 98.3

Zhou et al. [41] 2015 AFDB 97.4 98.4

Babaeizadeh et al. [87] 2009 AFDB2 93 98

Carvalho et al. [83] 2012 AFDB2 93.8 96.1

Ladavich and Ghoraani [88] 2015 AFDB3 98.1 91.7

Ródenas et al. [89] 2015 AFDB2 96.5 94.2

Xia et al. [90] 2018 AFDB4 98.3 98.2

essential [94–96]. In AF detection, however, the demands on accuracy are more
relaxed since the absence of P waves can be established without first having to esti-
mate P wave onset and end.

A straightforward approach to determining whether P waves are absent is to use a
measure reflecting morphologic similarity between the samples in two consecutive
“PR intervals”, with the correlation coefficient and the mean square difference as
examples of such a measure [87]. In sinus rhythm, P wave morphology is usually
stable from one beat to the next, and, therefore, such a measure would indicate
a high degree of similarity. In AF, on the other hand, P waves are replaced with
f waves which are unsynchronized with the QRS complexes, and, consequently,
the degree of similarity between two PR intervals is much lower. Once pairwise
comparison has been performed for all beats in the detection window, the average of
the resulting similarity measurements can be compared to a threshold to determine
whether P waves are absent.

In a related approach, the samples of the PR interval are correlated to the samples
of a fixedPwave template [83]. The template is determined by averaging all annotated
P waves of a huge annotated database [97, 98]; further considerations on template-
based Pwave detection can be found in [99]. By analyzing the sequence of correlation
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coefficients determined from all beats in the detection window, a P wave is detected
whenever the correlation coefficient exceeds afixed threshold. Pwaves are considered
absent when the P wave occurrence ratio, defined as the number of detected P waves
to the total number of beats in the window, falls below another fixed threshold.

Rather than quantifying P wave absence directly in the ECG signal, as is usually
the case, it can be quantified in a signal resulting from PQRST cancellation of the
ECG, thus composed of PQRST-related residuals in normal sinus rhythm and f waves
in AF [100]. In this approach, the term “P wave absence” has a different meaning
since the input signal no longer contains P waves; however, the term is still useful
since an “imaginary” PR interval can be analyzed. It has been shown that PQRST
cancellation can be accomplished by means of an echo state network which offers
the advantage of handling substantial variation in normal beat morphology as well
as the presence of ectopic beats [101]; for a description of the echo state network,
see Sect. 5.5.3. In the canceled signal, all possible pairwise combinations of the
PR intervals are considered in the detection window, not just the pairs defined by
consecutive PR intervals as in [87]. The squared error is computed for pairs of
PR intervals, and then averaged over all possible combinations to produce a measure
of P wave absence. The PR interval has a fixed location relative to the fiducial point
of the QRS complex, with its onset and end preceding the fiducial point by 250 and
50ms, respectively.

A radically different approach to AF detection is to completely leave out all
rhythm information and only explore whether P waves are absent [88, 89].7 The
main motivation for pursuing this approach is that rhythm information may not be
discriminative enough to reliably detect AF in patients on rate-controlled medication
or with pacemaker, where rhythm irregularity is reduced. It is obvious from Table4.3
that these two detectors have performance inferior to the best-performing rhythm-
based detectors.

As many as nine features have been employed for describing different P wave
properties: six features describing P wave amplitude in contiguous 20ms intervals,
and three features describing variance, skewness, and kurtosis of the samples in the
PR interval, located, as above, at a fixed distance from the QRS fiducial point [88].
In contrast to the three above-mentioned approaches, which all produce a simple
scalar parameter for determining Pwave absence, this approach is considerably more
complicated as a training phase is required for each patient before AF detection can
take place. This phase involves a Gaussian mixture model whose model parameters
have to be determined from a half hour long ECG segment containing sinus rhythm;
each P wave is represented by the nine-dimensional feature vector. In the testing
phase, the Mahalanobi distance between the features of the candidate P wave and
the features of the patient-specific P wave model is computed, indicating P wave
absence when the distance is sufficiently large.8

7Strictly speaking, this type of detector does not explore both rhythm and morphology. However,
since information on P wave absence is still required, the detector is described in this section.
8The idea of studying the deviation from “normality”, i.e., whether a P wave is absent, is closely
related to the concept of novelty detection [102, 103].

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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The entropy of different scales, wavelet entropy, constitutes a set of features
explored in AF detection [89]. In order to compute the wavelet entropy, the samples
in the TQ interval are first subject to wavelet decomposition [21], resulting in the
wavelet coefficients wi,k , where i and k denote scale and time, respectively. Then,
the relative energy Ei is computed for each scale,

Ei =

Ki−1
∑

k=0

w2
i,k

J
∑

l=1

Kl−1
∑

k=0

w2
l,k

, i = 1, . . . , J, (4.37)

where J denotes the number of scales, and Kl denotes the length of wl,k at scale l.
The wavelet entropy is obtained as the Shannon entropy of Ei , cf. (4.7), except that
the probabilities p(xi ) are replaced by the relative energies Ei , which, by definition,
sum to 1. Statistical analysis of AFDB showed that TQ intervals with P waves were
associated with significantly lower wavelet entropies than TQ intervals with f waves.
This finding is due to that the relative energy is much more concentrated to one scale
for P waves than for f waves.

The variability of the length of the PR interval may serve as an indirect measure of
P wave absence [87]. Obviously, this length can only be determined when a P wave is
present, requiring that the onset of the P wave and the onset of the QRS complex have
first been determined. While PR interval variability is undefined in AF, a surrogate
measure may be used in which the onset of an f wave is treated as the onset of a
Pwave, leading to a PR interval variability which is much larger in AF than in normal
sinus rhythm. Considering the imprecise definition of PR interval variability in AF,
it is doubtful whether this measure is sufficiently powerful for AF detection.

The above-mentioned techniques for determining P wave absence vary quite sub-
stantially in complexity, ranging from simple similarity measures to advanced, sta-
tistical modeling of P waves. When a similarity measure is computed between the
samples of two PR intervals, e.g., the correlation coefficient or the mean square dif-
ference, no particular polarity or morphology of the P wave is favored. This is an
important advantage when the objective is to quantify a rather unspecific concept
such as “P wave absence.” On the other hand, a template-based similarity measure
can be expected to perform less well in rhythms with varying P wave morphology,
but also for morphologies which are approximately orthogonal (in mathematical
terms) to the template, i.e., the correlation coefficient is approximately zero although
a P wave is present. Statistical modeling of P wave properties offers more degrees
of freedom than the template-based approach, however, such modeling also requires
training in each patient on lengthy data which have to be recorded in sinus rhythm;
such data is not always is available.

It is obvious that information on P wave absence becomes increasingly unreliable
as the noise level increases, eventually reaching a “breakdown” level that differs from
one technique to another depending on the robustness of the design. For example,
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a template-based approach is likely more robust to noise than an approach where
P wave onset needs to be determined. In addition, information on P wave absence is
more reliablewhen extracted frommore than one lead: by analyzing two leads instead
of one, the specificity of a P wave based AF detector has been shown to increase
from 91.7 to 94.6%, while the sensitivity remained essentially the same [88].

4.3.2 f Wave Detection Information

The sparse use of f wave information inAF detection is due to the difficulty to reliably
characterize low amplitude f waves in the presence of noise, as well as to reliably
determine f wave characteristics from the TQ interval. Not only is it challenging to
determine the endpoint of the Twave inAF, but the TQ interval becomes increasingly
shorter as the heart rate increases. Eventually, the TQ interval may have shrunk to
such an extent that the f waves are completely concealed by ventricular activity,
thus precluding further analysis. This problem can, however, be addressed by means
of f wave extraction—a signal processing operation which is thoroughly reviewed
in Chap.5. While f wave extraction facilitates AF detection, it also increases the
complexity of the detector structure so that it may no longer be feasible to implement
in a battery-powered device.

Basal time domain information on f wave presence can be obtained by counting
the number of f waves in the TQ interval, with f waves considered present whenever
the count exceeds one, otherwise absent [104]. The width of a signal fluctuation
must exceed a certain threshold to be counted as an f wave; in [104], f wave width is
defined as the time elapsed between two level crossings. In order to avoid that noise
fluctuations are counted, the amplitude of a fluctuation must exceed an adaptive
threshold related to both the amplitude of the TQ interval and the peak amplitude of
the Twave. Another means to combat false counts of f waves is to first bandpass filter
the observed signal so that baseline wander and noise of muscular origin are reduced.
However, even with such filtering, it is well-known that f wave analysis relying on
level crossing patterns remains vulnerable to noise since the spectral content of
filtered muscle noise overlaps with that of f waves [21]. The consequences of a
vanishing TQ interval at higher heart rates, i.e., a count of zero f waves, was not
addressed in [104].

Spectral characterization is another approach to determining f wave presence,
assuming that f wave extraction is first performed so that all samples in the detection
window are suitable for spectral analysis, not just samples in the TQ interval [83,
100]. Since the spectral peak corresponding to the f wave repetition rate (dominant
AF frequency, DAF) is typically the largest, parameters describing signal bandwidth
have been proposed as a measure of f wave presence. Figure4.11a illustrates the
spectrum of an extracted f wave signal. In this example, the DAF, located at 6 Hz,
is the main spectral feature, but important information may also be conveyed by

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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the second and third harmonics, see Sect. 6.3.2. In general, two or more harmonics
are more likely to be present in patients with paroxysmal AF than in patients with
permanent AF.

The normalized spectral concentration is defined by [100], see also [105, 106],

FSC =
∫

Ωa

P ′
d̂
(ω) dω, (4.38)

where P ′
d̂
(ω) denotes the normalized power spectrum of the extracted f wave signal

d̂(n), defined by

P ′
d̂
(ω) = 1

σ 2
d̂

Pd̂(ω), (4.39)

and σ 2
d̂
the variance of d̂(n). The integration interval Ωa is centered around the

dominant spectral peak located within the interval [ωa,0, ωa,1], usually chosen to
be [4, 12] Hz. When f waves are present, the spectral concentration is closer to 1,
whereas it is closer to 0when sinus rhythm is present. The power spectrum Pd̂ (ω)may
be estimated using a nonparametric technique, e.g., Welch’s method, or a parametric
technique, e.g., Burg’s method [107].

Spectral entropy is another parameter used for determining f wave presence [83],
defined by

FSE = −
∫

Ωa

P ′
d̂
(ω) ln(P ′

d̂
(ω)) dω. (4.40)
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Fig. 4.11 The power spectrum of a an extracted f wave signal, and b a QRST-cancelled signal
observed in sinus rhythm. The two largest spectral peaks are indicated with vertical lines
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As the bandwidth of P ′
d̂
(ω) becomes increasingly narrower in Ωa , and thus more

likely to reflect AF, the spectral entropy becomes increasingly smaller.
Unlike FSE, the Kullberg–Leibler divergence, also known as relative spectral

entropy, accounts for the similarity between P ′
d̂
(ω) and a template power spectrum

P ′
t (ω) [83], defined by

FKL =
∫

Ωa

P ′
d̂
(ω) ln

(

P ′
d̂
(ω)

P ′
t (ω)

)

dω. (4.41)

Ideally, the template power spectrum P ′
t (ω) should be determined so that it is rep-

resentative of f waves for all patients, e.g., by computing a gross power spectrum
from a huge database with high quality f waves. However, not only varies the DAF
substantially from patient to patient, but so does f wave morphology. As a result,
the practical utility of a template power spectrum is limited, and the information on
f wave presence conveyed by FKL can hardly be viewed as representative. In [83],
P ′
t (ω) was determined from AFDB and used, in combination with FSE, to decide

whether f waves are present. The dominant peak of P ′
t (ω) was found to be located

at about 2 Hz, which is far below the expected range of the DAF.
Though not developed specifically for determining f wave presence in AF detec-

tion, a set of simple threshold tests have been proposed for judging whether the
structure of Pd̂(ω) relates to AF [108]. The tests involve the following ad hoc spec-
tral parameters:

• The SNR, where “signal” is defined as the mean of the magnitudes of the first
and second harmonics, and “noise” as the magnitude halfway between the two
harmonics.

• The deviation of the second largest peak in Pd̂(ω) from the expected position of the
second harmonic, aiming at excluding signal segments with a “ringing” spectrum,
e.g., due to P waves occurring at slow rates.

• The ratio between the magnitudes of the second largest and the largest peak in
Pd̂(ω), detecting when the second harmonic is too large.

• The squared error between the spectrumof the slidingwindowand an exponentially
averaged spectrum based on past signal segments not containing muscle noise or
residuals due to poor f wave extraction.

The spectrum in Fig. 4.11a fulfills the above four tests to be considered an AF spec-
trum, whereas the spectrum in Fig. 4.11b does not; the test outcome is correct in both
cases.

The additional value of including information on atrial wave morphology in AF
detection is illustrated in Fig. 4.12, where ECGs with either several APBs or respi-
ratory sinus arrhythmia are analyzed. Using the fuzzy logic detector in [100] which
processes information on P wave absence and f wave presence, none of the two
non-AF rhythms are detected as AF, whereas both are falsely detected as AF when
the coefficient of sample entropy ICSampEn of the RR intervals is used as detection
parameter [34]. The decision functions of the two detectors are displayed in Fig. 4.12.
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Fig. 4.12 Non-AF arrhythmias causing false alarms in rhythm-based detection, but not in rhythm
and morphology based detection: a Frequent atrial premature beats (marked with “∗”), and b respi-
ratory sinus arrhythmia. Atrial fibrillation is detected (thicker line) whenever the decision function,
denoted OR for rhythm-based detection [34] and O for rhythm and morphology based detec-
tion [100], exceeds the detection threshold

4.3.3 Noise Level Estimation

Although an AF detector must operate at highly varying noise levels, remarkably
little attention has been paid to the problem of how to adjusting detector operation
relative to such variation. Rather, the observed ECG signal is processed in the same
way, irrespective of the prevailing noise level [83, 87, 88]. One explanation to this
structural omission may be related to the challenge of how to integrate noise infor-
mation into the classifier so that information on atrial wave morphology becomes
increasingly discarded as the noise level increases, see Fig. 4.10. Another, more fun-
damental explanation may be related to the development of the noise level estimator
itself, which should be designed so that the estimate actually reflects the noise level,
but not the cardiac activity.
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One of the very few AF detectors operating in a noise-dependent mode was
proposed in [100]. In that detector, the extracted f wave signal d̂(n), produced by an
echo state network, serves as the starting point for estimating the noise level. The
estimator is defined by the root mean square value Rd̂ of d̂(n), weighted by a ratio
of spectral entropies:

N̂WRMS = Rd̂ ·

∫

Ωn

Pd̂(ω) log2 Pd̂(ω) dω

∫

Ωa

Pd̂(ω) log2 Pd̂(ω) dω

. (4.42)

The numerator is computed in a spectral band dominated by noise, defined by
Ωn ∈ [ωn,0, ωn,1], and the denominator in a spectral band dominated by f waves,
cf. (4.38). The definitions of spectral entropy in (4.40) and (4.42) differ with respect
to the logarithm—a difference with little importance from a practical viewpoint.
The estimator N̂WRMS produces smaller values when Pd̂(ω) reflects the presence
of f waves, but larger values when muscle noise and motion artifacts are present.
Figure4.13 illustrates the estimation of noise level, demonstrating that the estimate
tracks the changes in noise level during the last 15 s, while it remains uninfluenced
by the f waves of the first AF episode.
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Fig. 4.13 Noise level estimation based on (4.42). a The first 15 s of the signal are noise-free, then
followed by a 10s burst of myoelectric noise. The second AF episode is preceded by two atrial
premature beats (marked with “∗”). b f wave signal extracted using an echo state network. c The
noise level estimate N̂ , defined in (4.42), is delayed due to that it is computed in a sliding 5-beat
window



4 Detection of Atrial Fibrillation 113

The wavelet entropy of the samples in the TQ interval can, in addition to quan-
tifying P wave absence (Sect. 4.3.1), be used as a noise level estimator. While the
energy of P waves is mostly confined to one scale, the noise energy is more evenly
distributed across the different scales, implying that noise is associated with higher
wavelet entropy than P waves. It should be emphasized that the wavelet entropy
measures signal organization, and, therefore, contrary to the estimator in (4.42), not
proportional to noise level.

If the purpose of the noise level estimator is instead to provide information on
whether the RR interval sequence can be reliably analyzed for AF detection, other
approaches to noise level estimation may be considered [109–115]. For example,
the noise level can be associated with the differences in output from two different
QRS detectors, where one is tuned to be more sensitive to noise than the other; large
differences in QRS detection then represents an indirect measure of a high noise
level [111]. Thus, this type of signal quality index does not have to be integrated
into the classifier of the AF detector, but can be treated as independent information
indicating whether the samples in the detection window should processed [114].
Given that signal quality assessment is essential for f wave characterization, it is
further considered in Sect. 6.5.

4.3.4 Ectopic Beat Handling

Detectors which process information on both rhythm and morphology offer indirect
handling of ectopic beats, either through the analysis of P wave absence [87, 88] or
the analysis of P wave absence in combination with f wave presence [100]. None of
these detectors implement any of the techniques for ectopic beat handling previously
described in Sect. 4.2.5 for rhythm-based AF detection. When detection is confined
to analysis of P wave absence, the number of false detections due to frequent APBs
can be considerably reduced since an APB is preceded by a P wave, on condition
that the detector can cope with P wave morphologies that differ from the dominant
morphology in normal sinus rhythm [100]. A complication arises, however, when
APB prematurity is so pronounced that the P wave is hidden in the preceding Twave,
thereby increasing the risk of falsely detecting frequent APBs as AF. In addition,
frequent VPBs increase the risk of false detections since VPBs are not preceded by
a P wave. Despite these complications, detectors using information on both P wave
absence and f wave presence are likely to perform better in ectopic rhythms than
would a rhythm-based detector.

If AF detection is implemented in a system for automated ECG analysis, whether
for resting or continuous long-term recordings, classification of beat morphology is a
built-in functionalitywhichmaybe utilized for excluding segmentswithVPBs before
AF detection is performed. Such exclusion can also be based on beat classification

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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performed jointly with AF detection [83]. Alternatively, the output of the built-in
beat morphology classifier can be used to augment the feature vector created for AF
detection.9

4.3.5 Classification

The considerations concerning classification in rhythm-based AF detection earlier
discussed in Sect. 4.2.6 are equally valid for detection based on both rhythm and atrial
wave morphology. With morphologic information included in the feature vector, the
noise level should also be included so that the reliability of the parameters describing
P wave absence and f wave presence can be assessed by the classifier. However,
such an approach has not yet permeated the design of detectors, but classifiers are
rather trained on data with considerable variation in noise level, with the objective
to produce a fixed classifier suitable for use on data with both low and high noise
levels.

Oneof the veryfirst rhythmandmorphologybaseddetectorswas described in [87],
where the decisions were based on a feature vector composed of one rhythm parame-
ter (the transition probability matrix of a stationary first-order Markov process [42])
and two Pwave related parameters (Pwave similarity and PR interval variability), see
Sect. 4.3.1. A regression decision tree technique was considered for classification,
implemented as a series of simple threshold tests, without involving any assumptions
on the statistical distribution of the features.

In order to classify more accurately the nine P wave amplitude features described
in Sect. 4.3.1, a multivariate mixture model was introduced in [88]. In this model,
the features are characterized by a PDF defined as a sum of Gaussians, where each
Gaussian is defined by its mean vector and covariancematrix. Themodel parameters,
as well as the number of Gaussians in the sum, are determined by the expectation–
maximization algorithm, requiring that a patient-specific training phase is first per-
formed [85]. Once the statistical model has been identified, the likelihood of P wave
absence is evaluated for each beat in the detection window. Based on the combined
likelihood for all beats in the window, a decision is taken whether an AF episode is
present.

The first detector architecture to offer joint processing of features describing
rhythm irregularity, P wave absence, as well as f wave presence, was proposed in [83,
121]. A feedforward artificial neural network (ANN) was used as classifier, trained
on a subset of records from AFDB.

A comparison of the performance figures listed in Table4.3 is unfortunately not
straightforward since both sensitivity and specificity differ from detector to detector.
Nonetheless, the performance figures clearly indicate that detectors based on both

9While classification of beat morphology is not reviewed here, it deserves to be mentioned that this
classification problem has received, and continues to receive, considerable attention in the literature,
see, e.g., [116–120].
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rhythm and morphology do not offer performance superior to that of rhythm-based
detectors. In fact, the much earlier presented rhythm-based detector in [31] offers
better performance than does the detector in [83], where account is made of both
P wave and f wave information. This, rather disappointing result may be explained
by the use of decision boundaries not adjusted in relation to the prevailing noise level.
Interestingly, the authors of [83, 87–89] all point out noise as an important source to
performance degradation of their respective detectors, although none of the detectors
were designed to account for noise.

In fact, few of the above-mentioned detectors have a structure which lends itself
to the handling of noise information. For example, it is unclear how an ANN-based
classifier trained on signals with low noise levels generalizes to signals with higher
levels. This observation is likely to apply also to classifiers based on a regression
decision tree or a Gaussian mixture model.10

The first AF detector to account for information on noise level was proposed
in [100], having a structure which agrees with that displayed in Fig. 4.10b. The
information fed to the classifier consists of four different parameters, describing
rhythm irregularity, P wave absence, f wave presence, and noise level as defined by
(4.42). The classification is based on a Mamdani-type fuzzy logic in which the four
input parameter values aremapped by amembership function to indicate the degree of
belonging to a certain fuzzy set. For the parameters describing rhythm irregularity,
P wave absence, f wave presence, the fuzzy sets relate to sinus rhythm and AF,
whereas the fuzzy set relates to low level and high level for the noise parameter.
The fuzzified parameter values are then combined using a set of fuzzy if–then rules,
producing an output between 0 and 1 reflecting the likelihood that the detection
window contains AF. With simplicity as the guiding star, the fuzzy rules are defined
such that more weight is assigned to rhythm irregularity, and less weight to P wave
absence and f wave presence, when the noise level is high, and vice versa when the
noise level is low [100]. An AF episode is detected whenever the output exceeds
a fixed threshold, which, for the example presented in Fig. 4.14 as well as for the
overall detector evaluation, was simply set to 0.5.

An important advantage with the fuzzy logic classifier is that no training phase is
required. On the other hand, the membership functions and fuzzy rules are defined
by a large number of parameters which need to be set to reflect basic knowledge on
AF. It should be noted that detector in [100] has not been subject to performance
evaluation on AFDB since the method for f wave extraction requires a reference lead
with negligible atrial waves which is not available in all recordings of that database.

Another approach to noise-dependent classification is to simply exclude beats
whose noise level exceeds a certain fixed threshold [89]. The noise threshold is
chosen so that the agreement with manual annotation of noisy beats is optimized.
In noisy ECG segments, detector operation is suspended as information on P wave

10Neither is noise level taken into account in classification of beat morphology, even though it
is well-known that certain beats are difficult to cluster due to excessive noise. This problem was
indirectly addressed in [120], where an elegant technique based on switching Kalman filters was
proposed for detecting “strange” beat morphologies falling outside the well-established clusters.
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Fig. 4.14 Rhythm and morphology based AF detection using a fuzzy logic classifier. The example
in Fig. 4.13 is here extended to also include trends on rhythm irregularity (R), f wave presence (F),
and P wave absence (P)

absence cannot be determined. This property stands in contrast to the detector in [100]
which continues to operate at higher noise levels, but then “resorting” to information
on rhythm irregularity.

It should be noted that the most recent rhythm and morphology based detector
listed in Table4.3 offers slightly better performance than do any of the other detec-
tors. This detector is based on a deep convolution neural network whose input is
either the short-term Fourier transform (STFT) or the stationary wavelet transform
of consecutive 5 s segments of the ECG signal, i.e., the input signal contains both
atrial and ventricular activity [90]. Thus, the design of the detector is not driven by
physiology—none of the three properties mentioned in the beginning of this chapter
are taken into consideration—but emphasis is given to general ECG properties as
well as nonphysiological aspects such as whether color or greyscale should be used
to represent the STFT. While this approach to AF detection has potential, the perfor-
mance figures must be called into question for reasons related to the use of a subset
of AFDB in combination with tenfold cross-validation, further discussed in Sect. 4.6.
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4.4 Implementation Aspects

When AF detection is to be implemented in a battery-powered, portable device,
aspects such as computationally efficient algorithms and minimized memory usage
are essential to ensure so that the device can operate continuously over an extended
period of time. These requirements become even more crucial when AF detection is
to be implemented in an implantable device, for example, a loop recorder. However,
details on detector implementation are sparse in the literature, and those which have
been published apply to rhythm-based detection where the input data, i.e., the RR
series, has a very low rate, thus requiring few computations. On the other hand, for
detectors exploring both rhythm and morphology, the input data rate is dramatically
higher since the analysis of atrial wave morphology requires that the original ECG
samples are available.

Thus, the amount of computations differs vastly between AF detectors, ranging
from the simple rhythm-based detector using bin counts of the RR-based Poincaré
plot to make decisions [33] to the detector using an echo state network for f wave
extraction and fuzzy logic for decision-making [100]. The former detector can be
implemented without multiplications, whereas the latter detector requires a huge
amount of floating point multiplications as well as much memory to implement the
different processing steps. Detailed information on the required amount of compu-
tations and memory is lacking for most detectors, with the exception of the rhythm-
based detector exploring the combination of symbolic dynamics and the Shannon
entropy as detection principle [41]. The computational complexity is analyzed by
determining the number of arithmetic operations, shifts, and conditional expressions
required per RR interval. Another, much more sweeping approach is to determine
the time required by the central processing unit (CPU) and the amount of memory
consumed during AF detection [122]. However, figures on CPU time and memory
consumption are heavily system-dependent, and, therefore, it is difficult to make a
fair comparison to the figures reported in other studies.

Hardware implementation of an invasive AF detector not only must consider
requirements on computational complexity, but also energy dissipation when oper-
ating in idle and active mode. Idle energy is dominated by the leakage drawn by the
memory retaining data, and active energy is minimized by reducing computational
complexity. For a rhythm-based AF detector, with its low input data rate, minimiza-
tion of computational complexity may, in fact, turn out to be less of a concern than
minimization of required memory.

The rhythm-based detector in [32], using the number of turning points NTP, the
root mean square of successive differences PRMSSD, and the Shannon entropy IShEn
as parameters for characterizing the RR interval series, has been implemented in
hardware, resulting in a fabricated application-specific integrated circuit (ASIC)
optimized for ultra-low voltage operation [123]. The main reason for choosing the
detector in [32] for implementation was that no storage of data was required for
online training. It was demonstrated that the three parameters can be efficiently
implemented thanks to that resource sharing of arithmetic units reduces the require-



118 L. Sörnmo et al.

ments of memory capacity, and that time multiplexing efficiently implements the
arithmetic operations required to evaluate the conditions in (4.33)–(4.35) to remove
VPBs. A potential AF episode is detected when all three threshold tests are fulfilled,
each test involving one parameter. Rather than computing all three parameters first,
only the parameter with the lowest cost from an energy consumption perspective is
computed and tested. If the test is not fulfilled, the computation of the other param-
eters is unnecessary, and so on; NTP was found to be the parameter with the lowest
cost. The results suggested that the energy required to operate the detector for several
years is well within what is provided by the battery of an implantable device [123].

4.5 Performance Measures

The predominant approach to quantifying detection performance is to compare the
labels of the detected beats to those of the annotated beats contained in the database—
the labels being either AF or non-AF. Such a comparison results in the following
four counts,

NTP = #beats in AF correctly detected as AF (true positive),

NTN = #beats in non-AF correctly detected as non-AF (true negative),

NFP = #beats in non-AF falsely detected as AF (false positive),

NFN = #beats in AF falsely detected as non-AF (false negative),

which are required for computing the two most commonly used performance mea-
sures,

Sensitivity = NTP

NTP + NFN
, (4.43)

Specificity = NTN

NFP + NTN
. (4.44)

Performance is often studied by displaying sensitivity versus (1−specificity) for
different values of a detection threshold, resulting in the ROC [34, 37]. From this
curve, the threshold value achieving the desired trade-off between sensitivity and
specificity can be chosen. The ROC is sometimes condensed into an overall, scalar
measure defined as the area under the curve (AUC), where an area of 1 represents
perfect performance and an area of 0.5 random performance. The AUC is considered
a robust performance measure because all possible detection thresholds are involved.
In AF detection, certain parameter values have been determined by maximizing the
AUC [39, 41, 51, 88].

In addition, the following measures have been employed to describe detection
performance:
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Positive predictive value = NTP

NTP + NFP
, (4.45)

Detection accuracy = NTP + NTN

NTP + NFN + NFP + NTN
. (4.46)

It should be noted that detection accuracy should only be used when the two classes
AF and non-AF have approximately the same size. Otherwise, Matthews correlation
coefficient may be a better choice to evaluate the performance of binary classifiers
such as the ones used in AF detection [124, 125].

Sensitivity and specificity based on the counts from a beat-to-beat comparison
obviously convey important information on detection performance; however, these
twomeasures also suffer from the disadvantage of not reflecting the episodic nature of
paroxysmal AF. This is illustrated by the following scenario where an ECG recording
is assumed to contain two AF episodes, one hour-long and another just 10-beat-
long. The detector correctly identifies the long episode, but misses the brief one—a
likely scenario given that the window length of most AF detectors precludes the
detection of a 10-beat episode. The change in sensitivity due to a missed, brief
episode is negligible, and illustrates that performance measures based on a beat-
to-beat comparison tend to gloss over when brief episodes are missed. Accordingly,
valuable clinical information may be lost. A similar glossing takes place in situations
when numerous brief episodes are falsely detected, although the corresponding ROC
still indicates almost perfect performance; this drawback is illustrated by the example
in Fig. 4.15.

A kindred solution would be to replace the beat-to-beat comparison with an
episode-to-episode comparison. Such a replacement will, however, raise a number
of questions which need to be resolved: What is the meaning of “true negative” in
episode-based detection? To what extent must the detected episode overlap with the
annotated episode to be treated as a correct detection? Should a minimum duration
be imposed on a detected episode to avoid that single beats, falsely labeled as AF
beats, are counted as AF episodes?

Inspired by the work in [126] on performancemeasures appropriate for evaluating
the detection of transient ischemia in long-termECG recordings, these questions have
been discussed in the context of AF detection [36]. Since an episode of non-AF beats
has little meaning, the number of true negatives NTN is undefined, and, therefore,
only sensitivity and positive predictive value can be computed, requiring that the
following, redefined counts are determined:

NTP = #AF episodes correctly detected as AF episodes (true positive),

NFP = #non-AF episodes falsely detected as AF episodes (false positive),

NFN = #AF episodes falsely detected as non-AF episodes (false negative).

An episode is judged as correctly detected if it overlaps the annotated episode with at
least 50%, otherwise the episode is labeled non-AF [33].While theminimumduration
of a detected episode not necessarily has to be stated, it is indirectly determined by
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Fig. 4.15 a An RR interval series x(n) and b AF episode annotation. c Output from a detector
based on the coefficient of sample entropy (computed in a 12-beat window), and d related ROC.
The detector correctly identifies the single AF episode, but also produces numerous false detections
due to the presence of ectopic beats. Still, the corresponding ROC indicates that almost perfect
detection performance is achieved

the choice of window length. For a 100-beat window, the beat-based sensitivity of
0.92, reported in [36] and listed in Table4.1, dropped to 0.71 when episode-based
sensitivity was considered instead. This drop in sensitivity illustrates that the use of
a 100-beat window precludes the detection of brief episodes.

Episode-based performance measures have not yet gained a foothold in the litera-
ture on AF detection, although such measures provide information which is comple-
mentary to beat-based measures. The popularity of beat-based measures may be due
to their ease of computation, but also to themany ECG applications where beat-based
performance measures have become well-established. However, neither beat-based
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nor episode-based measures provide information on the detectability of episodes
with varying lengths.

Thedelaybetween the annotatedonset of the episode and theonset producedby the
detector represents another type of performancemeasurewhich has received attention
in the literature [32, 35, 39, 89]. From an algorithmic viewpoint, the time delay
introduced by the detector needs to be established tomake a comparisonwith episode
onset/end annotations meaningful. From a clinical viewpoint, however, a short time
delay is of subordinate importance to the above-mentioned performance measures,
since very few ECG applications call for immediate action after the initiation of an
episode.

4.6 Detection Performance

4.6.1 ECG Databases

Detection performance is commonly evaluated on one or several publicly available,
annotated databases of long-term ECG recordings, where AFDB holds the position
as the most popular database. While the availability of public databases certainly
facilitates the comparison of performance, conclusions drawn from the performance
figures presented in Table4.3, or the tables presented in e.g., [86, 89, 127], should
be made with caution for a number of reasons. Since both specificity and sensitivity
differ from one detector to another, performance is not easily compared. Better,
though not perfect, is to first compute the ROC for each detector, and then determine
the sensitivity at a fixed specificity, or vice versa, which leads to a more relevant
comparison.

Another complicating factor is that detection performance is not always estab-
lished from the analysis of the entire AFDB, but from a subset of varying size.
In some studies, records 4936 and 5091 were omitted, since the annotations were
deemed to be incorrect (AFDB1) [32, 37].While rhythm-based detectors can analyze
all 25 records of the AFDB, only 23 records can be analyzed by detectors based on
rhythm and morphology since two records lack the original ECG signals (AFDB2).
Yet another complicating factor is that certain detectors require a minimum length of
normal sinus rhythm to fulfill detector training, in one case leading to the exclusion
of as many as 5 out of the 25 records (AFDB3) [88]. Moreover, in detector train-
ing, it is highly desirable to analyze data sets containing AF and non-AF segments
which are balanced in size. A straightforward approach to handling the fact that
AFDB contains about 80% more non-AF segments than AF segments is therefore
to discard the excess amount of non-AF segments (AFDB4) [90]; unfortunately, the
non-AF data set cannot be reproduced in other studies since the segments were ran-
domly excluded. However, such a drastic exclusion of data precludes anymeaningful
comparison of detection performance—a fact which should be kept in mind when
assessing the results in Table4.3.
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From a comparative perspective, the picture becomes even more complicated
when performance is evaluated on tiny subsets of RR interval series [67] or beats
[127], excerpted from the records in AFDB. Such data excerption not only tends to
exaggerate performance figures due to inclusion of better-than-average data quality,
but the reproduction of results is not possible due to the lack of detail on what data
were actually excerpted.

Other public databases have been analyzed to provide a more complete descrip-
tion of detection performance, notably NSRDB, MIT–BIH Arrhythmia Database
(MITDB), andLong-TermAFDatabase (LTAFDB) [98], see Sect. 3.1. SinceNSRDB
contains no significant arrhythmias, it can only provide information on specificity,
e.g., [32, 33, 35, 37, 41, 51]. The MITDB contains several types of arrhythmia,
includingAF and atrial flutter, andmay be used to evaluate both specificity and sensi-
tivity [32, 33, 37, 41]; however, as pointed out in Sect. 3.1,MITDBcontains relatively
few AF episodes, and, consequently, performance figures describing episode detec-
tion are not representative. The LTAFDB, containing many more and much longer
ECG recordings than AFDB, is well-suited for performance evaluation, though not
very often used [41].

Some studies involve proprietary ECG databases, acquired to strengthen the
results obtained on public databases [37], or used for classifier training [100].Another
reason for acquiring a database is that public databases do not always account for
the signal characteristics pertinent to the application of interest.

4.6.2 Training and Evaluation

Widely different approaches have been considered for classifier training and per-
formance evaluation—an observation illustrated by the way different data sets are
handled by the detectors listed in Table4.3. In some studies, either a proprietary
database or LTAFDB were used for training, accompanied by a performance eval-
uation on AFDB [38, 40, 41, 87]. Such an approach is preferred since it avoids
that the same patients are used for both training and evaluation. In other studies, no
information is provided on the data set used for training [33, 37], whereas AFDB or
some other databases is used for evaluation.

With respect to training, AFDB has been used to determine optimal detection
thresholds [32, 34], or to select an optimal set of features for classification [36],
accompanied by performance evaluation on other databases. Although the results
from evaluation are the important ones in these studies, the positively biased results
obtained from training on AFDB were also reported. Later on, these results have
been included in comparisons of detector performance [38, 88, 89, 128], although
the figures are not fully representative. This observation applies even more to the
results reported in [35], where AFDB was used for both detector development and
evaluation.

In an effort to reduce positive bias, AFDB can be partitioned into different sub-
sets, one for training and another for performance evaluation. The subsets have

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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been formed either by random selection of non-AF/AF segments, division into dis-
joint subsets of equal size for use in stratified twofold cross-validation [39], or ten-
fold cross-validation [90]. A small subset of AFDB was used in [83] for training,
whereas the entire AFDB was used for evaluation. One of the subsets was used for
training in [39] and the other for evaluation, followed by reverse use of the two
subsets; the results from the two evaluations were then averaged to yield the overall
performance. It is highly questionable whether the performance figures of cross-
validation on AFDB can be compared to those obtained for a detector which have
been trained on a separate database, especially when considering that AFDB only
contains 25 patients [129].

The above-mentioned approaches to training and evaluation are population-based,
however, patient-based training may be pursued as well [88]. For each patient in
AFDB, detector training was based on the initial part of the ECG record, whereas
evaluation was based on the remaining part. However, before training, all beats
with “irregularities” were excluded from the training data set using manual review,
introducing positive bias in the results. In addition, the practical use of the detector is
limited since good-quality signals are not always available for training, nor is manual
review prior to AF analysis feasible in clinical routine.

Based on the above considerations, it is evident that a comparison of detection per-
formance is seriously challenged by the presence of positive bias. Independent data
sets for training and evaluation should ideally be analyzed, however, not uncom-
monly, the same patient is part of both data sets. Therefore, as already pointed
out, caution should be exercised when comparing detection performance, e.g., with
respect to sensitivity and specificity as in Table 4.3.

It deserves to be noted that AF detectors using adaptive filtering for f wave extrac-
tion, such as the one in [100], cannot be trained and evaluated on AFDB since none
of the two leads is appropriate for use as a reference lead, i.e., none of the leads con-
tains negligible atrial activity. This problem may be addressed using a proprietary
multi-lead database for training, and simulated multi-lead signals for performance
evaluation [100].

4.6.3 Simulated ECG Signals

Performance evaluation is typically based on real ECG signals annotatedwith respect
to the onset and end of AF episodes, whereas simulated ECG signals are rarely used.
This stands in contrast to the evaluation of f wave extraction performance, where
simulated signals are frequently used—the main reason being that manual annota-
tions are irrelevant in f wave extraction. Nonetheless, simulated ECG signals have
a place in AF detection since certain properties of clinical or technical significance,
e.g., atrial ectopy, episode duration, and noise level, can be easily controlled in such
signals, whereas public databases may not allow adequate investigation of these
properties.
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Detection accuracy has been investigated on simulated signals with different noise
levels, both with andwithout the presence of APBs [100]. The results put spotlight on
the importance of proper handling of APBs, and show that detection based on both
rhythm and morphology provides much higher accuracy than does rhythm-based
detection in the presence of APBs, especially at lower noise levels where P wave
absence and f wave presence can be reliably estimated. A similar relationship exists
betweendetection accuracy and episode duration, i.e., detection basedonboth rhythm
and morphology provides much higher accuracy in finding brief episodes of varying
duration than does rhythm-based detection (5, 10, 20, and 30-beat duration were
investigated).

SimulatedECGsignals can also serve as ameans to establish theSNRbelowwhich
AF detector operation no longer is recommended. In one of the few studies to address
this issue, simulated muscle noise was added to real ECGs, contained in LTAFDB, at
different SNRs [114]. The noisy ECG signals were then used to evaluate the influence
of noise on QRS detection, as well as on rhythm-based AF detection. The results
suggested an essentially linear reduction in AF detection accuracy with respect to
SNR when expressed in terms of decibels. The evaluation of performance in noise
is even more important for AF detectors analyzing both rhythm and morphology.

4.6.4 Brief AF Episodes

Despite the clinical interest in occult PAF and related risk of future stroke, little atten-
tion has been paid to the detection of brief AF episodes. Although AFDB contains
a few brief episodes, it is completely dominated by long episodes, cf. Fig. 3.1b, so
that missed brief episodes have little influence on beat-based performance measures.
Interestingly, some studies report the number of missed brief episodes: 30 out of
the 254 episodes in AFDB1 were missed by the detector in [32], all missed episodes
having a duration less than 75 beats. In another study [35], 32 out of the 299 episodes
in AFDB were missed, the main reason again being missed brief episodes (durations
from 4 to 62 beats).

Indirect evaluation of performance with respect to brief episodes can be accom-
plished by analyzing the influence of different lengths of the detection window
on performance. The window length imposes a minimum duration on AF episode
detectability. While the exact relationship between window length and episode dura-
tion depends on the detection principle used, an episode with a duration of about
half the window length or shorter will, in general, be missed, illustrated in Fig. 4.16.
The choice of window length is a trade-off: a shorter window facilitates the detec-
tion of brief AF episodes, whereas a longer window implies more reliable parameter
estimates (assuming that the window contains the same rhythm), but also a larger
amount of computations.

Over the years, the trend has been to design detectors with increasingly shorter
windows, primarily motivated by the wish to reduce the time to decision [32, 89]
and the amount of computations [84]. The recommended window length in rhythm-
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based detection has decreased from 180s in 1992 [130] to just 8 beats in 2015 [40],
whereas, for rhythm and morphology based detectors, even shorter window lengths
has been considered, i.e., 5 beats [100].

The degradation in performance when using a short window is well-illustrated by
the detector based on the time-varying coherence function [37], briefly described in
Sect. 4.2.3. Using a 128-beat window, sensitivity of 98.2% and specificity of 97.7%
were obtained onAFDB1, seeTable4.1.Using instead a 32-beatwindow, the sensitiv-
ity and specificity dropped to 96.7% and 96.1%, respectively. Despite the degradation
in performance, the authors concluded that a shorter window is still of interest, since
it will likely provide a more accurate description of AF burden. For the simple-
structured detector exploring the distribution of the Poincaré point population [33],
the use of a 128-beat window resulted in a sensitivity of 95.9% and a specificity of
95.4%, dropping to 94.4% and 92.6%, respectively, for a 32-beat window.

Alternatively, direct evaluation of performance can be accomplished by means
of simulated ECG signals in paroxysmal AF, where episode duration is controlled
by a set of model parameters [40]. The direct approach to evaluation is illustrated
in Fig. 4.17, where detection accuracy is presented as a function of median episode
duration, denoted TE, for two different AF detectors. The simulated signals are pro-
duced by the model described in Sect. 3.3, and constructed from either synthetic
or real components. Figure4.17 underlines not only the expected result that shorter
episodes imply decreased detection accuracy, but it also demonstrates that a detector

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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Fig. 4.17 Detection accuracy as a function of median episode duration TE when the ECG signals
are generated using a synthetic and b real components. The noise level is set to 20µV RMS. The
rhythm-based detector is described in [40], and the detector based on both rhythm and morphology
in [100]

based on rhythm and morphology performs better than a detector based on rhythm-
only; the difference in performance increases as TE becomes increasingly shorter.
Comparing Fig. 4.17a and b, it is obvious that detection accuracy is essentially inde-
pendent of whether synthetic or real components are used to produce the simulated
ECG. However, as TE becomes increasingly shorter, the difference in performance
between the detector based on rhythm and morphology and the detector based on
rhythm-only becomes increasingly larger for real components than for synthetic com-
ponents. This drop in performance is likely explained by the pathological rhythms
present in the database from which the RR interval series were extracted.

4.7 Additional Detector Information

Certain ECG signal properties have been explored for the purpose of predicting either
the onset or the end of an AF episode. Similar to heart rate, the properties are not
of immediate importance to detector design, but may be integrated in the detector,
for example, using a threshold whose level is adjusted in relation to the proneness
with which a transition occurs from sinus rhythm to AF, or vice versa. Whether such
integration improves detection performance remains to be demonstrated.Considering
that more than 90% of all AF episodes are triggered by APBs [131–135], successful
prediction of AF onset can be accomplished with a simple test on whether the rate
of APBs, not followed by a regular RR interval, increases. This test is combined
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with other tests on runs of atrial bigeminy/trigeminy and the duration of short runs
of paroxysmal atrial tachycardia [136].

Another approach to predicting the onset of paroxysmal AF is to analyze changes
in heart rate variability (HRV) which may precede an AF episode. Indeed, in many
patients, AF onset is immediately preceded by a significant reduction of the ratio
between the low and the high frequency HRV components [137–139], a pattern
which is not detectable after spontaneous recovery of sinus rhythm [140]. Alterna-
tively, changes in HRV may be characterized by entropy, with results suggesting
that AF onset is preceded by reduced complexity of the RR intervals [141], see also
[142]. In yet another approach, AF onset could be predicted by combining spectral,
bispectral, and nonlinear features, using a machine learning technique for classifica-
tion of the preceding HRV pattern [143]. For the above-mentioned studies on APB-
and HRV-based prediction, a 30-min segment immediately preceding AF onset is
usually considered for evaluating prediction performance.

Different P wave properties have been explored for predicting AF. For example,
changes in P wave morphology due to abnormal interatrial conduction are observed
in patients bound to develop AF [144, 145], prolongation of the maximum P wave
duration may predict recurrent AF [146–148], as well as shortening of the minimum
P wave duration [147, 149]. Moreover, changes in the dynamics of P wave morphol-
ogy may predict AF onset [96, 148]. However, changes in P wave properties occur
over a much longer time frame than changes associated with APB- and HRV-based
prediction: the former type of changes occurs over weeks to months, whereas the
latter over minutes. Hence, information on P wave related changes are less useful in
AF detection.

The prediction of AF termination takes its starting point in the analysis of f wave
properties, and typically requires that the ventricular activity has been cancelled
before prediction can take place. Among the properties explored, the DAF has been
found to exhibit gradual slowing just before termination of paroxysmal or persistent
AF [150, 151]. Results from studying the wavelet entropy of f waves, employed as a
measure reflecting unpredictability in time as well as frequency, suggest that f waves
are characterized by decreasing entropy as the termination is approaching [152].

Information on physical activity will most likely play a role in AF detection
in the quest to reduce the number of falsely detected episodes, especially since
accelerometers are nowadays standard implementation in ECG devices. Although
it remains to be demonstrated that AF detectors analyzing both bioelectrical and
physical information offer better performance, a preliminary study shows that the
number of falsely classified arrhythmias due to noise and artifacts can be considerably
reduced when accelerometer information is taken into account [153]. The potential
of accelerometer information in AF detection is further supported by results showing
that AF episodes can be detected from accelerometers attached to the chest [154], or
from an electromechanical vibration sensor attached to a bed mattress [155], without
involving the analysis of the ECG.



128 L. Sörnmo et al.

References

1. A. Haeberlin, L. Roten, M. Schilling, F. Scarcia, T. Niederhauser, R. Vogel, J. Fuhrer, H.
Tanner, Software-based detection of atrial fibrillation in long-term ECGs. Heart Rhythm 11,
933–938 (2014)

2. K.M. Stein, J. Walden, N. Lippman, B.B. Lerman, Ventricular response in atrial fibrillation:
random or deterministic? Am. J. Physiol. 277, H452–458 (1999)

3. J. Hayano, F. Yamasaki, S. Sakata, A. Okada, S. Mukai, T. Fujinami, Spectral characteristics
of ventricular response to atrial fibrillation. Am. J. Physiol. 273, H2811–2816 (1997)

4. V. Fuster, L.E. Rydén, D.S. Cannom, H.J. Crijns, A.B. Curtis et al., ACC/AHA/ESC 2006
guidelines for the management of patients with atrial fibrillation: a report of the American
College of Cardiology/American Heart Association Task Force on practice guidelines and
the European Society of Cardiology Committee for Practice Guidelines developed in collab-
oration with the European Heart Rhythm Association and the Heart Rhythm Society Heart
Association Task Force on practice guidelines and the European Society of Cardiology Com-
mittee for Practice Guidelines developed in collaboration with the European Heart Rhythm
Association and the Heart Rhythm Society. Europace 8, 651–745 (2006)

5. C.T. January, L.S. Wann, J.S. Alpert, H. Calkins, J.E. Cigarroa et al., 2014 AHA/ACC/HRS
guideline for the management of patients with atrial fibrillation: a report of the American
College of Cardiology/American Heart Association Task Force on Practice Guidelines and
the Heart Rhythm Society. Circulation 130, 2071–2104 (2014)

6. P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei, M. Castella, H.C.
Diener, H. Heidbuchel, J. Hendriks, G. Hindricks, A.S. Manolis, J. Oldgren, B.A. Popescu,
U. Schotten, B. Van Putte, P. Vardas, S. Agewall, J. Camm, G. Baron Esquivias, W. Budts,
S. Carerj, F. Casselman, A. Coca, R. De Caterina, S. Deftereos, D. Dobrev, J.M. Ferro, G.
Filippatos, D. Fitzsimons, B. Gorenek, M. Guenoun, S.H. Hohnloser, P. Kolh, G.Y. Lip, A.
Manolis, J. McMurray, P. Ponikowski, R. Rosenhek, F. Ruschitzka, I. Savelieva, S. Sharma,
P. Suwalski, J.L. Tamargo, C.J. Taylor, I.C. Van Gelder, A.A. Voors, S. Windecker, J.L.
Zamorano, K. Zeppenfeld, 2016 ESC guidelines for the management of atrial fibrillation
developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016)

7. R.C.S. Seet, P.A. Friedman, A.A. Rabinstein, Prolonged rhythm monitoring for the detection
of occult paroxysmal atrial fibrillation in ischemic stroke of unknown cause. Circulation 124,
477–486 (2011)

8. J.W. Keach, S.M. Bradley, M.P. Turakhia, T.M. Maddox, Early detection of occult atrial
fibrillation and stroke prevention. Heart 101, 1097–1102 (2015)

9. J.G. Andrade, T. Field, P. Khairy, Detection of occult atrial fibrillation in patients with embolic
stroke of uncertain source: a work in progress. Front. Physiol. 1, 1–9 (2015)

10. D.J.Miller, K. Shah, S.Modi, A.Mahajan, S. Zahoor,M.Affan, The evolution and application
of cardiac monitoring for occult atrial fibrillation in cryptogenic stroke and TIA. Curr. Treat.
Options Neurol. 18, 17 (2016)

11. J.O. Cerasuolo, L.E. Cipriano, L.A. Sposato, The complexity of atrial fibrillation newly diag-
nosed after ischemic stroke and transient ischemic attack: advances and uncertainties. Curr.
Opin. Neurol. 30, 28–37 (2017)

12. A.H. Tayal, M. Tian, K.M. Kelly, S.C. Jones, D.G. Wright, D. Singh, J. Jarouse, J. Brillman,
S. Murali, R. Gupta, Atrial fibrillation detected by mobile cardiac outpatient telemetry in
cryptogenic TIA or stroke. Neurology 71, 1696–1701 (2008)

13. A.A.Rabinstein, J.E. Fugate, J.Mandrekar, J.D.Burns,R.C. Seet, S.A.Dupont, T.J.Kauffman,
S.J. Asirvatham, P.A. Friedman, Paroxysmal atrial fibrillation in cryptogenic stroke: a case
control study. J. Stroke Cerebrovascular Dis. 22, 1405–1411 (2013)

14. A.H.Abdul-Rahim,K.R.Lees, Paroxysmal atrial fibrillation after ischemic stroke: how should
we hunt for it? Expert Rev. Cardiovasc. Ther. 11, 485–494 (2013)

15. C.G. Favilla, E. Ingala, J. Jara, E. Fessler, B. Cucchiara, S.R. Messé, M.T. Mullen, A. Prasad,
J. Siegler, M.D. Hutchinson, S.E. Kasner, Predictors of finding occult atrial fibrillation after
cryptogenic stroke. Stroke 46, 1210–1215 (2015)



4 Detection of Atrial Fibrillation 129

16. E.I. Charitos, U. Stierle, P.D. Ziegler, M. Baldewig, D.R. Robinson, H. Sievers, T. Hanke,
A comprehensive evaluation of rhythm monitoring strategies for the detection of atrial fib-
rillation recurrence: insights from 647 continuously monitored patients and implications for
monitoring after therapeutic interventions. Circulation 126, 806–814 (2012)

17. T. Etgen, M. Hochreiter, M. Mundel, T. Freudenberger, Insertable cardiac event recorder in
detection of atrial fibrillation after cryptogenic stroke: an audit report. Stroke 44, 2007–2009
(2013)

18. J. Reiffel, A. Verma, J.L. Halperin, B. Gersh, S. Tombul, J. Carrithers, L. Sherfesee, P. Kowey,
Rationale and design of REVEAL AF: a prospective study of previously undiagnosed atrial
fibrillation as documented by an insertable cardiac monitor in high-risk patients. Am. Heart
J. 167, 22–27 (2014)

19. A.C. Flint, N.M. Banki, X. Ren, V.A. Rao, A.S. Go, Detection of paroxysmal atrial fibrillation
by 30-day event monitoring in cryptogenic ischemic stroke: The stroke and monitoring for
PAF in real time (SMART) registry. Stroke 43, 2788–2790 (2012)

20. S.B. Silverman, Paroxysmal atrial fibrillation: Novel strategies for monitoring and implica-
tions for treatment in stroke. Curr. Treat. Options Cardio. Med. 18, 1–13 (2016)

21. L. Sörnmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Appli-
cations (Elsevier (Academic Press), Amsterdam, 2005)

22. N. Lowres, L. Neubeck, J. Redfern, S.B. Freedman, Screening to identify unknown atrial
fibrillation. A systematic review. Thromb. Haemost. 110, 213–222 (2013)

23. B. Vaes, S. Stalpaert, K. Tavernier, B. Thaels, D. Lapeire, W. Mullens, J. Degryse, The
diagnostic accuracy of the MyDiagnostick to detect atrial fibrillation in primary care. BMC
Fam. Pract. 15, 113 (2014)

24. F. Kaasenbrood, M.H.F.H. Rutten, L.J. Gerhards, A.W. Hoes, R.G. Tieleman, Yield of screen-
ing for atrial fibrillation in primary carewith a hand-held, single-lead electrocardiogramdevice
during influenza vaccination. Europace 18, 1514–1520 (2016)

25. L. Desteghe, Z. Raymaekers, M. Lutin, J. Vijgen, D. Dilling-Boer, P. Koopman, J. Schurmans,
P. Vanduynhoven, P. Dendale, H. Heidbuchel, Performance of handheld electrocardiogram
devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Europace 19,
29–39 (2017)

26. E. Svennberg, J. Engdahl, F. Al-Khalili, L. Friberg, V. Frykman, M. Rosenqvist, Mass screen-
ing for untreated atrial fibrillation: the STROKESTOP study. Circulation 131, 2176–2184
(2015)

27. E. Svennberg,M.Stridh, J. Engdahl, F.Al-Khalili, L. Friberg,V.Frykman,M.Rosenquist, Safe
automatic one-lead electrocardiogram analysis in screening for atrial fibrillation. Europace
19, 1449–1453 (2016)

28. S.R. Steinhubl, R.R. Mehta, G.S. Ebner, M.M. Ballesteros, J. Waalen, G. Steinberg, P. Van
Crocker, Jr., E. Felicione, C. T. Carter, S. Edmonds, J. P. Honcz, G. D. Miralles, D. Talantov,
T. C. Sarich, E. J. Topol, Rationale and design of a home-based trial using wearable sensors
to detect asymptomatic atrial fibrillation in a targeted population: the mHealth screening to
prevent strokes (mSToPS) trial. Am. Heart J. 175, 77–85 (2016)

29. M.P. Turakhia, D.W. Kaiser, Transforming the care of atrial fibrillation with mobile health. J.
Interv. Card. Electrophysiol. 47, 45–50 (2016)

30. G. D. Clifford, C. Liu, B. Moody, L.-W. H. Lehman, I. Silva, Q. Li, A. Johnson, and R. G.
Mark, “AF classification from a short single lead ECG recording: the PhysioNet Computing
in Cardiology Challenge 2017, in Proceedings of Computing in Cardiology, vol. 44 (2017)

31. K. Tateno, L. Glass, Automatic detection of atrial fibrillation using the coefficient of variation
and density histograms of RR and deltaRR intervals. Med. Biol. Eng. Comput. 39, 664–671
(2001)

32. S. Dash, K.H. Chon, S. Lu, E.A. Raeder, Automatic real time detection of atrial fibrillation.
Ann. Biomed. Eng. 37, 1701–1709 (2009)

33. J. Lian, L. Wang, D. Muessig, A simple method to detect atrial fibrillation using RR intervals.
Am. J. Cardiol. 107, 1494–1497 (2011)



130 L. Sörnmo et al.

34. D. E. Lake, J.R. Moorman, Accurate estimation of entropy in very short physiological time
series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J.
Physiol. (Heart Circ. Physiol.) 300: H319–H325 (2011)

35. C. Huang, S. Ye, H. Chen, D. Li, F. He, Y. Tu, A novel method for detection of the transition
between atrial fibrillation and sinus rhythm. IEEE Trans. Biomed. Eng. 58, 1113–1119 (2011)

36. R.B. Shouldice, C. Heneghan, P. de Chazal, Automatic detection of paroxysmal atrial fibril-
lation, in Atrial fibrillation – basic research and clinical applications. (J. Choi, ed.), chap. 7,
pp. 125–146, InTech (2012)

37. J. Lee, Y. Nam, D.D. McManus, K.H. Chon, Time-varying coherence function for atrial
fibrillation detection. IEEE Trans. Biomed. Eng. 60, 2783–2793 (2013)

38. X. Zhou, H. Ding, B. Ung, E. Pickwell-MacPherson, Y. Zhang, Automatic online detection
of atrial fibrillation based on symbolic dynamics and shannon entropy. Biomed. Eng. Online
13, 18 (2014)

39. S. Asgari, A. Mehrni, M. Moussavi, Automatic detection of atrial fibrillation using stationary
wavelet transform and support vector machine. Comput. Biol. Med. 60, 132–142 (2015)
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Chapter 5
Extraction of f Waves

Leif Sörnmo, Andrius Petrėnas, Pablo Laguna and Vaidotas Marozas

5.1 Introduction

For many years, the level of detail in clinical f wave interpretation was confined
to whether f wave amplitude was “coarse” or “fine”, whereas atrial fibrillatory rate
(AFR)was not considered although it must be viewed as a fundamental characteristic
of AF. Two clinical studies, both published in 1998, contributed to changing this
oversight by independently proposing spectral analysis of an f wave signal as ameans
to infer information on atrial refractoriness [1] and to predict the outcome of drug-
based cardioversion [2]. The f wave signal was produced by computing an average
QRST complex, obtained from an ensemble of beats with similar morphology, and
subtracting the resulting average from each beat of the original ECG. This operation
was motivated by the fact that the QRST complexes, most of the time, overshadow
the f waves due to their much larger amplitude. Following the two above-mentioned
studies, much attention has been paid to addressing the problem of how to extract
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an f wave signal free of ventricular activity. As a result, a rich selection of methods
have seen the light of the day which has helped to accelerate the development of
more sophisticated techniques for f wave characterization, described in Chap. 6.

In this chapter, the notion f wave extraction is preferred as the purpose of the
describedmethods is to extract fwaves in the presence of ventricular activity,whereas
the notion “atrial activity extraction” also includes Pwaves and therefore is too broad;
indeed, the problem of P wave extraction has its own particular prerequisites. In the
same way, the notions “QRST cancellation” and “ventricular activity cancellation”
are avoided asmuch as possible since they can apply to Pwave extraction as well. It is
obvious from the literature that somemethods put emphasis on theQRSTcancellation
process, whereas other methods put emphasis on the f wave extraction process.

The design of a method for f wave extraction is strongly influenced by the spe-
cific operating conditions. Most methods require that AF has been first detected,
see Chap.4, meaning that the starting point for extraction is an input signal which
is a priori known to contain f waves, although the f waves may wax and wane and
sometimes completely disappear. If an ECG in sinus rhythm is subject to extraction,
the resulting signal may or may not contain the original P waves, depending on the
method used. Although atrial flutter bears certain resemblance to AF, it is unlikely
that the extracted signal will contain flutter waves (“F waves”) since several extrac-
tion methods rely heavily on the assumption that the atrial and ventricular rates are
decoupled. Atrial flutter is manifested by a reentrant wave circulating in the atria and
arriving at the AV node in a much more regular fashion than the multiple excitation
wavelets in AF. As a result, the ventricular rate is usually a fraction of the atrial
flutter repetition rate, while this is not the case for the AFR. Very few methods for
f wave extraction have been specifically evaluated with respect to performance in
atrial flutter.

The available number of leads is an important design factor. While f wave extrac-
tion was initially performed in individual leads, it soon became obvious that joint
processing of multiple leads offers certain advantages. In particular, the property
that the atrial and ventricular activities originate from different electrical sources
can be explored with signal separation techniques, provided that at least two, but
preferably many more, leads are available. Respiratory-induced modulation of the
QRS amplitude, caused by alterations in the electrical axis of the heart, introduces
unwanted residuals in the extracted signal of a single lead. By analyzing two or more
leads, the influence of such amplitude modulation can be considerably reduced, and,
accordingly, a more accurate f wave signal extracted.

The presence of noise and artifacts, e.g., due to muscular activity or electrode
motion, imposes an important limitation on performance. Surprisingly, not much
attention has been paid to exploring the relationship between signal-to-noise ratio
(SNR) and the performance of an extractionmethod. Typically, performance has been
investigated at rather high SNRs, without any attempt to establish the “breakdown”
SNR below which robust operation of the method is no longer possible.

Most extraction methods are designed to process ECG recordings whose total
duration exceeds one minute, so as to provide sufficient time for learning the prop-
erties of the unwanted interference, notably the ventricular activity. However, such

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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methods may very well be inappropriate for the processing of a standard 10-s resting
ECG, since such a short time period is insufficient for producing a reliable estimate
of the ventricular activity. Hence, total signal duration represents yet another design
factor which needs to be considered.

Ventricular premature beats (VPBs) represent a major challenge to any extraction
method, the reason being that such beats have morphologies which usually deviate
considerably from beats originating from the atria. As a result, the presence of VPBs
may introduce large-amplitude, QRS-related residuals in the extracted signal, with
serious repercussions on subsequent f wave characterization. For occasional VPBs,
it may be acceptable to simply discard the intervals related to such beats. However, a
muchmore elaborate design strategy is required whenVPBs are abundant, especially
for multiform VPBs.

For methods processing the ECG signal on a beat-by-beat basis, it is essential
to ensure that the extracted f wave signal does not exhibit jumps at the boundaries
between successive beats. This problem is particularly pronounced when the ventric-
ular activity is estimated from short RR intervals [3].On the other hand, jumps are less
likely to occur when the ECG signal is processed on a sequential, sample-by-sample
basis.

It is, of course, desirable that an extraction method can satisfactorily handle both
single- and multiple-lead recordings, the presence of VPBs, short-duration record-
ings, as well as any of the other factors mentioned above. However, the methods
described in the literature have various limitations which call for awareness of the
conditions under which a method is planned to operate. Indeed, different extraction
methods may be needed in certain ECG applications. Another important considera-
tion is the amount of computations which can differ dramatically from one method
to another, ranging from just a few additions to several hundreds of multiplications to
process one sample of the ECG, with implications on the applicability of a method.

This chapter provides a comprehensive overview ofmethods for f wave extraction,
divided into the following categories:

• average beat subtraction and variants (Sect. 5.2),
• interpolation (Sect. 5.3)
• extended Kalman filtering (Sect. 5.4)
• adaptive filtering (Sect. 5.5),
• principal component analysis (Sect. 5.6),
• singular spectral analysis (Sect. 5.7),
• autoregressive modeling and prediction error analysis (Sect. 5.8), and
• independent component analysis (Sect. 5.9).

For some of these categories, QRS detection, beat morphology classification, and
time alignment of beats with similar morphology need to be performed before f wave
extraction. A review of methods for handling these well-investigated preprocessing
steps can be found in [4, 5].

Depending on heart rate and f wave repetition rate, a number of f waves can
usually be observed in the TQ interval without any interfering ventricular activity.
Hence, some extractionmethods either analyze the samples of theTQ intervals for the
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purpose of producing interpolated samples in the QT interval, or simply confine the
entire analysis to the TQ intervals, for example, the approach originally considered
for estimating the power spectrum of f waves [6]. However, most extraction methods
account for the fact that AF is an ongoing process, and, therefore, make use of all
samples in theECG, including those in theQT interval. The latter approach should not
only lead to more reliable f wave characterization, but also circumvent the problems
associated with delineating the TQ interval and a vanishing TQ interval at higher
heart rates.

In contrast to AF detection, where annotated ECG databases have been available
since long to facilitate performance evaluation, it is considerably more challenging
to evaluate methods for f wave extraction since the accuracy of the extracted signal
is not easily related to manual annotations. As a consequence, indirect performance
measures have been investigated, for example, by comparing the amplitude of the
signal extractedwithin theQRS interval to the amplitude in the surrounding TQ inter-
vals. Performance evaluation can also be addressed by employing simulated ECG
signals in AF, for example, produced by the simulation model described in Sect. 3.4.
Such signals make it possible to compute the sample-by-sample error between the
extracted and the simulated f wave signal, which in turn can be condensed into
a suitably defined error measure. Sections5.10 and 5.11 describe different perfor-
mance measures, developed either for real or simulated ECG signals, and different
approaches to performance evaluation, respectively.

The early review of f wave extraction methods published in [7] is significantly
expanded below to cover state-of-the-art research, as well as to provide a much
more detailed description of the methods. Another early review describes extraction
methods developed for electrograms [8].

5.2 Average Beat Subtraction and Variants

Average beat subtraction (ABS) is the most well-known method for extraction of
f waves in individual leads, having become one of the fixtures in the biomedical
signal processing toolbox. The method was originally developed for detection of
atrioventricular dissociated ventricular tachycardia in which the P waves are dis-
sociated from the QRS complexes [9–11], but later employed for the processing
of ECG signals in AF [12]. Thanks to its implementation simplicity, ABS contin-
ues to be used in clinically oriented studies on AF, both for the analysis of surface
ECGs and electrograms, see, e.g., [1, 2, 13–20]. Since ABS suffers from several
major limitations, different variants have been developed with the goal to offer bet-
ter performance, described in Sects. 5.2.1–5.2.5. However, entirely different signal
processing principles have also been explored.

In the ABSmethod, as well as variants, the well-known signal-plus-noisemodel is
the starting point for finding an estimate of the QRST complex s(n) to be subtracted
from the ECG signal; the resulting estimate, denoted ŝ(n), is sometimes referred to

http://dx.doi.org/10.1007/978-3-319-68515-1_3


5 Extraction of f Waves 141

as a QRST template. In this model, each beat xi (n) of the observed signal is assumed
to be composed of s(n) and noise zi (n),

xi (n) = s(n) + zi (n), i = 1, . . . , M, n = 0, . . . , N − 1, (5.1)

where M is the number of beats in the ensemble, and N is the number of samples in
each beat. From a conceptual viewpoint, it is advantageous to decompose the noise
zi (n) into an f wave signal di (n), being the desired quantity for extraction, and noise
vi (n) of extracardiac origin,

zi (n) = di (n) + vi (n), (5.2)

where both terms are usually modeled as random processes. The noise zi (n) is mod-
eled as a zero-mean stationary process with variance σ 2

z , assumed to be uncorrelated
from beat to beat,

E[zi (n)z j (n)] = σ 2
z δ(i − j), i, j = 1, . . . , M, (5.3)

where

δ(i) =
{
1, i = 0,
0, i �= 0.

(5.4)

The structure of the resulting estimator depends on the statistical assumptions
made on s(n) and zi (n). In general, an increasingly more detailed statistical charac-
terization of the different components implies that more statistical parameters need
to be determined from the ECG signal, which in turn may jeopardize performance
in certain situations.

In its general form, the linear estimator of s(n) is given by

ŝ(n) =
M∑

m=1

wm(n)xm(n), (5.5)

where the weights wm(n) differ from beat to beat as well as from sample to sample.
To ensure that the estimator in (5.5) is unbiased, wm(n) must fulfill the following
constraint:

M∑
m=1

wm(n) = 1. (5.6)

For the i-th beat, an estimate of the f wave signal is obtained by subtracting the QRST
template ŝ(n) from xi (n),

d̂i (n) = xi (n) − ŝ(n), (5.7)

where the noise component vi (n) in (5.2) has been neglected.
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The ensemble average, being central to the ABS method, is computed by simply
setting all weights in (5.5) to the same value,

wi (n) = 1

M
, i = 1, . . . , M, n = 0, . . . , N − 1. (5.8)

The usefulness of this approach rests on the assumption that the ventricular activity,
modeled by s(n), is decoupled from the atrial activity, modeled by zi (n). Moreover,
s(n) is viewed as a deterministic, but unknown, signal. The main steps involved with
ABS are illustrated in Fig. 5.1.

As the ensemble size M grows, the attenuation of the f waves in ŝ(n) becomes
increasingly better. Using simulated f waves, it has been shown that the error between
the true and the estimated f wave signals no longer improves significantly whenmore
than 30–40 beats are averaged [21], see also [22]. When VPBs are present, each type
ofmorphology needs to be associatedwith its specific ensemble average tomake beat

151050

Time (s)

(a)

(b)

(c)

(d)

Averaged
beat

Fig. 5.1 Steps involved with average beat subtraction. a Original ECG, and b QRST complexes
with similar morphology used for computing an averaged QRST complex. c Ventricular signal,
constructed from the averaged QRST complexes and subtracted from the ECG in (a) to produce
d the extracted f wave signal. Since only beats with similar (dominant) morphology are averaged,
the VPB with deviating morphology, occurring after about 6 s, remains unprocessed in the f wave
signal. The other ectopic beat has a more dominant morphology which, when subtracted, causes a
large-amplitude, QRS-related residual
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subtraction meaningful. Not uncommonly, VPBs are sparse in numbers which cause
the ventricular activity to be insufficiently reduced in the extracted f wave signal,
or not reduced at all if only a single VPB occurs, cf. Fig. 5.1. The computation of
morphology-specific beat averages must be preceded by clustering of the different
beat morphologies found in the ECG signal.

While the length of a beat varies dramatically in AF, the signal model in (5.1)
does not reflect this variation since a large enough, fixed value of N is assumed. As
a result, the number of averaged samples depends on the location within the cardiac
cycle, i.e., more samples are available for averaging within the QRS interval than
after the T wave, implying that the variance of ŝ(n) is larger at the boundaries of the
cardiac cycle than within the QRS interval. Thus, the extracted f wave signal can be
expected to have better accuracy within the central parts of the cardiac cycle than at
its boundaries.

Another popular estimator is the exponential averager which, thanks to its beat-
recursive structure, can track slow changes in QRST morphology [23]. The expo-
nential averager is defined by

ŝi (n) = ŝi−1(n) + α(xi (n) − ŝi−1(n)), i = 1, . . . , M, (5.9)

where the weight factor α (0 < α < 1) determines the speed of tracking. The recur-
sion may be initialized by setting ŝ0(n) = 0. It may be interesting to note that after
processing of all M beats in the ensemble, i.e., ŝ(n) ≡ ŝM(n), the weights associated
with the exponential averager are given by

wi (n) = α(1 − α)M−i , i = 1, . . . , M, n = 0, . . . , N − 1. (5.10)

5.2.1 Noise-Dependent Weights

The above fixed-variance assumption of zi (n) can be relaxed so that the variance
is allowed to change from beat to beat, i.e., σ 2

z is replaced by σ 2
z,i . This relaxation

may be motivated by the variation in noise level often encountered in ambulatory
recordings as well as the waxing and waning nature of the f waves. The weights
wi (n) of the linear estimator can be determined by minimizing the mean square error
(MSE) between s(n) and ŝ(n),

E
[
(s(n) − ŝ(n))2

] = E

⎡
⎣
(
s(n) −

M∑
i=1

wi (n)xi (n)

)2
⎤
⎦ . (5.11)

Accounting for the constraint in (5.6) which states that the weights must sum to
one, it can be shown that the optimal weights are inversely proportional to the noise
variance of each beat [4, Chap. 4]:
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wi (n) =
1

σ 2
z,i

M∑
m=1

1

σ 2
z,m

, i = 1, . . . , M, n = 0, . . . , N − 1. (5.12)

This approach to estimating s(n), known as weighted averaging, requires prior
knowledge of the noise variance σ 2

z,i . An estimate of σ 2
z,i may be determined, for

example, from the samples of the TQ intervals enclosing the i-th beat, on condition
that these two intervals are sufficiently long. Obviously, this approach assumes that
the noise in these two intervals are representative for the QRST interval. It is well-
known that weighted averaging is particularly efficient when large differences in
noise variance exist within the ensemble of beats. When the noise has fixed variance,
i.e., σ 2

z,i ≡ σ 2
z , the weights wi (n) in (5.12) simplify to the fixed weights of ensemble

averaging given in (5.8) .
An adaptive version of weighted averaging has been developed in which both the

QRST complex s(n) and the weights wi (n) are estimated on a sample-by-sample
basis [24]. Recursive minimization of the MSE criterion is performed, involving a
constraint which ensures that the estimated signal amplitude remains unaltered by the
averaging algorithm. This approach results in weights which are allowed to change
from sample to sample within each beat, thus differing from the weights in (5.12)
which are fixed within each beat. The improvement in SNR of ŝ(n) was found to be
particularly pronounced when small ensemble sizes were analyzed—a result with
significance when slow variations in QRST morphology are of particular interest to
track, which would have been smoothed out by ensemble averaging.

5.2.2 Signal- and Noise-Dependent Weighted Averaging

Another variant of the signal-plus-noise model in (5.1) is based on the assumption
that the QRST complex s(n) changes from beat to beat,

s(n) → si (n),

implying that the weights in (5.5) are generalized to wi,m(n) when computing the
estimate of the i-th beat ŝi (n),

ŝi (n) =
M∑

m=1

wi,m(n)xm(n), i = 1, . . . , M. (5.13)

Moreover, si (n) is assumed to be random in nature, rather than deterministic as earlier
assumed, and characterized by a time-varying variance which allows si (n) to have
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larger variability in certain intervals. However, the variance pattern is assumed to be
the same in all beats [21],1

E
[
(si (n) − E[si (n)])2] = σ 2

s (n), n = 0, . . . , N − 1. (5.14)

In this model, zi (n) only accounts for f waves, i.e., zi (n) ≡ di (n), modeled as a zero-
mean, stochastic process with identical variance σ 2

d of all beats. As before, zi (n) is
assumed to be uncorrelated from beat to beat, and the ventricular and atrial activities
are assumed to be mutually uncorrelated,

E[si (n)di (n)] = 0, i = 1, . . . , M. (5.15)

Since this method involves statistical assumptions on both si (n) and zi (n), it is here
referred to as signal- and noise-dependent weighted averaging.

To proceed, the MSE between the f wave signal di (n) and its corresponding
estimate d̂i (n) [21],

E
[
e2i (n)

] = E
[
(di (n) − d̂i (n))2

]
, (5.16)

is explored. Since

d̂i (n) = xi (n) −
M∑

m=1

wi,m(n)xm(n)

= si (n) + di (n) −
M∑

m=1

wi,m(n)xm(n), (5.17)

the MSE in (5.16) can alternatively be expressed as

E
[
e2i (n;wi,m(n))

] = E

⎡
⎣
(

M∑
m=1

wi,m(n)sm(n) +
M∑

m=1

wi,m(n)dm(n) − si (n)

)2
⎤
⎦ ,

(5.18)

where the dependence of ei (n) on wi,m(n) has been made explicit. The difference
in the definitions of error criteria deserves a comment: the MSE in (5.16) explicitly
involves the desired f wave signal d̂i (n), whereas the MSE in (5.11) involves the
QRST complex ŝ(n) required in (5.7) to produce d̂i (n). However, when zi (n) is
confined to f waves only, i.e., zi (n) ≡ di (n), the two definitions lead to the same
result. It should be noted that

1This signal model was also considered for determining a QRST template using a maximum like-
lihood (ML) approach. Since the performance of the ML-based method was found to be inferior
to that of the method based on the MSE criterion described in this section, the interested reader is
referred to [21] for further details.
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xi (n) = si (n) + di (n) = ŝi (n) + d̂i (n). (5.19)

Using (5.15) and (5.14), the MSE becomes

E
[
e2i (n;wi,m(n))

] = σ 2
s (n)

(
1 − 2wi,i (n) +

M∑
m=1

w2
i,m(n)

)
+ σ 2

d

M∑
m=1

w2
i,m(n).

(5.20)

Since the weights of the linear estimator must sum to one, cf. (5.6), the minimiza-
tion of E

[
e2i (n;wi,m(n))

]
is accomplished by introducing a function (the Lagrange

function) which involves this sum as a constraint,

L (wi (n)) = E
[
e2i (n;wi,m(n))

]+ λ

(
1 −

M∑
m=1

wi,m(n)

)
, (5.21)

where λ is the Lagrange multiplier. The optimal weights are given by [21]

wi,m(n) = 1

M

σ 2
d

σ 2
d + σ 2

s (n)
+ σ 2

s (n)

σ 2
d + σ 2

s (n)
δ(i − m), i = 1, . . . , M. (5.22)

Using this approach to f wave extraction, all beats in the ensemble are weighted in
the same way, except the current beat, i.e., i = m, which is assigned more weight due
to the inclusion of the positive-valued quantity σ 2

s (n)/(σ 2
d + σ 2

s (n)). While wi,m(n)

varies over time across each beat, the same weight function is applied to all beats,
except for the current beat, since the variance σ 2

d is assumed to be fixed. As the num-
ber of beats M increases, wi,m(n) becomes increasingly more dominated by σ 2

s (n)

through the second term in (5.22). When σ 2
s (n) = 0, reflecting a perfectly homoge-

nous beat ensemble, the weights in (5.22) become identical to those of ensemble
averaging, i.e., wi,m(n) = 1/M . On the other hand, when σ 2

s (n) � σ 2
d , all weights

become approximately zero, except the weight of the current beat which is assigned a
value close to one. When large beat-to-beat variation in morphology is encountered,
i.e., when σ 2

s (n) is large, this method assigns more weight to the current beat in the
weighted average than to the other beats of the ensemble.

Before applying the weights in (5.22), the statistical parameters σ 2
s (n) and σ 2

d
need to be determined from the observed signal. An estimate of σ 2

d may be obtained
by computing the sample variance of several, concatenated TQ intervals [21, 25], cf.
also Sect. 5.2.1. Such an approach becomes less useful at higher heart rates when the
TQ intervals are short and may vanish. However, this particular problem is largely
ignoredwhen the PTB database is used for evaluation of extraction performance [26],
with synthetic f waves added to non-AF ECGs [21], since high heart rates are uncom-
mon in this database. Hence, the results on performance should be interpreted with
caution.
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An estimate of σ 2
s (n) can be obtained by first computing the ensemble variance

of the beats x1(n), . . . , xM(n), n = 0, . . . , N − 1, and then subtracting the variance
σ 2
d which describes the f waves. To ensure that σ̂ 2

s (n) is always positive-valued, the
following estimator can be used [21]:

σ̂ 2
s (n) = max

(
1

M − 1

M∑
m=1

(xm(n) − ŝ(n))2 − σ̂ 2
d , 0

)
, (5.23)

where ŝ(n) denotes the ensemble average.While the computation of σ̂ 2
s (n) is straight-

forward, it has been shown that σ̂ 2
s (n) is more sensitive to temporal misalignment of

the beats in the ensemble than is ŝ(n), leading to an overestimation of σ̂ 2
s (n) [27].

In that study, a sampling rate of 3 kHz was recommended to ensure that sampling-
relatedmisalignment does not influence σ̂ 2

s (n), i.e., a much higher sampling rate than
what is used in most modern ECG devices (1 kHz). However, it is straightforward
to perform digital interpolation to obtain the recommended sampling rate.

Since low-amplitude T waves are difficult to detect, and consequently to align,
σ 2
s (n) may not be reliably estimated. This problem can be handled by using the

time-dependent weights in (5.22) when processing the QRS interval, whereas the
fixed weights of ABS are used when processing the T wave interval [21]—a solution
requiring two templates to accomplish fwave extraction. Separate processing of these
two intervals has been considered before, but then in the context of spatiotemporal
alignment, see Sect. 5.2.4.

As already noted, the performance of signal- and noise-dependent weighted aver-
aging was evaluated using simulated f waves, generated by the harmonic model
described in Sect. 3.4, added to non-AF ECGs of the PTB database. The results
showed that the normalizedMSE between the extracted and the model f wave signals
is about 25% lower than that of ABS. The main explanation to this improvement is
related to the inclusion of the ensemble variance σ̂ 2

s (n) in the computation ofwi,m(n),
which should increase as themorphologic beat-to-beat variability increases.No infor-
mation was provided on whether classification of beat morphology is required before
forming the beat ensemble, and, therefore, it remains to be quantified to what extent
beats with deviatingmorphology influence f wave extraction in terms of QRS-related
residuals. However, when such beats are encountered, smaller QRS-related residuals
are likely to result for wi,m(n) than for the weights used in ABS or weighted ABS.

Figure5.2 illustrates the performance of signal- and noise-dependent weighted
averaging when an ECG signal with considerable variation in f wave amplitude is
processed. It is interesting to note that the extracted f wave signal does not contain
as much QRS-related residuals as does the ABS-produced f wave signal.

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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Fig. 5.2 Signal- and noise-dependent weighted averaging. a Original ECG and extracted f wave
signal obtained by b average beat subtraction, and c signal- and noise-dependentweighted averaging

5.2.3 Spatiotemporal QRST Cancellation

Average beat subtraction relies on the assumption that the ensemble average of
time-aligned beats can represent individual beats adequately. Due to variations in
the orientation of the heart’s electrical axis, minor changes in QRST morphology
are often observed, thus questioning the validity of this assumption. The variations
are primarily induced by respiratory activity: the electrical axis of the QRS com-
plex varies as much as 10◦ during inspiration in the transversal plane, and, conse-
quently, influences the precordial leads quite considerably [28]. In general, V2 is
more sensitive to changes in position and orientation of the heart than the other five
precordial leads [29]. Given that ABS processes signals on a lead-by-lead basis,
the respiratory-induced variations in the electrical axis will sometimes cause large-
amplitude QRS-related residuals. Since the variations occur on a beat-to-beat basis,
recursive beat-to-beat updatemethods such as exponential averaging, cf. (5.9), do not
offer a satisfactory solution to this problem. However, the use of signal- and noise-
dependent weighted averaging, see Sect. 5.2.2, is able to handle minor changes in
QRST morphology, because a larger weight is assigned to the current beat than to
the other beats in the ensemble when computing the beat template ŝi (n). It should
be noted, though, that the potentially better handling is not the result of a model
describing how respiration influences different leads, but of the assumptions made
on the signal and noise properties, leading to the proposed weighting scheme.
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Spatiotemporal cancellation (STC) [30], based on a statistical method originally
developed for vectorcardiographic loop alignment [31], aims at reducing large-
amplitude QRS-related residuals by combining the average beat of the processed
lead with the average beats of the adjacent lead(s). Consequently, at least two leads
are needed to benefit from the spatial analysis performed by this method, preferably
more leads. While it has been claimed that STC is unsuitable for use in two- or three-
lead Holter recordings [21], several studies have demonstrated that STC can very
well be applied to such recordings, see, e.g., [32, 33]. For single-lead recordings, the
STC becomes almost identical to ABS, as explained below.

Spatiotemporal cancellation takes its starting point in the L-lead QRST tem-
plate Ŝt , represented by the (N + 2Δ) × L matrix

Ŝt = [ŝt,1 ŝt,2 · · · ŝt,L
]
, (5.24)

where the column vector ŝt,l contains N + 2Δ samples of the l-th lead. The average
beat Ŝt contains 2Δ additional samples to facilitate time alignment of the observed,
multi-lead beat X, represented by an N × L matrix, and Ŝt . A reduction of QRS-
related residuals is achieved by modifying Ŝt with the N × (N + 2Δ) shift matrix
Jτ which accounts for time misalignment, defined by

Jτ = [0N×(Δ+τ) IN×N 0N×(Δ−τ)

]
, (5.25)

and the L × L matrix P which accounts for spatial misalignment,

Ŝ = Jτ ŜtP. (5.26)

The matrices 0 and I denote the zero matrix and the identity matrix, respectively,
and the integer time shift τ can handle a misalignment not exceeding ±Δ. As shown
below, Jτ and P are estimated from the observed beat X after which the resulting
estimate of the QRST complex Ŝ is subtracted from X to produce the desired f wave
signal.

The matrix P introduces the following two desirable properties in the cancellation
process:

1. shifting of information between leads to compensate for variations in the electrical
axis, and

2. scaling to compensate for variations in tissue conductivity and heart position
which may affect the amplitude in different leads.

Although P can be assigned different structures, its definition as the product of an
L × L diagonal amplitude scaling matrix A and an L × L rotation matrix Q,

P = AQ, (5.27)
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was found to be associatedwith the best performance [30]. ThematrixQ is orthogonal
and, therefore, QT = Q−1.2

The QRST template Ŝt was obtained by ensemble averaging in [30], however,
any other type of ensemble estimator can be used. Thus, spatiotemporal QRST can-
cellation is a technique for processing one multi-lead beat at a time, on condition
that a QRST template is available. This explains why the indexing of beat number,
previously used when describing ABS and variants, is dropped in this subsection.

To proceed, each observed beat X is modeled as the sum of a QRST complex S,
f waves D, and noise V,

X = S + D + V, (5.28)

being the multi-lead counterpart to the signal model in (5.1) and (5.2). The desired
fwave signal D̂ is obtainedbyfirst estimatingA,Q, and τ fromX, and then subtracting
Ŝ from X,

D̂ = X − Ŝ

= X − Jτ̂ Ŝt ÂQ̂, (5.29)

where, just as in (5.7), the noise component V has been neglected. However, not
only will V limit how well the modified QRST complex Jτ̂ Ŝt ÂQ̂ fits X, but so
will the f waves D. To mitigate this problem, it is helpful to introduce an inter-
mediate (“quick-and-dirty”) estimate D̃ which, before the estimation of A, Q, and τ ,
is subtracted from X,

Y = X − D̃,

= S + (D − D̃) + V. (5.30)

A straightforward approach to determining D̃ is to form, for each lead, an f wave
signal in the QRST interval through interpolation based on the f waves of the two
enclosing TQ-intervals; such interpolation is briefly described at the end of this
subsection.

The parameters A, Q, and τ are estimated by minimizing the quadratic error ε2

between Y and Jτ ŜtAQ, i.e., the right hand side of (5.29), but with X replaced by
the quick-and-dirty-corrected Y,

ε2 = ‖Y − Jτ ŜtAQ‖2F , (5.31)

2For the single-lead case, i.e., L = 1, STC simplifies to ABS, except for that misalignment in time
can still be handled by Jτ and amplitude mismatch to Ŝt by the scaling factor a1; the rotation matrix
reduces to a scalar equal to one. The single-lead version of STC is closely related to the extraction
method based on singular value decomposition, as described in Sect. 5.6.1, which also involves
amplitude scaling.
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where the Frobenius norm ofX is defined as the trace ofXXT , i.e., ‖X‖2F = tr(XXT ).
In expanded form, the quadratic error is

ε2 = tr
(
YYT

)+ tr
(

Jτ ŜtAAT ŜT
t JT

τ

)
− 2tr

(
AT ŜT

t JT
τ YQT

)
, (5.32)

where the cross-term results from the following properties of the trace:

tr
(

Jτ ŜtAQYT
)

= tr
(

AT ŜT
t JT

τ YQT
)

, (5.33)

tr
(

Y(Jτ ŜtAQ)T
)

= tr
(

AT ŜT
t JT

τ YQT
)

. (5.34)

Unfortunately, minimization with respect to Q and A cannot be done indepen-
dently, and a closed-form solution is difficult to find. Instead, an alternating, iterative
approach can be employed inwhich ε2 isminimizedwith respect toQ bymaximizing
the last term in (5.32) under the assumption that A is known. The maximization is
accomplished using singular value decomposition (SVD) by which a general matrix
T is decomposed into two orthonormal matrices U and V and a diagonal matrix ΣΣΣ

containing singular values,

T = UΣΣΣVT . (5.35)

By setting T = AT ŜT
t JT

τ Y, the cross-term in (5.32) can be expressed as 2tr(TQT ),
which is maximized when [34]

Q̂ = UVT . (5.36)

Next, with an estimate of Q available, the diagonal entries al of A can be estimated
using [30]

âl =
([

Jτ Ŝt

]T
l

[
Jτ Ŝt

]
l

)−1 ([
Jτ Ŝt

]T
l

[
YQ̂−1

]
l

)
, l = 1, . . . , L , (5.37)

where [·]l denotes the l-th column of the matrix. An improved estimate of Q is
obtained from (5.36) using Â, and so on.

Typically, a solution close to Q = A = I is desirable, and, therefore, the iterative
procedure is initializedwithA0 = I, i.e., the assumption implicit toABSwhich states
that all beats have the same amplitude. The rotation matrix at iteration step k, i.e.,
Q̂k , is then calculated from Ak−1. Since

‖Y − Jτ ŜtAk−1Q̂k‖2F ≤ ‖Y − Jτ ŜtAk−1Q̂k−1‖2F , (5.38)

the error will be less or equal to that of the previous iteration step.WhenQk is known,
Ak can be calculated and, accordingly,
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‖Y − Jτ ŜtAkQ̂k‖2F ≤ ‖Y − Jτ ŜtAk−1Q̂k‖2F . (5.39)

This procedure is repeated until the difference in the error between two successive
iterations becomes sufficiently small. The algorithm will converge since minimiza-
tion with respect to A and Q in each step, described by (5.38) and (5.39), will
successively lower the error ε2. In practice, convergence is achieved after five or six
iterations, with most of the improvement achieved already after the first iteration.

Finally, minimization with respect to τ is implemented as a grid search in the
interval [−Δ,Δ]. Consequently, Â and Q̂ have to be computed for all possible values
of τ before the optimal estimates become available. Provided that the accuracy of
the fiducial point used for aligning the beats is reasonably good, a value of Δ equal
to 5 ms is sufficient.

As already pointed out, before estimating A and Q it is desirable to determine
intermediate, TQ-based f wave signals d̃1, . . . , d̃L which help reduce the influence of
f waves in the estimation process. A simple approach is to replicate the f waves of the
TQ interval preceding theQRSTcomplex in theQRST interval,where each replicated
sample is multiplied with a weight linearly decreasing from 1 at the interval onset
to 0 at the interval end. This procedure is repeated, but in a time-reversed fashion,
by replicating the f waves of the TQ interval following the QRST complex in the
QRST interval, where each replicated sample is multiplied with a weight linearly
decreasing from 1 at the interval end to 0 at the interval onset. The interpolated signal
is obtained by summing the two replicated f wave signals in the QRST interval. The
f wave cycle length to be replicated is estimated from the autocorrelation function of
the two adjacent TQ intervals. If only one of the enclosing intervals is long enough
for extrapolation, only that interval is used for reconstruction, whereas the TQ-based
f wave signal is set to zero when both intervals are too short. It should be noted that
the interpolation methods described in Sect. 5.3, proposed for reducing the influence
of large-amplitude QRS-related residuals, may alternatively be considered.

The use of a TQ-based, interpolated signal improves the accuracy of Â and Q̂,
while not introducing significant f wave distortion [30]. For low-amplitude f waves,
the cycle length becomes less well-defined and therefore more difficult to estimate
when computing a TQ-based signal. Fortunately, low-amplitude f waves are also less
influential on the estimation process. On the other hand, large-amplitude f waves tend
to bemore “organized” and characterized by awell-defined cycle length, thus lending
themselves better to TQ-based signal interpolation.

Although rotation lacks a geometrical interpretation in nonorthogonal leads, it
can still reduce QRS-related residuals due to variation in the orientation of electrical
axis of the heart. The reduction is illustrated in Fig. 5.3, where the commonly used
precordial leads V1, V2, and V3 are processed with ABS and STC.

The parameters A, Q, and τ are estimated from the samples of the QRS inter-
val since the samples outside this interval have a much lower SNR. However, the
spatiotemporally modified template Ŝ in (5.26) is still subtracted from the entire
cardiac cycle, not just from the QRS interval. This approach offers better cancella-
tion in the QRS interval than ABS, while the cancellation outside the QRS interval
may be worse. Hence, the use of two-template STC—one template assigned to the
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Fig. 5.3 Extraction of f wave signals in leads V1, V2, and V3, using a average beat subtraction
and b spatiotemporal cancellation which reduces the QRS-related residuals. The dots indicate the
occurrence time of the QRS complexes

QRS interval and another to the JQ interval, i.e., beginning at the end of theQRS com-
plex (“J point”) and ending at the onset of the Q wave of the subsequent beat—may
offer a solution to this problem.

5.2.4 Separate Cancellation of the QRS and JQ Intervals

The use of separate templates for cancellation of the ventricular activity in the QRS
and JQ intervals was proposed in [35], implemented in [36], and further developed
and evaluated in [37]. The two-template approach ismotivated by the fact that Twave
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duration changes with heart rate, while QRS duration remains essentially unchanged.
Considering the presence of respiratory-induced variation in the electrical axis of
the heart, another important motivation for pursuing this approach is that different
amplitude scaling and rotation matrices can be applied in the two intervals which
may lead to better overall cancellation of the ventricular activity.3

For the method described in [37], the template beat Ŝt is partitioned into two
submatrices,

Ŝt = [Ŝt,1 Ŝt,2

]
, (5.40)

where Ŝt,1 and Ŝt,2 contain the ensemble averaged samples of the QRS interval
and the JQ interval, respectively. Thus, the T wave interval, originally analyzed
in [35], is replaced by the longer JQ interval. These two intervals are processed
differently with respect to how the two templates are fitted to the observed signal:
Spatiotemporal optimization is performed in the QRS interval, i.e., scaling, rotation,
and time alignment, whereas only time alignment is performed in the JQ interval,
meaning that the cancellation is identical to ABS in the JQ interval [37]. Because of
the often low SNR in the JQ interval, estimation of A and Q is not attempted.

Separate cancellation in the QRS and JQ intervals brings into focus the question
whether this approach outperforms cancellation based on a single template applied
to the entire heartbeat. Using simulated ECG signals, produced by a biophysical
model of the atria with ventricular activity added [40], the performance was evalu-
ated in terms of the normalized MSE (NMSE) between model f wave signals and
estimated f wave signals, using the energy of the model signal as normalization fac-
tor, cf. Sect. 5.10.2. One- and two-template STC were found to produce about the
same NMSE in the QRS interval, whereas two-template STC produced a factor of
two lower NMSE in the JQ interval. This result is expected since the estimates of
A and Q determined from the QRS interval cannot be optimal for processing of the
JQ interval due to the temporal variation of the electrical axis. However, the bet-
ter performance of two-template STC in the JQ interval should be viewed in light
of the fact that the NMSE was about 10 times smaller in the JQ interval than in the
QRS interval, and thus of much less significance when evaluating performance of the
f wave extraction as a whole [37]. Clearly, template subtraction rarely causes large-
amplitude residuals in the JQ interval, since the T wave is characterized by much
lower frequencies than the QRS complex. Given that the extracted f wave signal is
commonly prefiltered to remove low-frequency noise, using a bandpass filter with
the lower cut-off frequency set to 3–4 Hz, the presence of residuals in the JQ interval
is further reduced.

Two-template cancellation requires that the QRS and JQ intervals are first delin-
eated, with the J point as themain challenge. Since fixed locations of the two intervals

3Time-dependent scaling and rotation have been considered when evaluating a method for vector-
cardiographic loop alignment [38], see also [39]. A mathematical model was proposed in which the
time-dependent, angular variation associated with the rotation matrix is assumed to be proportional
to the amount of air in the lungs during a respiratory cycle—a property modeled by the product of
two sigmoidal functions reflecting inhalation and exhalation, respectively, cf. Sect. 3.4.4.

http://dx.doi.org/10.1007/978-3-319-68515-1_3


5 Extraction of f Waves 155

relative to a fiducial point are in conflict with the large patient-to-patient variability in
QRS duration, as well as the large beat-to-beat variability in T wave duration, it may
be tempting to employ one of the well-performing delineation algorithms described
in the literature, e.g., [41–43]. However, few, if any, algorithms have been evaluated
on ECGs in AF, and, therefore, excellent delineation performance in P wave rhythms
does not imply excellent delineation performance in AF. In fact, some authors have
claimed that accurate delineation of the QRS complex in the presence of f waves is
impossible [44], whereas others have arrived to the opposite conclusion and devel-
oped a technique for delineating the T wave endpoint in AF, where f waves are
suppressed before delineation [45]; no approach was, however, devised for delin-
eation of QRS onset.

Inaccurate QRS delineation causes a jump at the boundary between the QRS com-
plex and the T wave—a problem which, to some extent, can be mitigated by linear,
time-invariant lowpass filtering, for example, using a fifth-order Butterworth filter
with cut-off frequency at 50Hz in combination with forward/backward filtering [37].

5.2.5 Residual-Constrained QRS Template

Another approach to addressing the problem of large-amplitude QRS residuals is to
modify the single-lead QRS template ŝt under certain constraints, so that it better
fits the observed beat x. As a result, the amplitude of QRS-related residuals will be
reduced [23]. The modified QRS template ŝ results from a linear transformation of
ŝt defined by the weight matrix W,

ŝ = Wŝt , (5.41)

where the samples of ŝ and ŝt are defined over the interval IQRS. In [23], ŝt was
determined by exponential averaging of time-aligned beats, but any other ensemble
estimator can be used for determining ŝt . Comparing the linear transformations in
(5.26) and (5.41), it is obvious that the former transformation ismuchmore restrictive
since the leads in Ŝt are scaled by their corresponding amplitude factors in A and
rotated by Q, whereas the latter transformation offers muchmore freedom since each
sample of the single-lead template ŝt is modified with its own individual weights,
without performing any type of multi-lead processing.

The weight matrix W is determined by maximizing a fitness function JF (W),
defined so that similarity between the f waves in the TQ interval, denoted x0(≈ d0),
and the f waves estimated in IQRS, obtained as x − Wŝt , is rewarded. Wave similarity
is assessed by two different ratios, namely the ratio of the signal power computed
from the two intervals,

g1(W) =
1

NQRS
‖x − Wŝt‖2

1

N0
‖x0‖2

, (5.42)
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and the ratio of the power of the first-differenced version of the signals computed
from the two intervals,

g2(W) =
1

NQRS
‖x′ − Wŝ′

t‖2

1

N0
‖x′

0‖2
, (5.43)

where NQRS and N0 denote the lengths of x and x0, respectively, and ‖x‖2 = xT x
denotes the Euclidean norm. The first difference of the samples of x, denoted x′, is
included in the fitness function so that a high-frequency behavior of QRS-related
residuals is penalized. In addition, the fitness function includes a third term which
“limits the deformation” of ŝ relative to ŝt , defined by the normalized crosscorrelation
between ŝ (= Wŝt ) and ŝt ,

g3(W) = γ

π
arccos

(
ŝTt Wŝt√‖ŝt‖2 · ‖Wŝt‖2

)
. (5.44)

The arccosine function transforms the range of the normalized crosscorrelation from
[−1, 1] to [0, π ], and the parameter γ determines how dissimilar ŝt and ŝ are allowed
to be. The three measures g1(W), g2(W), and g3(W) are all designed to reflect
similarity in terms of overall signal properties.

The fitness function JF (W) is defined by

JF (W) = α1 J (g1(W)) + α2 J (g2(W)) + α3(J (g3(W)) − 1), (5.45)

where the importance of each similarity measure is controlled by the weights αi . The
function J (x) is defined by

J (x) =
{
1, x ≤ 1,
(1 − x)3, x > 1,

(5.46)

which becomes increasingly negative as the power ratios in (5.42) and (5.43) become
increasingly larger than 1. Consequently, large-amplitude QRS residuals become
increasingly more penalized. Moreover, g3(W) = 0 for perfectly similar waveforms,
i.e., ŝt ≡ ŝ. To penalize dissimilar waveforms, it is necessary to set γ > 2 for this
particular choice of J (x) [23].

The fitness function in (5.45) can be successfully maximized with respect to W
using multi-swarm particle swarm optimization. This technique is well-suited for
problems where multiple local maxima are likely to be encountered; see [46, 47]
for a general description of this technique, and [23] for a description of its use in
signal extraction. In contrast to the methods described below for interpolation, the
template ŝ which results from the residual constrained approach does not preserve
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the spectral properties of the f wave signal in the TQ intervals. Rather, all elements
of W are determined independently of each other during optimization.

The residual constrained approach was originally developed for cancellation of
the ventricular component in bipolar, atrial electrograms. However, there are good
reasons to believe that this approach can be used for processing of signals acquired
on the body surface. The residual-constrained technique is illustrated in Fig. 5.4,
showing that the amplitude of the estimated fwaves in theQRS intervals, as expected,
is similar to that of the enclosing intervals. It is noted that the signal estimated in
the QRS intervals is sometimes composed of higher frequencies than the signal in
the enclosing intervals, explained by the independent determination of the elements
in W.

The optimization is computationally costly since thousands of elements inW need
to be determined for each beat. Therefore, the method lends itself less well to the
processing of continuous, long-term, ambulatory recordings. Assuming a sampling
rate of the ECG of 1 kHz, a typical QRS interval contains 100 samples, implying
that 10,000 elements needs to be determined in W for each QRS complex.

5.3 Interpolation and Large-Amplitude QRS Residuals

Spatiotemporal QRST cancellation, whether involving one or two templates, offers
a considerable reduction in the amplitude of QRS-related residuals, leading to more

0 2 4 6 8 10

Time (s)

(a)

(b)

Fig. 5.4 f wave extraction using residual constrained QRS templates in combination with expo-
nential averaging [23]. a Original ECG and b extracted f wave signal
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accurate estimation of the f wave signal. However, a shortcoming of this technique,
as well as with some other variants of ABS, is the lack of a mechanism ensuring that
the amplitude of the estimated f waves in the QRS interval does not differ signifi-
cantly from the amplitude of the enclosing f waves; a similar observation applies to
the spectral content. The presence of large-amplitude QRS residuals is particularly
problematic when detailed analysis of the f wave characteristics is of interest, e.g.,
short-term (second-to-second) variation in the dominant atrial frequency (DAF)or the
morphology of f waves. This problem may be addressed by replacing the estimated
f wave signal in the QRS interval IQRS with samples obtained from interpolation
based on the f wave signal in the two intervals IJQ0

and IJQ1
which enclose IQRS [37,

48]. Figure5.5 illustrates the main steps of interpolation performed in a single-lead
ECG, which in this particular example is accomplished by autoregressive modeling
of the samples in IJQ0

and IJQ1
, see Sect. 5.3.2. During the first second (encircled),

the interpolated f wave signal provides a poor estimate because of the insufficient
number of samples in the enclosing intervals—a problem which holds true for any
interpolation method.

0 1 2 3 4 5

Time (s)

(a)

(b)

(c)

(d)

Fig. 5.5 Illustration of the main steps of QRS interval interpolation to reduce the influence of
large-amplitude QRS-related residuals. a Original ECG, b extracted f wave signal using average
beat subtraction, c same signal as in (b) except that the QRS intervals are replaced by gaps, and
d extracted f wave signal with interpolated samples filling the gaps
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While interpolation may be performed in every beat, its use is primarily moti-
vated in beats for which the amplitude of the QRS-related residuals turns out to be
much larger than the amplitudes of the f waves in IJQ0

and IJQ1
. Hence, amplitude-

conditioned replacement of residuals has been explored where samples are replaced
only if the amplitude exceeds a certain threshold [48]. The threshold value may be
related to an index especially developed for quantifying the amplitude ofQRS-related
residuals [22].

Interpolation was encountered already in connection with STC (Sect. 5.2.3), used
for computing the intermediate TQ-based f wave signal D̃. In that case, however, the
interpolated signal only served as a stepping stone for achievingmore accurate param-
eter estimates of A, Q, and τ , not for replacing large-amplitude QRS-related residu-
als. In its simplest form, interpolation for replacement of residuals has been based on
zero-, first-, or third-order polynomials, using only the very few samples immediately
bordering to the QRS interval to compute the polynomial coefficients [49]. As noted
in [3], however, polynomial interpolation is not recommended as it is plagued by a
number of limitations, including the need for QRS delineation, as discussed above,
and the lack of means to accurately cancel the ventricular repolarization component.

Since polynomial-based interpolation does not attempt to replicate the spectral
properties of the enclosing JQ intervals, various model-based approaches to inter-
polation have been explored, where themodel mimics certain properties of the f wave
signal. The model parameters are first estimated from IJQ0

and IJQ1
, and then used

to compute the “missing” samples in IQRS. A common assumption is that the f wave
signal can be modeled as a stationary process—an assumption which may be ques-
tioned since time–frequency analysis has demonstrated that the DAF may vary as
much as 0.5Hz in less than a second [50], see also [51]. Before the parameters of
the interpolation model are estimated, the extracted signal should be prefiltered to
ensure that its spectral content is confined to frequencies which are representative of
the f wave signal.

5.3.1 Sine/Cosine-Based Interpolation

The first approach to model-based interpolation rests on the assumption that f waves
can be described by a linear combination of sines and cosines [37]. Before inter-
polation, the “single beat” technique, described in Sect. 5.6.3, is used for estimating
the T wave; the resulting estimate is denoted ŝT(n). The samples of the original ECG
in IQRS are replaced by interpolated samples. The following model describes the
estimated f wave signal, beginning at the J point of the previous beat and ending at
the onset of the Q wave of the subsequent beat:

d̂(n) =

⎧⎪⎨
⎪⎩

(s(n) − ŝT(n)) + d(n) + v(n), n ∈ {IJQ0
, IJQ1

},
P∑

p=1

(â1,p cos(ωpn) + â2,p sin(ωpn)), n ∈ IQRS,
(5.47)
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where P is the model order (set to as high as 50 in [37]). The normalized frequencies
f p = ωp/2π are uniformly spaced in an interval corresponding to [0, 10] Hz. Since
the duration of an f wave usually exceeds that of the QRS interval, the sine/cosine
model needs to account for frequencies which are well below the DAF to provide
adequate interpolation. In contrast to the samples in IJQ0

and IJQ1
, the interpolated

samples are not influenced by noise, and therefore d̂(n) as a whole may, incorrectly,
stand out as a signal with a locally varying noise level.

Least squares (LS) estimation is used to find â1,1, . . . , â1,P and â2,1, . . . , â2,P in
(5.47) by analyzing the samples in IJQ0

and IJQ1
, together defining the column vector

ď = [d̂(0) d̂(1) · · · d̂(nQ) d̂(nJ) · · · d̂(N − 1)
]T

, (5.48)

where ˇ denotes that the samples d̂(nQ + 1), . . . , d̂(nJ − 1) of IQRS are left out since
they are determined by interpolation once the estimates of the ai,p coefficients in
(5.47) are available. Thus, the vector ď contains Ň = N − (NJ − NQ + 1) elements.
In a similar way, the cosine and sine functions define the columns of the matrix Ȟp,
where the samples in IQRS are again left out,

Ȟp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(0) sin(0)
cos(ωp) sin(ωp)

...
...

cos(ωpnQ) sin(ωpnQ)

cos(ωpnJ) sin(ωpnJ)
...

...

cos(ωp(N − 1)) sin(ωp(N − 1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.49)

The two model parameters define the vector

ap =
[
a1,p
a2,p

]
p = 1, . . . , P. (5.50)

Using these matrix notations, the problem can be compactly formulated as one of
minimizing the LS error

ε(ap) = ‖ď − Ȟpap‖2 (5.51)

with respect to a1,p and a2,p for a certain frequency ωp. Minimization of ε(ap) is
accomplished by calculating the gradient with respect to ap,

∇apε(ap) = −2ȞT
p (ď − Ȟpap), (5.52)

and setting the gradient equal to zero. The LS estimator is given by
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âp = (ȞT
p Ȟp)

−1ȞT
p ď, p = 1, . . . , P, (5.53)

where (ȞT
p Ȟp)

−1 is invertible since Ȟp in (5.49) has full rank. It should be empha-

sized that since Ȟp is a function of ωp, so will âp. The minimum LS error is [4]

εmin = ďT ď − ďT Ȟpâp. (5.54)

Finally, the desired interpolated samples in IQRS are obtained by inserting âp in
(5.47).

Since the minimum error εmin of the estimator âp is closely related to Lomb’s
periodogram—a method briefly considered in Chap.6 for spectral characterization
of f waves—some light is shed here on this relation. The term ďT Ȟpâp in (5.54)
describes the projection of ď on the subspace spanned by Ȟp, and, therefore, the
energy of the component of ď in that subspace. The interpretation in terms of energy
can be used to define a spectral measure, which, for unevenly sampled signals such
as the ones considered here with missing samples, is exactly the Lomb periodogram,
which, for an arbitrary ω, is defined by [4]

ŜLomb(ω)
def= 1

Ň
ďT Ȟâ. (5.55)

5.3.2 Autoregressive Interpolation

Another model-based approach assumes that the f wave signal d(n) can be charac-
terized by an autoregressive (AR) model [48],

d(n) =
P∑

p=1

apd(n − p) + e(n), n = P, . . . , N − 1, (5.56)

where P is the model order (set to 25 in [48]), a1, . . . , aP are the unknown model
parameters, e(n) is white noise, and N is the total number of samples in the three
adjacent intervals IJQ0

, IQRS, and IJQ1
. Alternatively, the model in (5.56) can be

expressed as
d = Da + e, (5.57)

where d and e are column vectors containing the samples d(P), . . . , d(N − 1) and
e(P), . . . , e(N − 1), respectively,D is an (N − P) × P Toeplitzmatrixwhose struc-
ture reflects, in each row, that d(n) depends on the past samples d(n − 1), . . . ,
d(n − P), and a is a column vector containing a1, . . . , aP .

To find the missing samples dQRS, being a subsequence in d whose location is
defined by IQRS, the following LS problem is solved:

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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min
a,dQRS

‖d − Da‖2. (5.58)

However, joint minimization with respect to a and dQRS leads to a set of nonlinear
equations with nontrivial solution [52], and, therefore, the problem is usually solved
suboptimally in two successive steps. First, the model parameters a are estimated
from the samples in IJQ0

and IJQ1
using the LS solution [53],

â =
(

ĎT Ď
)−1

ĎT ď, (5.59)

where Ď is identical to D, except that the rows containing the samples in IQRS have
been left out; this leave-out operation applies equally to the vector ď, cf. (5.48).
Second, the missing samples in dQRS are obtained by solving another system of
linear equations, and then making use of â which results from (5.59); for a detailed
description of the method, see [52, Chap. 10].

A central question in this context is “Why bother at all with fwave extraction in the
QRS interval when interpolation circumvents the problem of large residuals?”. The
interpolation approach may work satisfactorily when the QRS interval is enclosed
by JQ intervals from which the interpolation parameters can be reliably estimated.
However, at higher heart rates, this approach is bound to fail when the enclosing
JQ intervals are short, cf. the example in Fig. 5.5. Based on experimental findings,
a minimum JQ interval length of at least one complete f wave was recommended
in [44]; the length of one f wave was determined by the DAF, estimated from a sig-
nal extracted using ABS. If any of the enclosing JQ intervals was shorter than one
complete f wave, interpolation was not carried out [44]. This recommendation seems
to be rather optimistic for methods based on a linear combination of sines/cosines
or autoregressive modeling since several f waves are required to produce reasonably
accurate estimates of the model parameters. It should be noted that shorter JQ inter-
vals imply increased vulnerability to noise—a problem which is exacerbated for
shorter TQ intervals.

5.4 Extended Kalman Filtering

Average beat subtraction and variants are based on assumptions describing atrial and
ventricular activity in broad terms. For example, it is assumed that the two activities
are decoupled, whereas specific assumptions on f wave and QRST morphology are
not introduced. A significant departure from this, rather minimalistic approach to
modeling is to formulate a statistical signal model for generation of realistic-looking
f waves and QRST complexes. Provided that the family of modeled f wave mor-
phologies is sufficiently large, such an approach may lead to better f wave extraction
than what is achieved by ABS and variants, especially when noisy ECG signals are
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analyzed. On the other hand, if the family of generated signals is too restrictive, there
is an imminent risk that certain f wave morphologies are not accurately extracted.

Assuming that both f waves and QRST complexes are adequately modeled by a
linear, time-varying dynamical system driven by noise, the state-space representation
is attractive to consider, defined by

x(n + 1) = F(n)x(n) + G(n)w(n), (5.60)

y(n) = H(n)x(n) + v(n), (5.61)

where x(n) is the state vector, F(n) is the state transition matrix describing the
system dynamics, w(n) is the system input noise, weighted by the matrix G(n).
The model output vector y(n) is the sum of the modeled signal H(n)x(n) and the
measurement noise v(n), where H(n) is the observation matrix. The noise processes
w(n) and v(n) are both assumed to be white, mutually uncorrelated, and completely
characterized by their respective time-varying covariance matrices Q(n) and R(n).
For the signal model defined by (5.60) and (5.61), the minimum MSE estimator of
x(n) is the well-known discrete-time Kalman filter, operating recursively so that the
estimate x̂(n) is only based on x̂(n − 1) and the current observation y(n). An elegant
and comprehensive account of the Kalman filter theory can be found in [54]; see
also [55] for an accessible introduction.

The simulator of ECG signals described in Sect. 3.4, comprised of different math-
ematical models for the generation of f waves and QRST complexes, may serve as
a starting point for f wave extraction using a special type of the Kalman filter [56].
In developing this approach, the question arises whether these signal models can be
fitted into the above linear, state-space framework—a question which is addressed
in the following.

The sawtooth model in (3.1) for generating f waves is considered, but with the
important difference that the modulation of amplitude and frequency is omitted to
make the model more manageable. Thus, the f wave signal d(n) is modeled by

d(n) =
K∑

k=1

ak cos(kω0n + ϕk), (5.62)

where ω0 is the (unknown) DAF, K is a the number of harmonics, and ak and ϕk are
the amplitude and phase of the k-th harmonic, respectively. Each harmonic can be
generated by a linear, time-invariant system, defined by a conjugate pole pair located
on the unit circle at ±kω0,

Hk(z) = 1

(1 − ekωo z−1)(1 − e−kωo z−1)

= 1

1 − 2 cos(kω0)z−1 + z−2
, k = 1, . . . , K . (5.63)

http://dx.doi.org/10.1007/978-3-319-68515-1_3
http://dx.doi.org/10.1007/978-3-319-68515-1_3


164 L. Sörnmo et al.

In the time domain, the system function Hk(z) corresponds to the following second-
order difference equation:

dk(n + 1) = 2 cos(kω0)dk(n) − dk(n − 1) + wd,k(n), k = 1, . . . , K , (5.64)

where the input noisewd,k(n) is assumed to be white, and, to some extent, accounting
for changes in ak and ϕk . It is straightforward to express the K difference equations
in (5.64) in terms of the above linear state-space representation, however, ω0 needs
to be estimated beforehand.

The harmonic f wave model has been employed for the analysis of short, second-
long ECG segments [57]. Considering, though, that the DAF is known to fluctuate
over short time periods [50], the following first-order, dynamical model is employed
to account for such fluctuations [56]:

ω0(n + 1) = ω0(n) + wω0(n), (5.65)

where the input noise wω0(n) is assumed to be white. Another, related approach to
modeling of fluctuations in ω0 is described in [58]. Together with (5.64) and (5.65),
the complete f wave signal model is defined by

d(n) =
K∑

k=1

dk(n). (5.66)

It is noted that the models in (5.62) and (5.56) both generate f waves through fil-
tering of white noise, however, the spectrum associated with (5.62) is much more
constrained since the resonance frequencies are harmonically related, while not so for
the spectrum associated with the AR model in (5.56). While the equations in (5.64)
and (5.65) are both linear, a joint state-space representation is not possible due to
the multiplication of dk(n) with 2 cos(kω0(n)), now depending on the state ω0(n),
which makes the combined system nonlinear.

A popular approach to the modeling of QRST complexes is to use a linear com-
bination of Gaussian functions. In the continuous-time case, a QRST complex is
modeled by [59, 60]

s(τ ) =
L∑

l=1

αl exp

[
− (τ − τl)

2

2σ 2
l

]
, (5.67)

where L is the number of Gaussians, αl is the amplitude, σl is the width, and τl is the
location. Provided that L is sufficiently large, a wide range of QRST morphologies
can be modeled. In the context of f wave extraction, four Gaussians (L = 4) have
been suggested for basic modeling of the QRST complex—three Gaussians assigned
to the QRS complex and one to the T wave [56].4

4In general, it is desirable to use an orthogonal set of basis functions for signal representation,
so that the signal component associated with a certain basis function do not interfere with the
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To model an ECG with recurrent beats, the linearly growing time τ in (5.67) is
replaced by an artificial, wrapped phase function τ(t) defining the local time of a
complete cardiac cycle [60, 63],

s(t) =
L∑

l=1

αl exp

[
− (τ (t) − τl)

2

2σ 2
l

]
, (5.68)

where τ(t) is obtained by the following 2π -modulo operation:

τ(t) = Ωr t mod 2π. (5.69)

The local time begins at −π and ends at π , where the onset may be defined by
the time instant of some “landmark ECG feature,” such as the time instant of the
R wave peak. The parameter Ωr is an angular frequency set to 2π/T , where the
period length T may be related to the length of the current RR interval, the average
length of several RR intervals, or replaced by a time-varying function Ωr (t) which
accounts for changes in heart rate [60].

A dynamical formulation of the QRST model in (5.68) and (5.69) is obtained by
differentiating s(t) and τ(t). Together with discretization at a sampling rate of Fs ,
differentiation of the QRST model results in

τ(n + 1) =
(

τ(n) + Ωr

Fs

)
mod 2π, (5.70)

s(n + 1) = s(n) − Ωr

Fs

L∑
l=1

αl
(τ (n) − τl)

σ 2
l

exp

[
− (τ (n) − τl)

2

2σ 2
l

]
. (5.71)

The complete ECG signal model is defined by (5.64)–(5.62), (5.70), and (5.71).
Since the observed samples are noisy, the signal model is extended so that the car-
diac activity, i.e., s(n) + d(n), as well as the phase function τ(n), are corrupted by
additive, white noise,

y1(n) = τ(n) + v1(n), (5.72)

y2(n) = s(n) + d(n) + v2(n), (5.73)

where the noise terms v1(n) and v2(n) are assumed to bemutually uncorrelated. Thus,
the observation vector y(n) is composed of y1(n) and y2(n). The state vector x(n) is
defined by the variables used for the modeling of f waves and QRST complexes,

x(n) = [ω0(n) d1(n) d1(n − 1) · · · dK (n) dK (n − 1) τ (n) s(n)
]T

. (5.74)

components associated with the other basis functions. For example, the Hermite functions are well-
suited for modeling of the QRST complex [61, 62]. However, orthogonality is of less importance
to the described simulation model, and, therefore, Gaussian functions, being nonorthogonal basis
functions, are considered.
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It should be noted that the second-order difference equation in (5.64) is represented
by two state variables, and an estimate of f wave signal d(n) is obtained by summing
the estimates of d1(n), . . . , dK (n). The system input noise vector is given by

w(n) = [wω0 wd,1 · · · wd,K Ωr α1 · · · αL σ1 · · · σL τ1 · · · τL ,
]T

, (5.75)

where all the parameters depend on the time n, although, for convenience, this is not
explicitly indicated.

The equations defining the complete ECG model, including the observation
noise v(n), form a nonlinear, dynamic system, thus requiring a nonlinear state-space
model, defined by

x(n + 1) = f (x(n), w(n)), (5.76)

y(n) = h(x(n), v(n)), (5.77)

where the functions f (·) and h(·) describe themodel nonlinearities. Since the discrete
Kalman filter is no longer optimal for a nonlinear model, the extended Kalman filter
(EKF) is preferred, which, prior to operation, requires that the state-space model is
linearized about a working point [54, 64]. Here, “linearization” implies that the first-
order terms of the respective Taylor series expansion of f (·) and h(·) are retained.
Although the EKF is not an optimal estimator, it is nonetheless the standard technique
used in nonlinear state estimation. For the above dynamical ECG model, the details
related to the linearization have been worked out in [56], together with a complete
description of the related EKF. Other applications of the EKF in ECG analysis can
be found in [63, 65–69].

An interesting property of the Kalman filter approach is that the estimation of the
f wave signal and the QRST complex is performed jointly, because the state vector
x(n) in (5.74) contains information on both types of activity. This property stands in
sharp contrast to ABS and variants, where the QRST complex is first estimated and
then subtracted from the ECG to produce an estimate of the f wave signal. From a
theoretical viewpoint, joint estimation is to be preferred over a two-step estimation
procedure with respect to optimality in the MSE sense. From a practical viewpoint,
however, this advantage may turn out to be less significant since the accuracy of
the estimated f wave signal depends on how accurately the QRST complexes can
be modeled. Another interesting property is that the EKF is one of the very few
methods which, in addition to separating the ventricular and atrial activities, extracts
an f wave signal whose noise level is most likely lower than the noise level of the
original ECG [56].

A major difference between the EKF-based approach and ABS and variants, with
practical implications, is the number of model parameters involved. While ABS
involves only one single parameter, i.e., the number of beats for averaging, the EKF-
based approach involves a huge number of parameters which have to be determined
prior to operation, and possibly also updated during operation. The extractionmethod
described in [56] makes use of four Gaussians to model the QRST complex, thus
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requiring a total of 12 parameters. Assuming that the color of the system noise
and the observation noise is white, the diagonal elements, i.e., the variances, of the
corresponding covariance matrices need to be determined, amounting to another
17 parameters; a colored noise assumption would obviously increase the number
of parameters even further, and, therefore, this assumption is rarely pursued in the
practice. It should be emphasized that these two covariance matrices play a crucial
role in the design of the Kalman filter, as they inform the filter to what degree the
observations can be trusted, and to what degree the observed signal is expected to
differ from the assumed model. A procedure for determining the model parameters
from the observed ECG signal has been proposed in [63], and implemented in many
subsequent studies. Moreover, the elements of the initial state vector x(0) need to be
determined, where ω0(0) is a crucial parameter in f wave extraction. In [56], ω0(0)
is estimated from the f waves in successive TQ segments, i.e., an approach whose
limitations have already been discussed in this chapter. Bearing in mind the huge
number of model parameters, it would be of particular interest to perform sensitivity
analysis to gain insight into how sensitive the extraction method is to small changes
in the model parameter values.

While the irregular rhythm typical of AF is not explicitly accounted for in the
ECG model, the degree of irregularity can be controlled by the variance related to
the angular frequency Ωr . It remains to be established, however, whether this type
of implicit modeling is sufficient to produce the desired extraction performance.
Earlier results obtained by the same ECGmodel and EKF, though used for denoising
of fetal ECG signals, suggest that changes in the length of successive RR intervals
which is less than 20% from one interval to the next have no significant influence
on performance [63]. For larger changes, often observed in AF, the phase error of
the model may lead to errors in the location of the Gaussian functions, which in turn
may translate to reduced extraction performance.

Since the EKF can track only one QRST morphology, typically that of the domi-
nant beat, it is not possible to accurately extract the f wave signal in the presence of
occasional VPBs with deviating morphology. Hence, the EKF-based method suffers
from the same limitation as, for example, the methods based on ensemble averaging.
While the handling of multiple beat morphologies has yet to find its way into EKF-
based f wave extraction, such a technique may very well draw on the idea proposed
in [67], namely to use multiple state-space models for representing the dominant
beat, ectopic beats (following morphologic clustering), and beats with unknown
morphologies. The model providing the best fit to the observed beat is determined
using a statistical likelihood test on the error (“innovations”) associated with each of
the state-space models.5

Since the EKF can track slow changes in QRST morphology, it is less likely that
respiratory-induced changes should lead to large-amplitude QRS-related residuals

5An early precursor to the idea of using multiple state-space models was explored for the identifi-
cation of certain persistent ECG rhythms [70], although none of them were AF. In that study, the
proposed rhythm models were linear in nature, and, therefore, the discrete-time Kalman filter could
be used.
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as it would when, for example, exponential averaging is used. The main reason is
that the EKF relies on a priori information on QRST morphology, translating to
better tracking [4, Chap. 4], provided that the Gaussian model is adequate. With
respect to T wave modeling, adequacy may be called in question when only one
Gaussian is used [56], as neither biphasic nor asymmetric T waves can be modeled,
although such morphologies are commonly encountered. The significance of coarse
T wave modeling on extraction performance remains to be investigated, however,
fewer Gaussians are needed to model the T wave than the QRS complex thanks to
its low-frequency content.

5.5 Adaptive Filtering

Adaptive filters of varying complexity have been considered for f wave extraction,
including the classical least mean square (LMS) filter (Sect. 5.5.1) and nonlinear
filters based on the recurrent neural network (RNN), i.e., a network whose hidden
neurons have feedback connections to the input as well as to the hidden layers of
the filter [71]. Either all weights of the network (Sect. 5.5.2) or only the weights
of the output layer (Sect. 5.5.3) are subject to continuous training during network
operation. The block diagram in Fig. 5.6 shows the general structure of methods
for f wave extraction based on adaptive filtering, applying to all filtering techniques
described in this section.

The extraction of f waves is performed in the ECG lead taken as the primary
input x(n) to the adaptive filter, whereas another lead with negligible atrial activity,
denoted sr (n), serves as reference input. Thus, the reference lead has to be acquired
with an electrode positioned far away from the atria. Although at least two leads
are required in adaptive filtering, multi-lead ECGs are nowadays acquired in most
applications where f wave analysis is performed, e.g., continuous, long-term ambu-

Adaptive filter

+ +
x(n)

sr(n)

e(n)

y(n)

Fig. 5.6 Adaptive filtering for f wave extraction. The primary input x(n) is an ECG lead for
extraction, whereas the reference input sr (n) is a lead with negligible atrial activity. The output
y(n) of the adaptive filter provides an estimate of the ventricular activity in x(n), and the error e(n)

between x(n) and y(n) provides an estimate of the f wave signal. The error e(n) is fed back to
the adaptation algorithm of the filter for weight update. This particular filter structure is sometimes
referred to as a dual-input adaptive noise canceller [53]
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latory monitoring based on either traditional electrodes or intelligent textiles with
integrated conductive electrodes. The choice of reference lead is not particularly
critical when analyzing the standard 12-lead ECG, since leads V5 and V6 typically
contain much less atrial activity than leads V1 and V2.

Since the ventricular activity contained in x(n) and sr (n) is correlated with each
other, the weights of the adaptive filter are adjusted so that the error between the two
input signals is minimized with respect to a cost function. The output of the adaptive
filter, denoted y(n), is an estimate of the ventricular activity contained in x(n), and,
therefore, the error e(n) between y(n) and x(n) provides an estimate of the f wave
signal.

Prior to f wave extraction, sr (n)may be preprocessed by linear filtering so that the
ventricular activity is further accentuated. Another means to improve performance
is to augment sr (n) with additional leads with negligible atrial activity. Yet another
means is to mathematically derive a number of “support leads” from an existing lead
with negligible atrial activity [72]. For the latter two approaches, the scalar reference
input sr (n) becomes a vector reference input sr (n).

In adaptive filtering, the input signals are processed sequentially, implying that
jumps at the boundaries between successive beats is less of an issue than when the
ECG is processed on a beat-by-beat basis.

5.5.1 Least Mean Square Linear Filtering

In the LMS-based approach to f wave extraction, the primary input signal x(n) is
described by the model

x(n) = s(n) + d(n), (5.78)

where d(n) is the f wave signal. This model is identical to the one in Sect. 5.2.2
considered for deriving signal- and noise-dependent weighted averaging, apart from
that the beat index is dropped in (5.78) since LMS-based extraction, in its general
form, does not require knowledge on the occurrence times of the beats. The reference
input sr (n) contains ventricular activity which is correlated to s(n). Moreover, both
s(n) and sr (n) are uncorrelated to d(n),

E [d(n)s(n)] = 0, (5.79)

E [d(n)sr (n)] = 0. (5.80)

The adaptive filter has a finite impulse response of the direct form, defined by
the time-varying weights h(l, n), where l denotes the local time within the impulse
response and n the time at which the impulse response is valid. The output of the
filter is given by the convolution
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y(n) =
L−1∑
l=0

h(l, n)sr (n − l), (5.81)

where L is the number of filter weights. The filter weights h(l, n) are determined
so that the MSE E

[
e2(n)

]
is minimized, where e(n) = x(n) − y(n). Using (5.79)

and (5.80), the MSE can alternatively be expressed as

E
[
e2(n)

] = E
[
(s(n) − y(n))2

]+ E
[
d2(n)

]
, (5.82)

underlining the fact that the filter output y(n) is an estimate of the ventricular activity
s(n). TheLMSalgorithm results fromminimizing theMSEusing the steepest descent
technique [53],

h(l, n + 1) = h(l, n) + 2μe(n)sr (n − l), l = 0, . . . , L − 1, (5.83)

where μ is a positive-valued step size parameter. Thus, e(n) represents the estimate
of the f wave signal, i.e., d̂(n) ≡ e(n).

The performance achieved by LMS-based filtering is inferior to that of ABS
because the extracted f wave signal initially contains a considerable amount of large-
amplitude QRS-related residuals, especially for a small μ, see Fig. 5.7. As a result,
this approach has not received much attention in the literature, except being men-
tioned in a few review papers [22, 73]. A description of the LMS algorithm is never-
theless well-motivated as it is central to the filter with impulse-correlated reference

0 2 4 6 8 10

Time (s)

(a)

(b)

(c)

Fig. 5.7 f wave extraction based on adaptive filtering using the LMS algorithm. a Original ECG,
and extracted f wave signal obtained for a step size set to b μ = 0.2 and c μ = 0.05. A larger value
of μ produces smaller QRS-related residuals due to faster convergence, but also increases the risk
of filter instability
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input [74]; see also [75] for a detailed analysis of this filter. Rather than using a sep-
arate ECG lead as reference input, a train of impulses positioned at the occurrence
times θi of the beats serves as input,

sr (n) =
∑
i

δ(n − θi ). (5.84)

Consequently, sr (n) does not convey any information on atrial activity, suggesting
that f wave extraction can be performed in single-lead ECGs, with θi determined
from x(n).

The idea to use an impulse-correlated reference input was introduced to facili-
tate not only the analysis of signals recorded during AF, but also arrhythmias with
P waves [74]. Based on one single ECG example, the performance was labelled as
“excellent”, although this superlative was not corroborated by quantitative results.
Much later, the same approach was investigated anew for f wave extraction, but
then accompanied with a quantitative performance evaluation on a small data set
consisting of 10 1-min ECGs [76]. The results suggested that the LMS-based filter-
ing approach performed slightly better than ABS, a result which probably can be
attributed to better tracking of slow changes in QRST morphology.

Initially, the adaptive filter with impulse-correlated reference input was viewed
as a time-variant filter [74, 75]. However, a few years later, this filter was shown
to be identical to the exponential averager defined in (5.9), the reason being that
time-aligned beats represent a perfectly periodic input to the filter. Hence, the filter
is not adaptive in the well-established sense in which a gradient search is performed
based on the error at the current time [77], but, indeed, it is the exponential averager,
i.e., a linear, time-invariant comb filter whose passbands have a width proportional
to the step size μ in (5.83). Thus, the results presented in [76] should be viewed in
light of what adaptive filtering with impulse-correlated reference input stands for.

5.5.2 Nonlinear Filtering Based on a Simple Recurrent
Network

Adaptive nonlinear filtering for f wave extraction was first considered using a sim-
plified version of the dynamically driven RNN [78], also known as the time delay
Elman network [79]. The main motivation for using this type of network was its
architecture, which was claimed to be better suited for learning the rapid changes
which characterize ventricular activity than would the linear, transversal structure of
the LMS filter. Therefore, it was argued that better performance with respect to esti-
mating the QRST complex could be expected. The simplified RNN network consists
of the following main building blocks: an input layer with unit time delays and a
nonlinear hidden layer with neurons whose output is fed forward to the output layer,
and then fed backwards to the input layer, see Fig. 5.8; the output layer consists of
only one neuron.
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Fig. 5.8 Simplified recursive neural network with time delayed input. The hidden layer consists of
Q neurons (circles filled with grey), where each neuron is described by a weighted sum of the input
signals, followed by an activation function limiting the output signal of the neuron. The feedback
paths are alsoweighted. The output layer consists of only one (linear) neuron. This network structure
is similar to that of the echo state network, see Sect. 5.5.3, with the important difference that the
large hidden layer is sparsely connected and only the weights of the output layer are updated during
operation
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The simplified RNN filter has a dynamic behavior described by the following
nonlinear equations [71, Chap. 15]:

u(n + 1) = ϕϕϕ(Wuu(n) + Wssr (n)), (5.85)

y(n) = wT
o u(n), (5.86)

where u(n) is a Q × 1 state vector describing the output of the neurons of the hidden
layer, sr (n) is an L × 1 input vector with time delayed samples,

sr (n) =

⎡
⎢⎢⎢⎣

sr (n)

sr (n − 1)
...

sr (n − L + 1)

⎤
⎥⎥⎥⎦ , (5.87)

and y(n) is the scalar output signal. The feedback paths originating from the hidden
neurons have weights defined by the elements of the matrixWu , whereas the paths of
the input layer have weights defined by the elements in Ws ; these two matrices have
the dimensions Q × Q and Q × L , respectively. The output layer, consisting of only
one neuron, is linear and defined by the Q × 1weight vectorwo. The simplified RNN
involves feedback from the hidden neurons, but no global feedback from the output
neuron. The memoryless activation function ϕ(·) is associated with each neuron in
the hidden layer, defined by the sigmoidal function

ϕ(x) = 1

1 + e−x
. (5.88)

Similar to the LMS-based adaptive filter, the simplified RNN assumes that the pri-
mary input x(n) is the ECG leadwhich is subject to extraction, and the reference input
sr (n) is a lead with negligible atrial activity, see Fig. 5.6. Based on the quadratic error
between x(n) and the network output signal y(n), the weights of the connections, i.e.,
Wu , Ws , and wo, are adjusted sequentially (“online training”) using the well-known
backpropagation algorithm performing gradient descent minimization [71, 80].

The number of time delays L of the input layer and the number of hidden neurons
Q are the twomain design parameters of the simplifiedRNN [78]. From a learning set
consisting of randomly selected beats from the MIT–BIH Arrhythmia Database, see
Sect. 3.1, the choice L = 9 and Q = 20 was found to provide good performance in
terms of attenuating the ventricular activity in the fwave signal. The performancewas
studied on a tiny data set consisting of three recordings from the same database, of
which only one was from a patient in AF. When compared to exponential averaging,
the simplifiedRNNfilter performedbetter in signalswith noise orwith changingQRS
morphology. On the other hand, no improvement was observed in low noise signals
with stable rhythm, but f waves were rather attenuated and T waves were poorly
estimated, both aspects having repercussions on extraction performance.Considering

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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the size of the data set, it was not possible to conclude whether the simplified RNN
is well-suited for f wave extraction.

5.5.3 Nonlinear Filtering Based on an Echo State Network

A well-known problem with RNNs is related to the fact that weight adjustment is
usually based on the gradient descent method, providing exceedingly slow learning
since all weights, i.e., input, recurrent, and output, have to be adjusted. Moreover,
it is well-known that RNNs are prone to bifurcations during the learning process
which may cause the network to become unstable [81, 82]. In the context of f wave
extraction, bifurcationswouldmanifest themselves byoscillations in the output signal
of the network, caused by infrequently occurringwaveforms such as prematureVPBs
and spike artifacts.

Both these problems can be circumvented by using the echo state network
(ESN) [83, 84], which is a large, sparsely connected RNN serving as a “reservoir”
of recurrently connected neurons. Depending on the size of the reservoir, about 5–
20% of all neurons are connected to each other. In general, the reservoir is driven by
the input signal as well as the output signal through feedback; however, the output
feedback has not been considered in f wave extraction [72]. The sparse connections
of the reservoir are generated randomly, with weights that remain fixed throughout
operation. The desired output signal is obtained as a linear combination of the non-
linear response signals. The weights of the linear combination are the only ones of
the ESN which are subject to training, performed continuously as the input signal
is being processed, see Fig. 5.9. As a result, training turns out to be simple and fast,
never getting stuck in local minima.

TheESNhas been found to outperform themuchmore complex, fully trainedRNN
in many different applications [86], and is particularly well-suited for processing of

_

RLS

+

sr''(n)

x(n)

ŝ(n)y(n) +

sr (n)

sr'(n)

sr(n)

V1 V6

Fig. 5.9 f wave extraction based on the echo state network [85]. The dashed lines indicate the
weights updated during network operation. The weights of the reservoir (grey area) are fixed after
initialization. Weight adaptation is performed using the recursive least squares (RLS) algorithm
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signals with time-varying dynamics such as the ECG. The term “echo state” relates
to the fact that previous states of the reservoir can “echo” after they have been once
passed, i.e., an output signal is generated which resembles some earlier encountered
signal segment. It should be emphasized, though, that f wave extraction can be
performed even if a beat morphology has never before been encountered by the
ESN.

The dynamic behavior of the ESN is described by essentially the same equation
as the simplified RNN in (5.85),

u(n + 1) = ϕϕϕ(Wuu(n) + Wssr (n)), (5.89)

where Ws is the input weight matrix, Wu is the reservoir weight matrix in which
most of the elements are set to zero, i.e., a sparse matrix, and u(n) is the reservoir
state vector. The reference input vector sr (n) contains the sample at time n of the
input signals, thus differing from the vector in (5.85) which instead contains the
time delayed samples of a scalar input signal. Another important difference is that
the output signal y(n) is computed as the scalar product of the time-varying weight
vector wo(n), i.e., weights requiring an update at each time n, and the state vector
z(n), augmented with sr (n),

y(n) = wT
o (n)z(n), (5.90)

where

z(n) =
[

u(n)

sr (n)

]
. (5.91)

For the previously described methods based on adaptive filtering, a scalar reference
signal sr (n) was analyzed for f wave extraction. However, it has been demonstrated
that better performance can be achievedwhen sr (n) is supplementedwith information
on its first and second derivatives, denoted s ′

r (n) and s ′′
r (n), respectively [72]. Hence,

the reference input vector to the ESN is defined by

sr (n) =
⎡
⎣sr (n)

s ′
r (n)

s ′′
r (n)

⎤
⎦ . (5.92)

The primary input x(n) may also be used to supplement sr (n), provided that all the
samples of x(n) are set to zero, except those which are contained in a small interval
centered around each QRS complex [85]. The resulting signal can be viewed as
a variant of the impulse-correlated reference input, stripped of atrial information,
cf. (5.84). Assuming that the hidden layer contains Q neurons, see Fig. 5.8, the
dimensions of Ws and Wu are Q × 3 and Q × Q, respectively.

When initializing the ESN, the weight matrices Ws and Wu are randomly gen-
erated using a uniform probability density function (symmetric around zero and
invariant to training). To further ensure network stability, the equation describing
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the dynamic behavior of the reservoir is commonly modified to include an artificial
white noise term v(n) [87],

u(n + 1) = ϕ (Wuu(n) + Wssr (n)) + v(n). (5.93)

Anothermodification of the network is due to the property that the activation function
ϕ(·), defined by a hyperbolic tangent function in [72], ismemoryless, thereby causing
u(n) to be impulsive in nature. As a result, the output signal y(n) is also impulsive,
which is a highly undesirable property. This problem can be solved by smoothing
u(n) using exponential averaging, implying that the update equation in (5.93) is
altered to [88]

u(n + 1) = αu(n) + (1 − α)(ϕ(Wuu(n) + Wssr (n)) + v(n)), (5.94)

where the forgetting factor α (also known as the “leakage rate”) is a positive constant
less than 1.While smoothing is not an explicit part of the simplifiedRNN, the filtering
introduced by delaying and weighting the input samples sr (n), cf. (5.87), may be
viewed as a counterpart to the smoothing in (5.94).

Since offline, supervised training of the ESN is inefficient for signals with rapid
changes inmorphology, i.e., the QRS complex, it is necessary to perform continuous,
online training to ensure fast adaptation of wo(n). While adaptation can be accom-
plished with the LMS algorithm, the recursive least squares (RLS) algorithm offers
superior convergence rate for highly correlated input signals—a propertywhich obvi-
ously applies to sr (n) as well as to its first and second derivatives. The RLS algorithm
minimizes the weighted LS error between the “desired signal” x(n) and the output
signal y(n) through recursive computation of both wo(n) and the inverse of the expo-
nentially weighted, deterministic correlation matrix Rz(n) of the state vector z(n) in
(5.91),

Pz(n) = R−1
z (n) =

(
n∑

i=0

ξ n−iz(i)zT (i)

)−1

, (5.95)

where ξ is a weighting factor usually chosen to be between 0.95 and 1. The RLS
algorithm is defined by [55]

g(n) = ξ−1Pz(n − 1)z(n)

1 + ξ−1zT (n)Pz(n − 1)z(n)
, (5.96)

Pz(n) = ξ−1Pz(n − 1) − ξ−1g(n)zT (n)Pz(n − 1), (5.97)

wo(n) = wo(n − 1) + g(n)(x(n) − wT
o (n − 1)z(n)), (5.98)

and initialized by wo(0) = 0 and Pz(0) = δ−1I, where δ is a small positive constant.
A number of techniques have been proposed for improving the numerical instabil-
ity that may occur when computing Pz(n) [53], one attractive technique being LS
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prewhitening of z(n) [89], implemented in the ESN proposed for f wave extrac-
tion [72].

Given that the large-size matrices defining the reservoir, i.e., Ws and Wu , are
randomly generated, only a few parameters need to be determined before operation
of the ESN. The reservoir size Q, the forgetting factor α in (5.94), and the RLS
weighting factor ξ are the parameters which significantly influence performance,
whereas the reservoir connectivity and δ have less influence on performance [72].
Using the RMS error between the simulated f wave signal and the corresponding
estimate as performance measure, the following values were found to provide good
performance: Q = 100, α = 0.8, and ξ = 0.999. Compared to the simplified RNN,
involving only 20 neurons in the hidden layer, the ESN offers, thanks to a much
larger number of neurons, better ability to learn aberrant signal patterns such as
those composed of VPBs.

As already noted, an essential feature of the ESN is the sparse connectivity of
the reservoir, implying a substantial reduction in the computational complexity over
the fully connected reservoir. In [72], a connectivity of 20% was found to provide
good performance, though a lower percentage may be used if desired. Other design
aspects, including normalization of the input signals for faster training of the network,
the relationship between the spectral radius of Wu and network stability, and the
distribution of the nonzero elements in the weight matrices, are discussed at length
in [88], see also [90]. Based on experience from analyzing thousands of hours with
ECG data, network instability has never been encountered.

The extraction performance of the ESN has been studied from different perspec-
tives, especially in relation to ABS and STC. Considerable amplitude variation in
the QRS complex as well as the T wave is handled well by the ESN, considering
that large-amplitude QRS-related residuals are absent in the estimated f wave signal,
see Fig. 5.10a. Ventricular premature beats, whose morphologies are vastly different
from that of the dominant beat, neither cause much residuals, see Fig. 5.10b.

Initialization of the ESN introduces a transient in the f wave signal which may be
problematic when processing brief ECG signals as well as brief AF episodes. This
issue was investigated in terms of the RMS error [72]. The results showed that the
ESN converges in about one second—a result which should be contrasted with the
much longer “convergence time” required by ABS and variants, where a transient
behavior typically would last for about 20–30 beats until the QRS-related residuals
reaches an acceptable level (depending on f wave amplitude and prevailing noise
level).

The convergence aspect is closely related to the handling of rhythm transitions,
i.e., from sinus rhythm toAF and vice versa, see Fig. 5.11. This example demonstrates
that the ESN can extract f waves accurately immediately after the transitions to AF,
without any noticeable transient behavior. Interestingly, the same observation also
applies to P waves which are accurately extracted immediately after the transitions
from AF to sinus rhythm, in spite of the fact that the ESNwas not designed to extract
P waves. For ABS and variants, the f waves are inaccurate immediately after the
transition to AF, and then become increasingly better as the AF episode progresses.
If, on the other hand, aQRST template has been determined from an earlier episode, it
may be used to extract f waves provided that the QRSTmorphology has not changed.
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Fig. 5.10 f wave extraction based on an echo state network, performed in the presence of a con-
siderable variation in QRS amplitude and large-amplitude T waves, and b multiform ventricular
premature beats. The upper signal is the original ECG and the lower signal the extracted f wave
signal
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Fig. 5.11 f wave extraction performed in the presence of rhythm transitions from sinus rhythm to
AF, and vice versa, using the echo state network. a Original ECG and b extracted f wave signal
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5.6 Principal Component Analysis

Principal components analysis (PCA) is a statistical technique which performs an
orthogonal linear transformation of the observed signal for the purpose of decorrelat-
ing the samples of the signal and maximizing the variance of the transformed vector,
i.e., the principal components [91]. The first axis of the transformed coordinate sys-
tem corresponds to the maximal variance, the second axis to the maximal variance in
the direction orthogonal to the first axis, and so on. The emphasis on variance stems
from the observation that larger variance is usually associated with the more interest-
ing dynamics of the signal, whereas lower variance is usually associated with noise.
The subspace defined by the principal components with the largest variances usually
receive the most attention as that subspace offers optimal dimensionality reduction
in the LS sense. However, other subspaces may also be of interest, to be discussed
below. Principal component analysis has a long and rich history in computerized
ECG analysis—the first paper was published already in 1964 [92]—and has been
instrumental in the development of many methods for data compression, waveform
classification, tracking of waveform changes related to myocardial ischemia, and
noise reduction [93].

In the context of f wave extraction, some PCA-based methods have been designed
for single-lead ECG analysis, whereas others for multi-lead ECG analysis, described
in Sects. 5.6.1 and 5.6.2, respectively. While different signal properties are explored
by PCA-based methods, they share the idea that an “atrial subspace” needs to be
identified onto which the observed signal can be projected for extraction of f waves.

Methods based on PCA do not involve assumptions on various signal proper-
ties, but are confined to exploring either intralead (sample-to-sample) correlation or
interlead correlation, depending onwhether single- or multi-lead ECGs are subject to
analysis. The correlation matrix required for finding the transformation can be easily
estimated from the observed signal. No assumptions have to be made on decoupling
between the ventricular and atrial activities, rhythm irregularity, dominant beat mor-
phology, noise properties in terms of variance and color, and so on. Neither does
any assumption have to be made on the statistical distribution of the observed signal
samples.

5.6.1 Single-Lead PCA

In single-lead PCA [94], each beat is segmented by selecting the samples of an
interval centered around a QRS-related fiducial point. The samples of the k-th beat
are contained in the vector
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xk =

⎡
⎢⎢⎢⎣

x(nk)
x(nk + 1)

...

x(nk + N − 1)

⎤
⎥⎥⎥⎦ , k = 1, . . . , M, (5.99)

where nk is the onset of the k-th beat, N is the number of samples per beat, and M is
the number of beats. The ensemble of beats is represented by the N × M data matrix

X = [x1 x2 · · · xM
]
. (5.100)

While X may contain beats with widely different morphology, it is often desirable
to only include beats with similar morphology as an homogenous ensemble implies
that a smaller value of M is needed.

The transformation producing the principal components w = [w1 w2 · · · wN
]T

rests on the assumption that the observed signal x can be treated as a zero-mean
random process, where x1, . . . , xM are different realizations of x. This process is
characterized by the intralead correlation matrix Rx = E[xxT ], i.e., the correlation
between different samples in x. The principal components w result from applying an
orthogonal linear transformation to x, defined by the N × N matrix

ΦΦΦ = [ϕϕϕ1 ϕϕϕ2 · · · ϕϕϕN
]
, (5.101)

and
w = ΦΦΦT x. (5.102)

This transformation rotates x so that the elements ofw becomemutually uncorrelated.
The first principal component is obtained as the scalar product w1 = ϕϕϕT

1 x, where the
vector ϕϕϕ1 is chosen so that the variance of w1,

E[w2
1] = E[ϕϕϕT

1 xxTϕϕϕ1] = ϕϕϕT
1 Rxϕϕϕ1, (5.103)

is maximized subject to the constraint that ϕϕϕT
1ϕϕϕ1 = 1. The maximal variance is

obtained when ϕϕϕ1 is chosen as the normalized eigenvector corresponding to the
largest eigenvalue of Rx , denoted λ1. The resulting variance is

E[w2
1] = ϕϕϕT

1 Rxϕϕϕ1 = λ1ϕϕϕ
T
1ϕϕϕ1 = λ1. (5.104)

Subject to the constraint that w1 and the second principal component w2 should be
uncorrelated, w2 is obtained by choosing ϕϕϕ2 as the eigenvector corresponding to the
second largest eigenvalue of Rx , and so on until the variance of x is completely
represented by w. Accordingly, to obtain the whole set of N different principal
components, the eigenvector equation for Rx needs to be solved,
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RxΦΦΦ = ΦΦΦΛΛΛ, (5.105)

whereΛΛΛ is a diagonal matrix defined by the eigenvalues λ1, . . . , λN . Since Rx is not
known in practice, the N × N sample correlation matrix R̂x , defined by

R̂x = 1

M
XXT , (5.106)

replaces Rx when computing the eigenvectors in (5.105).
The number of beatsM should be large enough to produce a useful estimate ofRx ,

where “large enough” may be translated to about 40 beats [94] or to the number of
beats occurring during one minute [22]. In the standard implementation of PCA,
the mean of the realizations x1, . . . , xM is removed before R̂x is computed. Since
mean removal is not performed in this context, thus making PCA identical to the
Karhunen–Loève transform [93], the eigenvector related to the largest eigenvalue,
i.e., ϕϕϕ1, is virtually identical to a scaled version of the mean, i.e., the ensemble
average.6 The seven first eigenvectors are illustrated in Fig. 5.12 for five different
ECGs; the related, normalized eigenvalues are presented in Fig. 5.13.

For the purpose of extracting the f wave signal, the following decomposition of x
was proposed in [94]:

x =
N∑

k=1

wkϕϕϕk =
Nv∑
k=1

wkϕϕϕk +
Na∑

k=Nv+1

wkϕϕϕk +
N∑

k=Na+1

wkϕϕϕk, (5.107)

where the weights are determined bywk = ϕϕϕT
k x. The ventricular subspace is spanned

by the first Nv eigenvectors, i.e., the eigenvectors corresponding to the Nv largest
eigenvalues, the atrial subspace is spanned by the next Na − Nv eigenvectors, and the
“noise subspace” is spanned by the remaining eigenvectors. From the decomposition
in (5.107), it is evident that an estimate of the f wave signal may be obtained by
subtracting the two sums which produce estimates of the QRST complex and the
noise from x,

d̂ = x −
Nv∑
k=1

wkϕϕϕk −
N∑

k=Na+1

wkϕϕϕk

=
Na∑

k=Nv+1

wkϕϕϕk, (5.108)

6For the eigenvector ϕϕϕ1 to be virtually identical to a scaled version of the ensemble average, the
ensemble with similar-shaped beats should be reasonably well-aligned in time and the noise level
should not be so high that f waves are completely obscured, i.e., two conditions which are easily
met in practice.
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Fig. 5.12 a Single-lead ECGs obtained from five different patients, b the first eigenvector ϕϕϕ1
and the ensemble average of the dominant beats (the two waveforms coincide so they cannot be
distinguished from one another), and c the second until the seventh most significant eigenvectors.
The eigenvectors are plotted using a time scale zoomed by a factor of two relative to the scale used
in (a)
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Fig. 5.13 The normalized eigenvalues λ′
k = λk/λ1, k = 1, . . . , 20, of the five single-lead ECGs

displayed in Fig. 5.12

provided that the two dimensionality parameters Nv and Na have first been properly
identified.

When all beats in X have similar morphology, i.e., the situation usually encoun-
tered in practice, single-lead PCA is actually closely related to ABS. Since ϕϕϕ1 is
virtually identical to a scaled version of the ensemble average, and all other eigen-
vectors are associated with much smaller eigenvalues, it is natural to assume that this
eigenvector defines the ventricular space, i.e., Nv = 1. Ignoring the noise-related
terms in (5.108), the f wave signal is simply estimated by d̂ = x − w1ϕϕϕ1. Amplitude
scaling is also performed in the single-lead version of STC, implying that single-lead
PCA and STC are closely related when homogenous ensembles are processed. It was
claimed that the estimator in (5.108) can be used to remove some of the noise in the
ECG [94], however, it remains to be demonstrated to what extent such noise removal
can improve f wave extraction.

When X becomes increasingly heterogenous, the ventricular subspace is spanned
by two or more eigenvectors, i.e., Nv > 1, where the second and higher-order eigen-
vectors are related to morphologic variability. In such situations, single-lead PCA
can be viewed as a generalization of ABS, where the template beat, defined as a lin-
ear combination of eigenvectors with data-dependent weights, replaces the ensemble
average. With the additional degrees of freedom, the template beat may offer better
handling of beat-to-beat variation in QRST morphology due to respiration and other
extracardiac factors [94].

The vital point of single-lead PCA is the identification of Nv and Na—inaccurate
identification of these two parameters leads to that the extracted activities, both of
ventricular and atrial origin, contain unwanted signal components. In many applica-
tions, PCA is employed as a technique for concentrating the information in x into
a subset of principal components, i.e., w1, . . . ,wK , where K  N . In that case, the
choice of K can be guided by various statistical performance indices, measuring,
for example, how well the subset of principal components approximates the ensem-
ble with respect to energy [91, 95]. However, such indices are unsuitable in f wave
extraction since the problem is to find the dimensionality of two subspaces (where
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each subspace is rather loosely defined), rather than to concentrate the signal energy
into as few components as possible.

Unfortunately, no method for subspace identification has been devised in the liter-
ature, and, consequently, it is unclear how a PCA-based method can be implemented
in an automated system for AF analysis. Based on a small data set with AF patients,
using visual subspace identification, the dimensionality of the atrial subspace, i.e.,
Na − Nv, was found to range from 4 to 10 [94]. Thus, the use of fixed values of
Nv and Na does not seem to be a feasible alternative. As illustrated in Fig. 5.13, the
falling-off pattern of λk does not exhibit any clearcut feature which can be explored
for identification of these two parameters.

The decomposition in (5.107) is based on the assumption that an atrial subspace
can always be identified for ECGs in AF. However, the variance maximization per-
formed by PCA does not necessarily imply that a “pure” atrial subspace exists, since
some eigenvector(s) may contain a mixture of atrial and ventricular activity. Neither
does the orthogonality constraint necessarily facilitate the identification of an atrial
subspace.

A simplified version of single-lead PCA rests on the assumptions that the ven-
tricular subspace is one-dimensional, i.e., Nv = 1, and that the noise term in (5.108)
can be ignored [22, 96], thereby avoiding the identification of an atrial subspace. As
already noted, these two assumptions imply that f wave extraction is closely related to
ABSwhen homogenous ensembles are processed, with the difference that amplitude
scaling is not performed in ABS. While the method described in [22] was labeled
“SVD-based,” it can just as well be labeled “PCA-based” since the eigenvectors
associated with PCA can be determined directly from X by means of SVD, rather
than by diagonalization of the sample correlation matrix R̂x . The SVD means that
an N × M matrix can be decomposed as [34]

X = UΣΣΣVT , (5.109)

where U is an N × N orthogonal matrix whose columns are the left singular vectors,
and V is an M × M orthogonal matrix whose columns are the right singular vectors.
The matrix ΣΣΣ is an N × M non-negative diagonal matrix containing the singular
values σ1, . . . , σN ,

ΣΣΣ =

⎡
⎢⎢⎢⎣

σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · σN · · · 0

⎤
⎥⎥⎥⎦ , (5.110)

for N < M . If N > M , ΣΣΣ has instead more rows than columns and contains the
singular values σ1, . . . , σM .

Using SVD, R̂x in (5.106) can be expressed in terms of U and a diagonal matrix
ΛΛΛ whose entries are the normalized and squared singular values σ 2

1 /M, . . . , σ 2
M /M,
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R̂x = 1

M
XXT = 1

M
UΣΣΣVT VΣΣΣT UT = UΛΛΛUT . (5.111)

Comparing (5.111) with (5.105), it is obvious that the eigenvectors associated with
PCA are obtained as the left singular vectors of U, i.e.,ΦΦΦ = U, and the eigenvalues
λk as σ 2

k /M . In a similar way, the right singular vectors of V contain information on
interbeat correlation as they are associated with R̂x , see below.

The method described in [22] includes various means for avoiding jumps at the
beat boundaries. Rather than using fixed positions of the onset and end relative to
a fiducial point, the positions are adjusted so that the magnitude of the jumps is
minimized. Gaussian windowing is applied to the resulting f wave signal to further
reduce the influence of jumps.

5.6.2 Multi-Lead PCA

Another approach to f wave extraction is to explore the redundant information in
multi-lead ECGs [97, 98]. Similar to single-lead PCA, the idea with multi-lead PCA
is to decompose the multi-lead ECG into a ventricular subspace, an atrial subspace,
and a noise subspace. Since multi-lead PCA differs in certain respects from single-
lead PCA, it is described in the following. The L × 1 vector x(n) contains the L
available leads at the time n,

x(n) =

⎡
⎢⎢⎢⎣
x1(n)

x2(n)
...

xL(n)

⎤
⎥⎥⎥⎦ , n = 0, . . . , Nt − 1, (5.112)

where Nt denotes the total number of samples, typically so many that several beats
are included. In contrast to single-lead PCA, where beat segmentation is required
before forming the data matrix in (5.100), the data vector in (5.112) does not require
segmentation since the ECG is processed on a sample-by-sample basis. The principal
components are obtained by

w(n) = ΦΦΦT x(n), (5.113)

where the columns of the matrix ΦΦΦ are defined by the eigenvectors of the L × L
matrixRx describing interlead correlation. Thismatrix is estimated from the observed
samples x(n) by

R̂x = 1

Nt

Nt−1∑
n=0

x(n)xT (n). (5.114)
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The transformation in (5.113) redistributes the energy of the original ECG leads so
that the most significant principal components contain information on the ventricu-
lar activity. Then, the next few components usually contain information on the atrial
activity, although there is no guarantee that the ventricular and atrial activities are
well-separated into different components. The remaining principal components con-
tain noise, and are therefore discarded. Hence, the counterpart to finding Nv and Na

in single-lead PCA is to find the principal component(s) related to the atrial activ-
ity. Again, no automated method has been devised for the identification of the atrial
component(s), although spectral analysis may be considered for finding the principal
component(s) most likely of atrial origin, cf. Sect. 5.9.

With multi-lead PCA, a global f wave signal is extracted, defined as a linear
combination of all the L leads, whereas single-lead PCA produces a lead-specific
f wave signal. From a clinical perspective, it is unclear how the global f wave signal
should be interpreted since its amplitude has been scaled by ΦΦΦ. However, lead-
specific f wave signals d̂(n)may be extracted using a transformation which is inverse
to the one given in (5.113) [4, 99],

d̂(n) = ΦΦΦw̃(n), (5.115)

where w̃(n) denotes that all components of w(n) are set to zero except the one which
contains f waves. If f waves are identified in more than one principal component, the
vector w̃(n) needs to be modified accordingly.

The standard 12-lead ECG was analyzed in [98], meaning the eight leads
V1, . . . ,V6, I, and II since the other four leads can be determined as linear combina-
tions of I and II. The minimum number of leads required for successful extraction of
an atrial component was not investigated. Therefore, it is unclear whether multi-lead
PCA can be applied to long-term, ambulatory ECGs which usually are recorded with
only three leads.

Figure5.14 illustrates multi-lead PCA when applied to a standard 12-lead ECG.
Visually, the atrial activity is most easily identified in the fourth principal component,
although the third and the fifth components also contain some activity. These three
components also contain various degrees of QRS-related residuals. The three first
components contain mostly ventricular activity, whereas the fifth and higher-order
components contain noise.

5.6.3 Multi-Lead PCA of Single Beats

The dominant T wave is a concept introduced to explain and characterize T wave
morphology in different leads, inspired by the observation that the T wave morphol-
ogy is strikingly similar in different leads [100, 101]. In each lead, the T wave may
be viewed as the projection of a main waveform, i.e., the dominant T wave, and a
weighted sum of its derivatives. Singular value decomposition can then be used to
find the dominant T wave, involving the data matrix X whose columns are defined by
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Fig. 5.14 f wave extraction using multi-lead PCA. a Original eight-lead ECG and b the corre-
sponding principal components (PCs), displayed in order of decreasing variance. All PCs, except
the first, have been scaled by a factor of 10
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the samples of the JQ interval in the different leads. The dominant T wave is taken as
the eigenvector, i.e., the column of U in (5.109), corresponding to the largest singular
value.

Since the dominant T wave concept is closely related to multi-lead PCA, it is
hardly surprising that this concept has been considered when developing a method
for f wave extraction [37]. An important difference, though, is that the JQ interval
of a single beat is analyzed, not the JQ interval of many beats as done in single-lead
PCA, motivating single beat cancellation as the name of the method. In each lead,
the T wave model, based on the most significant eigenvector, is scaled to fit to the
observed T wave for subtraction. Then, the atrial activity within the QRS interval is
estimated by interpolation between the two enclosing JQ intervals (with cancelled
T waves), using the harmonic model in (5.47). Thus, no attempt is made to retrieve
the f waves concealed inside the QRS complex. This procedure is repeated for all
beats in the ECG, including ectopic beats.

The dominant T wave is defined as a linear combination of the most significant
eigenvector and its derivatives [37, 100], see also [102, 103]. Since the eigenvector
may contain noise which affects the derivatives quite considerably, a smooth mathe-
matical function is fitted to the eigenvector fromwhich the derivatives are computed.
The following function was employed for modeling the T wave, defined as the prod-
uct of two logistic functions:

fT(t;θθθT) = p1

(
p2 + 1

1 + ep3(t−p5)
· 1

1 + ep4(t−p5)

)
, (5.116)

where p1 is a scale factor, p2 defines the wave offset, p3 and p4 define the positive
and negative slope, respectively, and p5 defines the timing of the T wave apex. These
five parameters constitute together the vector θθθT. The sporadically occurring U wave
is modeled by a Gaussian function,

fU(t;θθθU) = p6e
−(t−p8)2/p27 , (5.117)

where p6 is a scale factor, p7 defines thewidth, and p8 defines the timingof theUwave
apex. These three parameters together define the vector θθθU. The T-plus-U wave
model, given by fT(t;θθθT) + fU(t;θθθU), is fitted to the most significant eigenvector,
using nonlinear optimization to find θ̂θθT and θ̂θθU. The two waves of the l-th lead are
modeled by the following linear combination [37]:

x̂l(t) = â0,l fT(t; θ̂θθT) + â1,l f
′
T(t; θ̂θθT) + â2,l f

′′
T (t; θ̂θθT) + â3,l fU(t; θ̂θθU), (5.118)

where the fourweight estimates â0,l , . . . , â3,l are obtained using LS estimation. Thus,
a total of 12 parameters are needed to model the T-plus-U wave in each lead.
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It should be noted that the estimation of theUwavemodel parameters in individual
beats is challenged by the fact that the U wave is usually concealed by f waves, since
the U wave amplitude is usually about 10% of the T wave amplitude [104]. The
U wave has actually been studied in the presence of f waves, but then only after
ensemble averaging of several QRST-U complexes [105]. The results showed that
the U wave amplitude in lead V1, on average, is 0.17 times the amplitude of the
f wave (ranging from 0.1 to 0.4).

In the JQ interval, the f wave signal is obtained by subtracting x̂l(t) from the
original ECG, whereas, in the QRS interval, it is obtained by interpolation. The
desired f wave signal is obtained by concatenation of JQ and QRS intervals. Since
concatenation may introduce jumps at the interval boundaries, lowpass filtering was
applied to reduce their influence.

Single beat cancellation was found to produce considerably smaller QRS-related
residuals than ABS, a result which applied to both dominant and ectopic beats [37].
This result is hardly unexpected since the fwave signal in theQRS interval is obtained
by interpolation using the samples of the enclosing JQ intervals.

5.7 Singular Spectral Analysis

The identification of ventricular and atrial subspaces represents, whether single- or
multi-lead, the Achilles heel of the PCA-based methods, probably explaining why
these methods have not been much used in clinical studies. By instead focusing on
the samples of the TQ intervals, the problem of identifying an (unwanted) ventricular
subspace is transformed into a simpler problem where only the atrial subspace has to
be identified. The f wave signal in the QRST interval is estimated by projecting the
QRST samples on the atrial subspace [106]. The method for subspace identification
is based on singular spectral analysis (SSA) [107, 108], a method which is related
to single-lead PCA since the eigenvectors and eigenvalues of a correlation matrix
plays a central role in both methods. However, whereas single-lead PCA involves a
correlation matrix estimated from an ensemble of time-aligned QRST complexes,
the correlation matrix of SSA is estimated from the samples of consecutive TQ inter-
vals. The motivation for pursuing SSA was to extract an f wave signal suitable for
estimation of the DAF, whereas other characteristics of the extracted signal, such as
amplitude and morphology, were not the focus of interest [106].

The f waves are observed in the TQ intervals (ignoring the presence of U waves
and noise), whereas they are considered missing in the QRST intervals. In order
to produce a reliable estimate of the correlation matrix, the ECG signal needs to
be long enough so that it includes sufficiently many TQ intervals. Assuming that
the locations of the QRST intervals have previously been determined, the binary
indicator function g(n) is introduced to describe whether the f waves, here denoted
x(n), n = 0, . . . , N − 1, are missing,
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g(n) =
{
1, n ∈ TQ intervals,
0, otherwise.

(5.119)

Moreover, x(n) is assumed to be a wide-sense stationary process characterized by
M different lags of the correlation function rx (k). The following estimator handles
the fact that some observations are missing [109], see also [110, 111],

r̂x (k) =

N−k−1∑
n=0

x(n)g(n)x(n + k)g(n + k)

N−k−1∑
n=0

g(n)g(n + k)

, |k| = 0, . . . , M − 1, (5.120)

where r̂x (k) = r̂x (−k). The estimated correlation function r̂x (k) is used to form the
M × M correlation matrix, defined by

Rx =

⎡
⎢⎢⎢⎢⎢⎣

rx (0) rx(−1) rx(−2) · · · rx (−M + 1)
rx(1) rx (0) rx (−1) · · · rx (−M + 2)
rx (2) rx (1) rx (0) · · · rx (−M + 3)

...
...

...
. . .

...

rx (M − 1) rx (M − 2) rx (M − 3) · · · rx (0)

⎤
⎥⎥⎥⎥⎥⎦

. (5.121)

It should be noted that Rx differs in structure from the correlation matrix in (5.106)
since it is related to a wide-sense stationary process. Thus, the matrix is not only
symmetric, but it is also Toeplitz.

Similar to single-lead PCA, the eigenvectors ϕ1(n), . . . , ϕM(n) and the eigen-
values λ1, . . . , λM of Rx are computed for the purpose of identifying the atrial sub-
space. The eigenvectors associated with the Ma largest eigenvalues are considered
to span the atrial subspace, whereas the eigenvectors associated with the remain-
ing eigenvalues span the noise subspace. Thus, the crucial step of this extraction
method is to determine the dimensionality Ma( M) so that the atrial subspace
is composed of only wanted signal components. Figure5.15 displays the 10 most
significant eigenvectors of Rx , where rx (k) is estimated from the TQ intervals of
a 1-min ECG recorded in AF. Most eigenvectors have a sinusoidal shape, where
the frequency of the first three eigenvectors is approximately equal to the DAF. For
increasingly smaller eigenvalues, the frequency of the eigenvectors becomes increas-
ingly higher. As noted in [106], and illustrated in Fig. 5.15, an oscillatory mode is
typically characterized by a pair of sinusoidal eigenvectors with the same frequency,
but with the phase shifted about 90◦.

Rather than determining the weights wi , i.e., the i-th principal component, by
correlating x(n)with ϕi (n) in a fixed-location interval as done in (5.102), the weights
are nowdetermined as a function of time by lettingϕi (n) slide on a sample-by-sample
basis across x(n), using a window length of M samples,
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Fig. 5.15 a Single-lead ECG (grey areas indicating the QRST intervals) and b the corresponding
10 most significant eigenvectors of the correlation matrix in (5.121), determined using the estimator
in (5.120). The DC level was removed before estimation

wi (n) =
M−1∑
j=0

x(n + j)ϕi ( j), n = 0, . . . , N − M, i = 1, . . . , Ma . (5.122)

It should be emphasized that wi (n) is computed in both QRST and TQ intervals,
whereas ϕi (n) is estimated from TQ intervals.

In single-lead PCA, the f wave signal estimate d̂(n) is obtained as an orthogonal
expansion of the eigenvectors, cf. (5.108). However, since wi (n) is estimated for
every n and shorter than x(n), i.e., (N − M + 1) instead of N , the f wave signal is
estimated by means of the following two steps, which together are optimal in the LS
sense [107]. First, the i-th signal component d̂i (n), associated with ϕi (n), is obtained
(“reconstructed”) by
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d̂i (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n + 1

n∑
j=0

wi (n − j)ϕi ( j), n = 0, . . . , M − 2,

1

M

M−1∑
j=0

wi (n − j)ϕi ( j), n = M − 1, . . . , N − M,

1

N − n

M−1∑
j=n−N+M

wi (n − j)ϕi ( j), n = N − M + 1, . . . , N − 1,

(5.123)
where d̂i (n), i = 1, . . . , Ma, may be viewed as a result of filtering wi (n) using the
impulse response ϕi (n). Another interpretation of (5.123) is that d̂i (n) is obtained
as a weighed reconstruction of each eigenvector, sampled at different lags. Second,
the desired estimate of the f wave signal is obtained by summing the Ma signal
components d̂i (n),

d̂(n) =
Ma∑
i=1

d̂i (n). (5.124)

The number of lags M and the number of components Ma constitute the two
main design parameters of SSA. The choice of M determines the lowest frequency
which can be captured by the reconstructed signal.With respect to f wave signals, this
implies that M should be chosen so that frequencies down to 3–4 Hz can be captured.
The number of components Ma should either be set to a fixed value, or determined
by means of an iterative version of SSA. In the latter case, new components d̂i (n)

are added until the reconstructed signal d̂(n) no longer improves significantly; this
version is known as iterative singular spectral analysis [112]. In [106], the recon-
struction of d̂(n) was performed using at least Ma = 7 components.

The iterative SSA method rests on the assumption that x(n) is a wide-sense sta-
tionary process, implying that the DAFmust be constant within the analyzed interval
[0, N − 1]. Accordingly, the extracted f wave signal cannot reflect the time-varying
spectral structure commonly observed in f wave signals [50]. As noted earlier, the
iterative SSA method was introduced to fill in samples in the QRST intervals so
that the DAF could be more reliably estimated, while characterization of the spectral
harmonics was not addressed.

Figure5.16 illustrates f wave extraction using iterative SSA, as well as two-
template ABS for comparison. As expected, the f wave signal extracted by the former
method is characterized bymore pronounced narrowband oscillations than the f wave
signal of the latter method. Moreover, it is noted that the f wave signal extracted by
iterative SSA exhibits less variation in amplitude in the QRST intervals than in the
TQ intervals.
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Fig. 5.16 f wave estimation using iterative SSA (thick line) at a heart rate of 75 beats per minute.
For comparison, the estimate produced by two-template ABS is displayed (thin line). Grey areas
indicate the QRST intervals. Note that the two signals coincide in the TQ intervals. (Reprinted
from [106] with permission)

5.8 Autoregressive Modeling and Prediction Error Analysis

Rather than exploring the second-order statistics in a nonparametric fashion for
separating the mixture of signal sources of atrial, ventricular, and extracardiac origin,
as done inmulti-lead PCA, the sources can be separated bymodeling the fwave signal
as an AR process [113], described in this section. The model-based approach also
explores the second-order statistics, but in a parametric fashion. The following linear
observation model is assumed:

x(n) = As(n), (5.125)

where A is an L × L instantaneous, unknown mixing matrix.7 The vector s(n) con-
tains L different “source” signals,

s(n) =

⎡
⎢⎢⎢⎣
s1(n)

s2(n)
...

sL(n)

⎤
⎥⎥⎥⎦ , (5.126)

whereas x(n) contains the L “sensor” signals, i.e., the ECG leads. For the situation
when the number of sensors and sources differ, the number of sensors is usually
assumed to be at least as many as the number of sources. Assuming that s1(n) is the
atrial source, the goal is to find an L × 1 “demixing” vector w such that the desired
f wave signal d(n) is expressed as

d(n) = s1(n) = wT x(n), (5.127)

7The observation model in (5.125) is also central to the methods exploring higher-order statistics
for independent component analysis, see Sect. 5.9. The mixing matrix A is here constrained to be
orthogonal, whereas not so in Sect. 5.9.
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where wT w = 1. The demixing operation in (5.127) is similar to the linear transfor-
mation in (5.113), but with the important difference that the “demixing” vector in
(5.113) corresponds to one of the eigenvectors of R̂x , whereas w in (5.127) is deter-
mined from optimization of a cost function involving the linear prediction errors, see
below.

Modeling of d(n) as anARprocesswas already considered in Sect. 5.3,whereAR-
based interpolation was used to replace large-amplitude QRS residuals; the model
parameters were estimated in the enclosing JQ intervals. Autoregressive modeling
is closely related to the linear prediction problem in which d(n) is predicted from
the P preceding samples d(n − 1), . . . , d(n − P), using a finite impulse response
(FIR) filter structure of the predictor,

d̂(n) =
P∑

p=1

apd(n − p). (5.128)

Initially, the model parameters a1, . . . , aP and the model order P are assumed to
be known; however, to make the method practical, the parameters need, at a later
stage, to be estimated from the observed signal x(n). The prediction error ed(n) of
the demixed signal d(n),

ed(n) = d(n) − d̂(n), (5.129)

can, by use of the demixing equation in (5.127), be expressed in terms of the observed
signal x(n),

ed(n) = wT ex (n), (5.130)

where

ex (n) = x(n) −
P∑

p=1

apx(n − p). (5.131)

Similar to the standard approach to estimating the AR model parameters, the
demixingvectorw canbe foundbyminimizing themean square prediction error [114]

E[e2d(n)] = wT E
[
ex (n)eTx (n)

]
w, (5.132)

subject to the constraint that wT w = 1. Unfortunately, such an approach may not
always lead to the extraction of the source signal s1(n), because the minimum value
of E[e2d(n)] may correspond to another source signal, even when the AR parameters
modeling s1(n) are known a priori [113]. This serious limitation can be addressed
by noting that the prediction error related to s1(n), i.e., ed(n), should be a white
process, whereas the prediction errors related to the other source signals should not
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(this observation assumes that the model order P is large enough). Introducing the
mean cross prediction error E[ed(n)ed(n − q)] for studying the whiteness of ed(n),

E[ed(n)ed(n − q)] = wT Ex (q)w, q = 1, . . . , P, (5.133)

where

Ex (q) = E
[
ex (n)eTx (n − q)

]
, (5.134)

the goal is to find that particular w which sets wT Ex (q)w equal to zero, reflecting
that ed(n) is uncorrelated at the time lag q. Instead of finding the roots which solve
wT Ex (q)w = 0, minimization of the following cost function, themean square cross
prediction error (MSCPE), is proposed for finding w [113]:

J (w; q) = wT Ex (q)ET
x (q)w, 0 < q ≤ P, (5.135)

which again is subject to the constraint that wT w = 1. It is well-known that the
minimization of J (w; q) is equivalent to finding the eigenvector which corresponds
to the smallest eigenvalue of the symmetric matrix Ex (q)ET

x (q) [115]. The “square”
factor appearing in the MSCPE is related to squaring of the mean cross prediction
error in (5.133), (

wT Ex (q)w
)2 = wT Ex (q)wwT ET

x (q)w. (5.136)

Minimizing this expression implies that the projection of the vector wT Ex (q) onto w
is minimized. Since E[ed(n)ed(n − q)] should be equal to zero due to the whiteness
property, this process is equivalent to minimizing the norm of wT Ex (q) itself, as
obtained by minimizing the cost function J (w; q).8

To speed up the determination of w, the input signal x(n) is whitened, i.e., its
components are decorrelated and scaled to have unit variance. Whitening represents
a standard preprocessing technique in blind source separation [95, 116]. Recalling
that the correlation matrix Rx can be decomposed into its eigenvectorsΦΦΦ and eigen-
valuesΛΛΛ,

Rx = ΦΦΦΛΛΛΦΦΦT , (5.137)

the following linear transformation whitens x(n),

xw(n) = ΛΛΛ− 1
2ΦΦΦT x(n), (5.138)

since
E[xw(n)xT

w(n)] = ΛΛΛ− 1
2ΦΦΦT E[x(n)xT (n)]ΦΦΦΛΛΛ− 1

2 = I. (5.139)

8Alternatively, the mean cross prediction error E[ed (n)ed (n − q)] in (5.133) may be minimized by
introducing the cost function J ′(w; q) = wT (Ex (q) + ET

x (q))w. The eigenvector corresponding to
the smallest eigenvalue of the symmetric matrix Ex (q) + ET

x (q)minimizes J ′(w; q), and therefore
taken as an estimate of w.
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Thus, the whitened signal xw(n) replaces x(n) in the algorithm for determining w,
defined by (5.128)–(5.135).

The model parameters a = [a1 · · · aP
]T

are estimated using an iterative proce-
dure. The initial estimate of a is coarse in the sense that it is determined froman fwave
signal d̂(0)(n), formed by concatenation of the samples contained in the latter half
of consecutive RR intervals (rather than by concatenation of successive TQ intervals
as done in, e.g., [25, 117]).9 Cubic spline interpolation is employed for reducing the
jumps which tend to occur at the boundaries of the TQ intervals. Then, the initial esti-
mate â(0) is used for determining w(0), which in turn is used for producing the f wave
signal estimate d̂(1)(n) computed using (5.127). Since d̂(1)(n) is a connected signal,
i.e., defined for all samples, rather than a concatenated signal as d̂(0)(n), the new
estimate â(1) is expected to be more accurate. The demixing vector w(1) is then used
for producing the f wave signal estimate d̂(2)(n), and so on. The iterative procedure
is terminated when

‖â(i) − â(i−1)‖ < ηa, (5.140)

where ηa is a preset tolerance.
A weak point of this iterative procedure is the initial estimate d̂(0)(n), which may

not be representative as the lengths of concatenated intervals can be very short, thus
jeopardizing convergence. The performance evaluation presented in [113], involv-
ing only eight 8-s ECGs from AF patients, does not shed much light on convergence
properties. Therefore, the influence of a nonrepresentative d̂(0)(n) on overall perfor-
mance remains to be investigated. Another aspect to be investigated is how often the
AR parameter estimates need to be updated when signals much longer than 8s are
analyzed. Yet another aspect relates to how critical the choice of ηa in (5.140) is to
performance.

While the cost function J (w; q)may be evaluated for any time lag q = 1, . . . , P ,
only J (w; q = 1) was considered in [113]. One reason for this particular choice is
that minimization of a short time lag is likely to convey more important informa-
tion on whiteness than does minimization of larger time lags.10 The definition of a
cost function involving all P lags has not been considered in the context of f wave
extraction.

Figure5.17 illustrates f wave extraction in five patients with persistent AF. Sev-
eral interesting observations can be made from the extracted f wave signals. For
beatswith dominantmorphology, large-amplitudeQRS-related residuals do not seem
to be much of an issue, whereas VPBs remain uncanceled in the extracted signal
(patients #2 and #4). As can be observed from the TQ intervals, the f wave ampli-
tude of the extracted signal is sometimes much larger than that of the original ECG

9An overview ofmethods for ARmodel parameter estimation, as well as formodel order estimation,
can be found in, e.g., [4, 118].
10The analysis of lagged covariance matrices for the purpose of separating different signal sources
with a temporal structure was first explored in a nonparametric setting, leading to the AMUSE
algorithm [119], see also [95, Chap. 18]. Using that algorithm, the time lag is usually chosen to be
q = 1, just like in [113].
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Fig. 5.17 f wave extraction in single-lead ECGs using autoregressive modeling and prediction
error analysis. The ECG was acquired from five different patients with persistent AF. (Reprinted
from [113] with permission)

(patients #1 and #5), whereas, in other situations, f waves which are clearly visible
in the original ECG are barely visible in the extracted signal (patient #3). More-
over, the f wave morphology observed in the TQ intervals of the original ECG is not
always preserved in the extracted signal. Thus, the method appears to be unsuitable
for characterization of f wave amplitude and morphology, see, e.g., [57, 58].

5.9 Independent Component Analysis

Independent component analysis (ICA) has the following linear observation model
at its core [95, 120],

x(n) = As(n), (5.141)

where the observed signals x(n) are a mixture of the source signals s(n). This model
has already been considered for blind source separation based on AR modeling and
prediction error analysis, cf. (5.125). The mixing matrix A is assumed to be square
(L × L), i.e., the number of sources is assumed to be equal to the number of ECG
leads, and invertible. Since neither s(n) nor A are known a priori, they have to be
estimated from the observations, contained in the matrix

X = [x(0) x(1) · · · x(N − 1)
]
. (5.142)
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The source signals s(n) are assumed to be statistically independent of each other,
characterized by the joint probability density function

p(s(n)) =
L∏

l=1

pl(sl(n)), (5.143)

where the l-th source signal sl(n) is characterized by an (unknown) non-Gauss-
ian probability density function pl(sl(n)). Relying on the central limit theorem, it is
well-known that mixing with A causes x(n) to becomemore Gaussian than s(n). The
assumptions of statistical independence and non-Gaussianity are general in nature
as they do not impose any constraint on the spectral properties of the source signals,
whereas source separation based on ARmodeling does. It should be emphasized that
the mixing is instantaneous, meaning that the model does not involve any filtering of
the source signals (models involving filtering are known as “convolutive mixtures”).
Another important observation is that themodel in (5.141) does not explicitly account
for the presence of noise. However, when the noise originates from a separate source,
it should end up in one of the independent components, thus being separated from
the other signal sources.

The goal of ICA is tofind a demixingmatrixW producing statistically independent
estimates ŝ(n) of the source signals s(n),

ŝ(n) = Wx(n), (5.144)

commonly referred to as “independent components”. Owing to the two assumptions
of statistical independence and non-Gaussianity of the source signals, it is always
possible to identify a demixing matrix W [121]. An obvious solution is to chose
the demixing matrix as W = A−1, however, this choice is made difficult since the
estimation of W involves ambiguity with respect to permutation, amplitude, and sign
of the source signals. The order of the independent components is ambiguous as they
may be permuted; thus application-specific techniques are required to identify the
independent component(s) of special interest. Moreover, the amplitudes and signs of
the independent components cannot be uniquely determined since x(n) is the product
of two unknown quantities, i.e., A and s(n). In matrix terms, these ambiguities may
be described by a product of the permutationmatrixP, the diagonal amplitude scaling
matrix B with positive elements, and the diagonal sign matrix S with elements ±1;
all three matrices with dimension L × L . Then, if W is a demixing matrix producing
statistically independent estimates ŝ(n), so is also the matrix product PBSW.

The observed signal x(n) is usually preprocessed before being used in the
computation of the independent components. Preprocessing includes centering, i.e.,
subtraction of the mean in each independent component, and whitening, i.e., decor-
relation and variance normalization. Whitening is usually accomplished with PCA,
cf. (5.138), as it reduces the dimensionality of the problem and speeds up the maxi-
mization of non-Gaussianity, see below.
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A description of the many methods developed for estimating W is far beyond the
scope of this text; the interested reader is referred to the comprehensive literature
on this topic, see, e.g., [95] and references therein. Here, two aspects central to ICA
are briefly considered: how to quantify non-Gaussianity and how to chose W so that
non-Gaussianity is maximized.

When decomposing ECG leads into independent components, the source signals
should be non-Gaussian, otherwise ICA will fail. Therefore, a measure needs to be
defined quantifying the degree of non-Gaussianity. Kurtosis is a well-knownmeasure
for describing the peakedness of a distribution in relation to theGaussian distribution.
For a continuous-valued, scalar random variable y with zero-mean and unit variance,
kurtosis is defined by

κy = E
[
y4
]− 3. (5.145)

The kurtosis is equal to zero for Gaussian random variables, whereas it is negative
for sub-Gaussian (“flat”) distributions and positive for super-Gaussian (“spiky”) dis-
tributions. Therefore, the absolute value of the kurtosis may serve as a measure of
non-Gaussianity.

Another, more commonly used measure of non-Gaussianity is based on the dif-
ferential entropy of the scalar random variable y,

H(y) = −
∫ ∞

−∞
p(y) ln p(y)dy, (5.146)

where p(y) is its probability density function. For random variables with equal vari-
ance, H(y) reaches its maximum when y is Gaussian. Based on H(y), a normalized
measure, named negentropy, is defined by

J (y) = H(yG) − H(y), (5.147)

where yG is a zero-mean, unit variance Gaussian random variable. The negentropy
J (y) is positive for all random variables, except for the Gaussian ones when J (y)
is equal to zero. Due to difficulties with estimating p(y), J (y) is not computed
directly from its definition, but can be well-approximated by the use of expectations
of general nonquadratic functions

J (y) ≈ (E [g(y)] − E [g(yG)])2 , (5.148)

where g(x) = − exp(−x2/2) is a common choice. This approach to approximation
turns out to be more robust to outliers than are approximations involving “polyno-
mial” moments such as E

[
y4
]
in (5.145) [95].
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The other central aspect of ICA relates to themaximization of the non-Gaussianity
measure, where the goal is to find the weight (column) vectors w1, . . . , wL , together
definingW. Similar to the f wave extraction method described in Sect. 5.8, whitening
of x(n), defined by

xw(n) = ΛΛΛ− 1
2ΦΦΦT x(n), (5.149)

is performed before the estimation of W, implying that the demixing equation in
(5.144) may be rewritten as

ŝ(n) = Wx(n) = Uxw(n). (5.150)

The goal is then to find an estimator of the new demixing matrix U = [u1 · · · uL
]T
,

whereas the two matrices related to whitening, i.e., ΛΛΛ and ΦΦΦ, are estimated as
described in Sect. 5.8.

The FastICA algorithm offers fast, iterative maximization of an approximation of
the negentropy, and is one of the most popular methods for estimating U [95, 122].
With this algorithm, described by pseudocode in Table5.1, the weight vectors uk

are found successively subject to the constraint that the estimate ûk is orthonormal
to the previously found estimates û1, . . . , ûk−1. The weight update equation finds a
vectoruk such that the projectionuT

k xw(n)maximizes non-Gaussianity. This equation
involves the first and second derivatives of the function g(x), denoted g′(x) and
g′′(x), respectively, and may be defined as exemplified above. To make the algorithm
practical, the expectations in the weight update equation are replaced by sample
averages, computed from the observations in X. It should be noted that the FastICA
algorithm is particularly simple to use since no step size parameter is involved, which
otherwise is required in gradient-based algorithms such as the LMS algorithm.

Table 5.1 The FastICA algorithm for estimating the independent component ûk

xw(n) = ΛΛΛ− 1
2 ΦΦΦT x(n), n = 0, . . . , N − 1, (whitening)

uk = uk,init, (initialization as random vector)
ε = ∞,

while ε > η, (η is a preset convergence tolerance)
ũk ← E[xw(n)g′(uT

k xw(n))] − E[g′′(uT
k xw(n))]uk , (weight update)

ũk ← ũk −
k−1∑
j=1

(ũT
k û j )û j , (orthogonalization)

ũk ← ũk/‖ũk‖, (weight normalization)
ε = ‖ũk − uk‖, (error)
uk ← ũk ,

end
ûk = ũk .
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5.9.1 f Waves and Modeling Assumptions

Independent component analysis has been considered for f wave extraction in several
papers [25, 123–126], see also the reviews [73, 127]. Similar tomulti-lead PCA, ICA
requires that the independent component with atrial activity is identified before the
f wave signal can be analyzed. In practice, the “atrial” component is rarely a pure
f wave signal, but, to various degrees, mixed with activity originating from other
sources.

The identified atrial component represents a global f wave signal, with contri-
butions from all analyzed leads, whose amplitude is not easily translated to clinical
terms since the signal variance has been normalized.Hence, lead-specific information
is lost as the components derive from one or several signal sources. The independent
components with atrial activity may, however, be transformed back to the individual
leads using a linear transformation [99].

Overall, ICA has been found robust to modeling errors, owing to that the under-
lying signal model involves just a few assumptions [128]; notably, none of the
assumptions concern rhythm irregularity or beat morphology. Nevertheless, the few
statistical assumptions involved with ICA need to be reasonably valid. While the
assumptions cannot be easily verified since the source signals cannot be observed,
different arguments have been put forward to make it plausible that the ICA model
is suitable for f wave extraction.

Themain signal sources are related to ventricular activity, atrial activity, and extra-
cardiac noise, e.g., muscular activity, respiration, and electrode movement. These
sources are assumed to be statistically independent. While the ventricular activity is
coupled to the atrial activity during normal sinus rhythm, these two activities may
be treated as independent statistical processes during AF as the atrial wavefronts
initiate ventricular depolarization at highly irregular time instants. The assumption
of statistical independence between the two cardiac sources and the extracardiac
sources seems to be largely accepted, although respiration and ventricular activity are
dependent since QRS amplitude, to a certain degree, is mechanically modulated by
respiration (cf. page141).While it has been shown that controlled respiration, through
the autonomic nervous system, modulates DAF in certain patients with permanent
AF [111], no one has reported on mechanical modulation of spontaneous respiration
on f wave amplitude.

The assumption of non-Gaussian source signals is valid for ventricular activ-
ity, because histogram analysis of the ECG samples, at least at reasonably good
SNRs, shows that the kurtosis is much larger than zero, i.e., the ventricular activ-
ity is clearly super-Gaussian [5, 123]. On the other hand, this assumption is more
questionable for atrial activity as the kurtosis may approach zero [25], although it
was initially believed that the atrial activity could be described by a sub-Gaussian
distribution [123]. The statistical distributions of the extracardiac noise sources have
not received much attention in the literature, although it has been noted that muscular
activity can range from sub-Gaussian [129] to approximately Gaussian [5], implying
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that the independent component(s) with atrial activity may contain a certain amount
of muscular noise.

The validity of assuming linear, instantaneous mixing, modeled by W, may be
motivated by the structure of the solution to the forward problem [123], see also [130].
In this solution, the electrical potential on the body surface results from adding
partial contributions of the potentials on the epicardial surface, where each point is
weighted by a linear, instantaneous transfer coefficient. The coefficients account for
the conductivity of the human torsowhen approximated as an isotropic, homogeneous
volume conductor. The validity of this assumptionmay be questioned though because
the cardiac source changes its position over time due to, e.g., respiration [5], thus
calling for more advanced ICA methods which allow the instantaneous mixture
matrix to change over time.

A convolutive mixture model has been investigated for f wave extraction [131].
In that model, being more complex than the instantaneous mixture model in (5.141),
each element in W is a linear, time-invariant filter instead of a scalar. Consequently,
memory is introduced in the model. However, the results, deriving from a set of
simulated ECG signals, showed that the instantaneous mixture model yields better
performance than methods based on a convolutive mixture model with finite impulse
response filters.

5.9.2 f Wave Identification

Identification of the f wave component(s) is a critical step in ICA. The first algorithm
proposed for this purpose made use of kurtosis-based reordering of the components,
exploring the assumption that f waves are associated with sub-Gaussian components,
whereas noise and artifacts are associated with approximately Gaussian components
and ventricular activity with super-Gaussian sources [123]. The following estimator
of kurtosis was used:

κ̂i = 1

N

N−1∑
n=0

(
ŝi (n) − μ̂i

σ̂i

)4
− 3, (5.151)

where ŝi (n) is the i-th independent component, and μ̂i and σ̂i are the related sam-
ple mean and sample variance, respectively. Figure5.18 illustrates the outcome of
ICA when processing a 12-lead ECG, with the independent components ordered
according to their kurtosis. The first component contains most of the f waves, and
is relatively free of large-amplitude QRS residuals; some of the other components
are also influenced by atrial activity. The amplitude histograms in Fig. 5.19 show
that the first component is sub-Gaussian due to its negative kurtosis, whereas the last
component is super-Gaussian. Ordering according to kurtosis was combined with
power spectral analysis of the sub-Gaussian components in order to validate whether
a dominant spectral peak exists in the interval [4, 12] Hz, i.e., the interval where the
DAF is contained [123].
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Fig. 5.18 f wave extraction using independent component analysis. a Original 12-lead ECG and
b resulting independent components, displayed for increasing values of kurtosis (top to bottom).
(Reprinted from [123] with permission)

Kurtosis alone is insufficient for accurate identification of the f wave compo-
nent. One important reason is that the f wave characteristics change as the disease
progresses, from almost flutter-like, well-organized, and clearly visible f waves to
disorganized and often waxing and waning, making it increasingly difficult to distin-
guish the f wave component from noise components using kurtosis. Even worse, the
f waves turn out to be approximately Gaussian in patients with persistent or perma-
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12 = 31.91 =−0.8

Fig. 5.19 Amplitude histogram of the samples in a component #1 containing atrial activity, and
b component #12 containing ventricular activity, both displayed in Fig. 5.18. A fitted Gaussian
probability density function is superimposed for comparison. Kurtosis is denoted k in the figure.
(Reprinted from [123] with permission)

nent AF, causing problems for ICA which cannot separate more than one Gaussian
source [127].

An improved approach to atrial component identification is to supplement kurtosis
ordering and spectral analysis with a technique which retains the f wave components
and excludes the ventricular components [25], see also [132]. Since the ventricular
components usually have high kurtosis, they can be excluded by a simple thresh-
old test (using a threshold of 1.5, most ventricular components can be excluded
accurately). The nonventricular components, i.e., atrial activity, noise, and artifacts,
whose kurtosis is close to zero, are separated using second-order blind identification
(SOBI). This technique aims at separating a mixture of uncorrelated sources with
different spectral content by analyzing second-order statistics which account for tem-
poral information of the sensor signals [133], see also [95, Chap. 18]. To achieve this
aim, SOBI finds a transformation that simultaneously diagonalizes several correla-
tion matrices at different lags. Since, in general, no transformation exists which can
handle such a strict condition, a function is introduced which measures the degree
of joint (approximate) diagonalization at different lags. Similar to other ICA-based
techniques, the component with a spectral peak in the interval [4, 12] Hz is selected
as the one containing f waves. It may be noted that SOBI bears some resemblance
to the AR-based method in Sect. 5.8, since both methods involve the diagonalization
of one or several correlation matrices.

5.10 Performance Measures

Awealth of measures have been proposed for evaluating the performance of methods
for f wave extraction. Depending on whether the ECG signal is real or simulated, dif-
ferent types of performance measures are usually employed. Performance evaluation
based on real ECGs relies on indirect measures which, for example, reflect dispropor-
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tionately large changes in f wave amplitude in the QRS interval. On the other hand,
performance evaluation based on simulated ECGs allows direct quantification of the
error between the extracted and true f wave signals, so that well-established mea-
sures can be employed, e.g., the MSE or the crosscorrelation coefficient. In several
studies, more than one measure is employed to provide a more detailed description
of performance. Unfortunately, since the measures, as well as the data sets used for
evaluation, differ between studies, it is rarely possible to make a fair comparison of
performance.

In the following, the simulated f wave signal in single-lead ECGs is denoted
d(n), and the extracted f wave signal is denoted d̂(n). For multi-lead ECGs, the
corresponding matrix notations are D and D̂, respectively. All signals are assumed
to have a length of N samples, which either refers to the length of a beat or a signal.

5.10.1 Real Signals

An important aim of performance measures designed for real signals is to quantify
the amount of large-amplitudeQRS residuals, as it would evidence inadequate f wave
extraction. A simple approach is to compare the f wave amplitude which is repre-
sentative of the QRST interval with that which is representative of the TQ interval—
a comparison based on the assumption that good performance is manifested by a
insignificant difference in amplitude between the two intervals [99]. Amplitude may
be defined in various ways, for example, as the mean peak-to-peak f wave amplitude,
see Sect. 6.2. A nonparametric statistical test, such as the Mann–Whitney test, can
be used to determine whether the f wave amplitudes in the QRST interval and the
TQ interval are significantly different. The two statistical populations are created by
measuring the amplitude in several beats. This test provides a rather coarse descrip-
tion of performance as the results are expressed in terms of statistical significance of
differences between the two populations (expressed as a p value), assuming that the
statistical description is representative of performance.

Another approach to quantifying large-amplitude QRS-related residuals is to ana-
lyze the amplitude distribution of d̂(n) [37]. First, its median md̂ and interquartile
range Q50, i.e., the difference between 75-th and 25-th percentiles, are computed.
Then, rather than determining the standard deviation σd̂ directly from the samples, it
can be robustly estimated from Q50 through σd̂ = Q50/0.6745, where the scale fac-
tor derives from the properties of a normal distribution, assumed to describe f wave
amplitude. The percentage of samples in the QRS interval, whose absolute value
exceeds the threshold η = md̂ + 2σd̂ , defines the performance measure. A high per-
centage suggests that the extracted f wave signal contains large-amplitude residuals,
and vice versa.

The ventricular residue (VR) is a time domain measure describing the extent by
which the f wave amplitude in the QRS interval deviates from the overall f wave

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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amplitude in d̂(n) [22], see also [44, 76]. This measure involves the maximum
absolute amplitude, defined by

Amax,i = max
n=ni−NQ ,...,ni+NQ

(|d̂(n)|), (5.152)

where ni is the occurrence time of the i-th QRS complex, and 2NQ + 1 is the length
of the QRS window centered around ni . The overall power of d̂(n), determined in
the interval [N0, N1], is obtained as

Pd̂(N0, N1) = 1

N1 − N0 + 1

N1∑
n=N0

d̂2(n). (5.153)

For the i-th QRS complex, the ventricular residue measure is defined by

PVR,i = Amax,i ·
√
Pd̂(ni − NQ, ni + NQ)

Pd̂(0, N − 1)
. (5.154)

When an f wave signal is accurately extracted, PVR,i assumes a value close to
one, whereas it becomes increasingly larger as the amplitude of the QRS residuals
becomes increasingly larger, illustrated in Fig. 5.20. An elaborated version of PVR,i

has been proposed in [134], with the aim to better characterize both QRS-related
residuals as well as the accuracy of extracted f waves.

While the above-mentioned performance measures provide useful information
on the relationship between the local and the overall amplitude of d̂(n), they are
blind to perturbations in the spectral properties of d̂(n). An accurately extracted
f wave signal is usually characterized by a spectral peak which is narrower than the
peak of a signal with large-amplitude residuals; the location of the spectral peak is
determined by the DAF. This observation was the main motivation for introducing
the measure spectral concentration PSC, defined as the normalized spectral power in
a small interval centered around the dominant spectral peak located at ωp [25], see
also [106, 113, 131, 135–137],

Fig. 5.20 Illustration of the ventricular residue performancemeasure PVR,i , presented for eachQRS
complex (encircled), when applied to an f wave signal extracted using average beat subtraction.
(Modified from [22] with permission)
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PSC =

∫ α1ωp

α0ωp

Sd̂(ω)dω

∫ π

0
Sd̂(ω)dω

, (5.155)

where Sd̂(ω) is the power spectrum of d̂(n), and 0 < α0 < 1 and α1 > 1 define the
length of the integration interval; the interval is usually defined by α0 = 0.82 and
α1 = 1.17. The spectral concentration measure has mostly been used for evaluating
blind source separation methods, where the output is a global f wave signal, but also
to find the demixing vector w in ICA-based f wave extraction [135, 136]. Higher
spectral concentration has been considered synonymous with better extraction per-
formance. However, the relevance of PSC may be questioned since it is well-known
that the DAF often varies over time [50, 51], implying that the dominant spectral
peak may be broadened for physiological reasons. Neither does PSC provide much
information on the magnitude of QRST-related residuals. If higher spectral concen-
tration is synonymous with better performance, then a very narrow bandpass filter,
whose center frequency is defined by the DAF, would offer excellent performance.
However, such an approach to f wave extraction is not particularly convincing.

Wavelet entropy [138] measures the “degree of organization” of a signal by
decomposing d̂(n) into different scales (frequency bands) and analyzing the tempo-
ral distribution of the wavelet coefficient energy of each scale [139], see also [140]
and page 110.11 The use of wavelet entropy as a performance measure is motivated
by the observation that QRS-related residuals are associated with wavelet energies
which are unevenly distributed over time (though with a “periodicity” related to the
heart rate), whereas the wavelet energies of the f waves are much more evenly dis-
tributed over time. Accordingly, the entropy of a scale with f waves is higher than
the entropy of a scale containing QRS-related residuals. Since the spectral content
of the atrial and ventricular activities differ, each type of activity is characterized
by the wavelet entropy of certain, relevant scales; see [139] for details on the scales
used for analyzing the wavelet entropy. Since both the time and scale domains are
explored, performance measures based on wavelet entropy should provide a more
detailed characterization of d̂(n) than, for example, the above-mentioned amplitude
measures. It was claimed that “optimum suppression of ventricular activity would
be expected to maximize the wavelet entropies at scales corresponding to ventricular
and atrial activities [139].” While lower amplitude of the QRS-related residuals cer-
tainly implies higher entropy, it is unclear why the maximization of entropy implies
optimum suppression.

Another, much more indirect approach to evaluating performance is to analyze
whether ECG-derived measurements, such as the DAF, are in agreement with mea-
surements obtained from intracardiac, simultaneously recorded signals, where the
latter type of signal is treated as reference [1, 76].

11The wavelet coefficients are obtained by correlating the observed signal with the selected mother
wavelet at different dilations and time shifts.
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5.10.2 Simulated Signals

The MSE was the measure first employed for quantifying the performance of meth-
ods for f wave extraction, defined such that the overall noise level in a multi-lead,
simulated ECG signal is also taken into account [30]. For the i-th beat, the MSE is
defined by

PMSE,i = 1

N
‖Di − D̂i‖2F − σ̂ 2, (5.156)

where Di and D̂i relate to the i-th beat. First, an estimate of the noise level σ 2
l is

provided by the mean of the ensemble variance, defined in (5.23), of the l-th lead.
The ensemble variance is preferably determined from the ventricular signal before
the simulated f waves have been added. Hence, it is assumed that the noise level is
identical in all beats of a lead. The overall noise level σ̂ 2 of the ECG is obtained by
summing σ̂ 2

l across all the leads. The MSE PMSE is obtained by averaging the errors
PMSE,i for all beats. Among the performance measures used for simulated signals,
PMSE is the only one which handles multi-lead ECG signals and accounts for the
noise level, although the latter is done in a crude way since one single noise variance
estimate σ̂ 2 applies to all beats and leads.

For single-lead extraction, the MSE in (5.156) may be simplified to

PMSE = 1

N

N−1∑
n=0

(d(n) − d̂(n))2, (5.157)

where the correction of noise variance and information on beat occurrence, intro-
duced by the index i in (5.156), have been left out.

Due to its ease of interpretation, the NMSE has become a popular performance
measure [21, 22, 37, 56, 76, 141],

PNMSE =

N−1∑
n=0

(d(n) − d̂(n))2

N−1∑
n=0

d2(n)

. (5.158)

In most studies, the NMSE is defined as the square root of PNMSE, although such
a definition is incorrect from a formal viewpoint. A disadvantage with PNMSE is
its dependence on absolute amplitude, meaning that a certain error (d(n) − d̂(n))

becomes less significant when d(n) becomes larger—an undesirable property in
performance evaluation. Indeed, proper evaluation of the accuracy of amplitude esti-
mation is essential, since, for example, large-amplitude f waves have been found to
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predict AF termination in patients with persistent AF who have undergone catheter
ablation [142].

The Pearson’s correlation coefficient (CC) measures the similarity between d(n)

and d̂(n) [22, 76, 94, 136, 137, 141],

PCC =

N−1∑
n=0

d(n)d̂(n)

√√√√N−1∑
n=0

d2(n)

√√√√N−1∑
n=0

d̂2(n)

, (5.159)

where the mean values of d(n) and d̂(n) have been first removed. Identical morphol-
ogy of d(n) and d̂(n) is reflected by PCC being equal to one, whereas PCC drops
to zero as the two morphologies become increasingly different. The signed corre-
lation index is robust variation on PCC to measure morphologic similarity [143],
see also Sect. 6.4.3. An important limitation of PCC, as well as of PNMSE, is their
invariance to changes in amplitude.

The improvement in SNR, denotedΔSNR,may be defined as the ratio between the
power of the observed signal x(n) but without f waves, and the MSE of the extracted
f wave signal, i.e., PMSE [56],

ΔSNR = 10 · log10

N−1∑
n=0

(d(n) − x(n))2

N−1∑
n=0

(d(n) − d̂(n))2

. (5.160)

In contrast to the earlier performance measures for simulated signals, all being func-
tions of d(n) and d̂(n), ΔSNR involves the power of the ventricular activity and the
noise. As a consequence, the accuracy of the extracted f wave signal is evaluated
correctly when the power of the ventricular activity and the noise, i.e., the numerator
in (5.160), are held fixed from one realization of the simulated signal to the next.
If not, an improved SNR may be due to changes in the properties of the ventricular
activity and the noise.

Since the DAF f0 is known for a simulated f wave signal, the mean absolute
error (MAE) of the corresponding estimate f̂0 may serve as an indirect performance
measure [106],

PMAE = 1

M

M∑
m=1

| f0,m − f̂0,m |, (5.161)

where averaging is performed over an ensemble of M different f wave signals, for
example, created by adding different noise realizations to the ventricular activity.
The RMS error, being closely related to the MAE, has been used to evaluate how

http://dx.doi.org/10.1007/978-3-319-68515-1_6
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well changes in the DAF can be tracked on a sample-to-sample basis [56]. When
the f wave morphology is the target of the subsequent analysis, the performance
measures in (5.156)–(5.160) are preferred over PMAE.

5.11 Extraction Performance

Performance evaluation has been approached inmany different ways in the literature.
The data set used for evaluation may be composed of just a handful of signals or a
huge number of real ECGs complemented with simulated signals. Sometimes, the
performance of the proposed method is compared to some existing method, typically
ABS despite the fact that a great number of methods have been proposed since ABS
was conceived. Hence, the advancement in performance of a newmethod is not easily
established, especially since the data sets, as well as their sizes, vary considerably
from one study to another. The lack of comparative results, other than those involving
ABS, may be explained by the difficulties associated with implementing a method
from its description in the original publication.

The purpose of this section is not to rank the performance of the extractionmethods
described in this chapter, but to point out various aspects of performance in relation
to these methods. The aspects highlighted in the beginning of this chapter, including
the number of available leads, the presence of VPBs, and the duration of the analyzed
ECG, are here supplemented with some additional aspects with particular relevance
to performance evaluation.

QRS detection. Average beat subtraction and variants require that QRS complexes
are detected before any ensemble operation can be performed. If the QRS detector
operates at a low sampling rate, i.e., much below 1 kHz, it is necessary to improve
the accuracy of the occurrence times through time alignment of all QRS complexes
of the ensemble relative to a template QRS [4].

In general, methods based on adaptive filtering and multi-lead, blind source sep-
aration do not require QRS detection, although the ESN requires detection for con-
struction of a spike-type reference signal [85]. The computational advantage of a
method operating independently of a QRS detector is relatively modest though, since
f wave extraction is usually preceded by several building blocks performing ECG
signal processing, where QRS detection is the most fundamental block.

Number of leads. Themethods described in this chapter can extract fwaves in single-
lead ECGs, except those which need two or more leads to separate the ventricular
source(s), the atrial source(s), and the extracardiac noise sources. In fact, results
describing the performance of ICA-based methods and multi-lead PCA have always
been based on the standard 12-lead ECG. Thus, this family of signal separation
methods appears to be less suitable for analysis of long-term, ambulatory ECGs
where only two or three leads are recorded. It has been argued that only two leads
are sufficient for ICA-based methods, since electrode positioning can be optimized
on a patient-to-patient basis by analyzing information derived from body surface
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potential mapping [144]. However, the clinical acceptance of a tailored, two-lead
ECG configuration is unclear.

Duration of ECG recording. As already noted, some 30–40 beats are at least needed
by ABS and variants to produce a QRST template in which the f waves are reason-
ably well-suppressed, provided that the noise level is low. When the ECG recording
is as short as 10 s, multi-lead PCA, ICA and the ESN constitute the more interest-
ing alternatives. In general, the recommended minimum signal duration required for
extraction has not been specified, although such information has practical signifi-
cance.

Transitions fromnon-AF rhythms toAFdeserve special attention, especiallywhen
brief AF episodes occur. Ideally, an f wave signal should be extracted immediately
after the transition.However, since anymethod requires a certain “convergence time,”
brief AF episodes lasting less than 30s may not be possible to analyze with respect
to f wave characteristics. Provided that the characteristics of successive, brief AF
episodes do not change much from one episode to the next, the convergence time
may be shortened by simply suspending operation during non-AF rhythms so that
the need to relearn the parameters for each new episode is bypassed.

Ventricular premature beats. Specific information on extraction performance in
the presence of VPBs is rarely reported, although such beats can be abundant, and,
consequently, with considerable influence on performance. In one of the few com-
parative studies [99], the data set was composed of ECGs completely free of VPBs,
thus providing no information on how VPBs were handled. When simulated signals
are used for evaluation, produced by adding simulated f waves to ECGs in sinus
rhythm, see, e.g., [21, 30, 56, 135], only sporadic VPBs are likely to be present.
When ECGs in AF are analyzed, the percentage of VPBs is not reported, nor is any
information on whether f wave signals extracted during VPBs are included in the
performance results. Thus, it is desirable to complement the above-mentioned per-
formance measures with some other measure reflecting performance in the presence
of VPBs.

The original design ofmostmethods need to bemodified to properly handleVPBs.
For example, ABS and variants need additional beat templates to accomplish f wave
extraction [96], whereas single-lead PCAwould need a larger ventricular subspace to
accommodate different VPB morphologies. As already noted, the EKF would need
an expanded state-space model to handle VPBs with morphologies substantially
different from that of the dominant beat. With respect to f wave extraction based on
multi-lead PCA or ICA, it is unclear how VPBs are handled since such information
is lacking in the literature, including the lack of illustrative examples. Using the ESN
in its original design, sporadic VPBs were found to rarely cause large-amplitude
residuals, as illustrated in Fig. 5.10b.When large-amplitude residuals were observed,
the reservoir size was likely too small to remember VPB morphologies.

The interpolation-basedmethods and themethods based onSSAandARmodeling
and prediction error analysis all rely on the TQ interval. Accordingly, VPB-related
problems are avoided since the samples of the QRST interval are not analyzed. In
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cases of premature VPBs, however, the TQ interval preceding the VPB can be too
short for these approaches to work satisfactorily.

Processing of non-AF rhythms. It is evident that methods for f wave extraction are
designed to process ECGs in AF. However, the output of the AF detector may not
always be accurate, implying that extraction has to be performed in non-AF rhythms.
In such cases, it would be desirable to still have the atrial activity extracted, irrespec-
tive of whether atrial flutter or P waves are present. Since performance evaluation is
almost always confined to extraction in signals which are known to contain f waves,
it would be of great interest to establish what are the characteristics of the extracted
signal in non-AF rhythms.

Average beat subtraction was originally developed for the detection of rhythms
with P waves dissociated from the QRS complexes, but later applied to f wave
extraction. This method is useful also for rhythms where P waves are associated with
the QRS complexes. In such cases, the aim of averaging is rather to suppress the
noise than the dissociated P waves. The same observation applies to the variants of
ABS since they are based on the same principle as ABS. For STC, it is noted that the
TQ-based f wave signal, introduced to improve parameter estimation in the presence
of f waves, is superfluous when non-AF rhythms are processed.

Methods which build on the assumption that f waves exist in the JQ/TQ interval,
allowing a coarse estimate of the DAF, will no longer work in non-AF rhythms. This
observation applies to SSA, ARmodeling and prediction error analysis, and the EKF.
Moreover, the residual-constrained QRS template method involves certain general
assumptions on the f wave properties which make that approach less suitable for
processing of non-AF rhythms.

Typically, atrial flutter is not handled gracefully by methods for f wave extraction.
One important reason is that the fundamental assumption of decoupled atrial and
ventricular rates, explored in ABS and variants, is invalidated when atrial flutter is
present. One of the very few papers describing a method which from the bottom is
designed to extract both AF and atrial flutter explores the principles of blind source
separation [137]. In thatmethod, however, an estimate of theDAF is essential,making
the method unsuitable for operation in P wave rhythms.

Signal-to-noise ratio. The SNR may vary quite markedly over time in an ECG
recording, either due to physiologically mediated variation in f wave amplitude or
variation in noise level. The waxing and waning of the f wave amplitude becomes
increasinglymore pronounced as the disease progresses to permanentAF,manifested
by f waves which may vanish for several seconds due to progressive fibrosis of the
atria, aswell as other complicating factors.Obviously, fwavesmayvanish completely
at higher noise levels. In both situations, the low SNR precludes reliable f wave
analysis in the JQ and TQ intervals, implying that f wave extraction may have to
be discontinued until the SNR becomes acceptable again. The problems arising at
low SNRs bring up the issue of how to quantify f wave signal quality—a critical
issue which barely has received any attention in the literature. It should be noted
that methods less suitable for handling of non-AF rhythms are also less suitable for
operation at lower SNRs.
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Crucial parameters. Any extraction method involves at least one parameter whose
setting is crucial to performance. For example, the number of beats M used for
ensemble averaging is such a parameter in ABS, as well as the only, whose influence
on performance has been investigated in [21, 96]. The size of the reservoir with
recurrently connected neurons in the ESN is another parameter which is crucial to
performance, especially when only 20–30 neurons are used [72]. In PCA- and ICA-
based methods, the automated procedure required for identifying the atrial subspace
will have to involve at least one crucial parameter, thus motivating a study investigat-
ing to what degree extraction performance is sensitive to changes in the parameter
setting.

Clinical applications. Given that the data set used for performance evaluation is
often small and composed of short-duration ECGs with distinct f waves, lacks non-
AF arrhythmias, and has a low noise level, it is desirable that the robustness of the
developed method is put to the test in clinical applications. For example, f wave
extraction can be performed continuously on day-long signals, recorded under con-
ditions which are muchmore challenging than those of the data set used for the initial
performance evaluation. ECGs recorded in patients administered an antiarrhythmic
drug can serve as a powerful test bed for evaluating performance since the f wave
characteristics, as well as the signal quality, often change rather dramatically during
the course of the recording [145–148]. Since performance evaluation ofmostmethods
have been confined to short recordings, the analysis of long-term recordings provides
important insight into the approach taken to merging the f wave signals extracted
in successive segments, or the means taken to process the signal in a segment-free
(sequential) fashion.

Of the many methods developed for f wave extraction, it is only ABS and STC
which have been extensively used in studies published in clinical journals. While
this observation should not be taken as a confirmation of excellent performance,
it nonetheless indicates that these two methods have proven useful for processing
ECGs whose properties are more complex than those of simulated signals, produced
by adding simulated f waves to low-noise ECGs in sinus rhythm.
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Chapter 6
Characterization of f Waves

Leif Sörnmo, Raúl Alcaraz, Pablo Laguna and José Joaquín Rieta

6.1 Introduction

The diagnosis of atrial fibrillation (AF) is based on the finding of an irregular ven-
tricular rhythm, further strengthened when f waves are discernible. Since no infor-
mation beyond the presence of f waves is considered when making the diagnosis,
f wave characterization has yet to find its way into clinical practice. At the same
time, f wave characterization is receiving considerable attention in the scientific
community, driven by the need for noninvasive information on electropathological
alterations in the atria, which may facilitate patient-tailored treatment of AF.

Invasive measurements, acquired during electrophysiological examination or
open thorax surgery, can be used to characterize the atrial activity. While invasive
measurements obviously provide a much more local characterization of the atrial
activity than the surface ECG, the acquisition of invasive signals must take place
inside the hospital, the required equipment is expensive, and the procedure is associ-
ated with increased risk of patient complication. Moreover, the acquisition duration
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is limited by the procedural duration, which may last for a few minutes only, while
the surface ECG may be acquired over weeks or even months.

There are several aims of f wave characterization, many of them related to the
prediction of treatment outcome [1–3]. For example, a low f wave amplitude predicts
AF recurrence in patients with persistent AF undergoing catheter ablation [4], and,
conversely, a large amplitude predicts termination of persistent AF during catheter
ablation [5]. For patients with persistent AF undergoing cardioversion, a low atrial
fibrillatory rate (AFR) predicts successful outcome [6], and, conversely, a fast rate
predicts AF recurrence [7]. Monitoring of the effect of antiarrhythmic drug therapy
is another application where f wave characterization provides valuable information,
particularly in the developmental phase of the drug when the complications of inva-
sive electrophysiological testing to some extent can be avoided [8]. For example,
different f wave characteristics, including the AFR, have been studied in patients
receiving either a drug under development or placebo, with the aim of determining
what characterize patients converting to normal sinus rhythm, as well as patients not
converting [9]. In all these applications, ECG-derived informationmay be considered
for optimizing AF management and supporting therapeutic decisions at substantial
cost savings.

Yet another, more general aim of f wave characterization is to investigate the
structural changes and the electrophysiological remodeling that take place in the atria
as AF progresses from self-terminating paroxysms to a more sustained or permanent
state [10]. The outcome of such investigations may turn out to be instrumental in
preventing the progression of AF.

From an engineering perspective, the problems of detecting AF and extracting
f waves, treated in Chaps. 4 and 5, respectively, are considerably more clear-cut than
the problem of characterizing f waves. The main reason is that methods for detection
and extraction lend themselves to performance evaluation which can be expressed
in technical terms, e.g., evaluation based on annotated or simulated ECG signals,
whereasmethods for fwave characterization, at least so far, rest on phenomenological
observations which may link a certain f wave characteristic to the clinical issue at
hand, be it related to prediction or evaluation of treatment outcome. As a result,
research on f wave characterization implies more groping in the dark than does
research on AF detection and f wave extraction. On the other hand, more room
is available for investigating different techniques for signal characterization, with
implications on clinical management.

The characterization of f waves has for many years revolved around f wave
amplitude and AFR—the two fundamental signal characteristics which are rela-
tively straightforward to determine [11]. However, as signal processing techniques
have grown more sophisticated and diversified, research on f wave characterization
has become increasingly more multifaceted. Different techniques have been inves-
tigated for analyzing nonstationary f wave signals with respect to spatiotemporal
organization and nonlinear dynamics [2, 12, 13], as well as for analyzing the spatial
distribution of different f wave characteristics on the body surface [14].

The majority of parameters proposed for f wave characterization are well-known
in the realm of signal processing. Indeed, few parameters have been developed
with reference to a statistical signal model accounting for certain specific electro-
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physiological phenomena. The lack of tailored, model-based parameters is most
likely due to the difficulty to associate a particular f wave characteristic to a certain
local electrophysiological property of the atria. This lack may be remedied using
computational modeling and simulation to obtain a better understanding of the gen-
esis of f waves [15–17].

Given the extensive work on f wave extraction, one would expect most studies on
f wave characterization to be based on the extracted f wave signal—an expectation
which remains to be fulfilled. With easy-to-implement methods such as average beat
subtraction (ABS), the presence of QRS-related residuals will, to various extents,
worsen the reliability of f wave characterization. For example, measurements of
f wave amplitude are likely to be more vulnerable to such residuals than measure-
ments onAFR. To evade this problem, several authors have confined characterization
to f waves contained in TQ intervals [18–21]. However, as already pointed out in
Chap.5, the availability of fewer samples implies less accurate results, and, therefore,
it is hoped that well-performing extraction methods will find their way into studies
on f wave characterization.

This chapter reviews different approaches to f wave characterization, together
forming a smorgasbord of “dishes” rather than a coherent body of methods. First,
the two fundamental characteristics f wave amplitude and AFR are considered in
Sects. 6.2 and 6.3, respectively, followed by a description of linear and nonlinear
techniques for characterizing f wave morphology and regularity (Sect. 6.4). Tech-
niques for quantifying f wave signal quality in individual leads are described in
Sect. 6.5, needed to ensure that f wave characterization is performed on signals with
sufficient quality. The analysis of spatial ECG information, manifested as a vector-
cardiographic loop or a body surface potential map, is reviewed in Sect. 6.6. The
chapter concludes with a brief overview of popular clinical applications where the
herein described approaches to f wave characterization are explored.

6.2 f Wave Amplitude

In clinical studies, f wave amplitude has been manually analyzed after quantization
into either fine or coarse, defined as less than or greater than 50 µV [22–26]. As
caliper measurements of f wave amplitude now belong to history, such quantization
has once and for all been shelved in favor of continuous-valuedmeasurements. Based
on the extracted f wave signal x(n),1 but with the QRS intervals excluded to avoid the
influence of QRS-related residuals, a straightforward definition of f wave amplitude
is the average of the four largest peak-to-peak amplitudes of individual f waves in a
10-s recording [27, 28]. Given that the f wave amplitude often varies over time, it may
be necessary to average all peak-to-peak amplitudes contained in the recording to
produce a representativemeasurement. Determination of the peak-to-peak amplitude

1For notational convenience, the extracted f wave signal is denoted x(n) in this chapter, replacing
the notation d̂(n) used in Chap.5.
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requires that a search interval is first delineated so that the extrema of the f wave can
be located. The length of the search interval depends on the AFR, and thus the AFR
needs to be estimated.

The f wave amplitude does not necessarily have to rely on the amplitude of local
extrema, but can just as well be computed as a root mean square (RMS) amplitude of
the extracted f wave signal, or, as in [29], without the square root to instead measure
signal power. Another approach would be to employ classical envelope detection
based on the Hilbert transform [30], where the f wave amplitude can be determined
as an average of the envelope in the time interval of interest.

Envelope detection based on local extrema has also been proposed for the mea-
surement of f wave amplitude [31], see also [32]. Once x(n) has been centered, i.e.,
its mean mx has been removed, the lower envelope el(n) is obtained by connect-
ing successive local minima of x(n) using polynomial interpolation, and the upper
envelope eu(n) by connecting successive local maxima of x(n); a piecewise cubic
Hermite interpolating polynomial was used in [31].2 The sample-to-sample differ-
ence between eu(n) and el(n) is taken as a measure of the local amplitude, which,
when averaged over the entire N -sample signal,

Af = 1

N

N−1∑

n=0

|eu(n) − el(n)|, (6.1)

is a measure of global f wave amplitude. The different signals involved with the
computation of Af are illustrated in Fig. 6.1.

The methods in [27, 31] require that the extrema of the f wave signal are deter-
mined before the amplitude can be measured. The method in [27] produces measure-
ments which are more intuitive since the samples between peaks are not taken into
account. However, as the noise level increases, peak-to-peak measurements become
increasingly more unreliable than those obtained from the envelope [31]. To reduce
the influence of baselinewander andmuscular noise, the original ECG signal is band-
pass filtered before the amplitude is measured, using a passband of either 1–50 Hz
[27] or 0.5–30 Hz [31].

None of the two methods in [27, 31] have been applied to f waves extracted
in the QRS interval. In fact, the envelope-based method analyzes an f wave signal
resulting from the concatenation of consecutive TQ intervals, thus making f wave
extraction superfluous [31]. Since concatenation sometimes leads to jumps at the
interval boundaries, peaks located near the boundaries are excluded from polynomial
interpolation. Moreover, some TQ intervals are so short that only a partial f wave is
available for amplitude measurement.

The repeatability of f wave amplitude was investigated on a data set of 20 clin-
ically stable patients with AF, using the average of the four largest peak-to-peak
amplitudes [27]. For each patient, 10 ECGs of 10-s length were recorded at regular

2It may be noted that this procedure is closely related to the “sifting” procedure, which is part of
empirical mode decomposition [33], where the lower and upper envelopes of the local extrema are
used to compute the intrinsic mode functions.
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Fig. 6.1 Envelope-based measurement of f wave amplitude using polynomial interpolation: the
f wave signal after 0.5–30 Hz bandpass filtering (solid line), the lower and upper envelopes el(n)

and eu(n) (dotted lines) obtained by connecting successive local minima and maxima (marked by
“+” and “o,” respectively), and the difference eu(n) − el (n) (dashed–dotted line) used to compute
the amplitude in (6.1). (Reprinted from [31] with permission)

intervals over the course of 24 h. The results showed that the interpatient differences
were substantial, with fwave amplitudes ranging from60 to 350µV (mean±standard
deviation equal to 131±54 µV). On the other hand, the intrapatient differences were
significantly smaller during the 24 h, ranging from 4 to 53µVwhen determined over
the 10 intrapatient ECGs, with an average standard deviation of 21 µV.

Assuming that f waves can be approximated by a sinusoid, the peak-to-peak
amplitude can be compared to the RMS amplitude, since the former amplitude is
approximately 2.8 times the latter amplitude. Using this approximation, a qualitative
comparison can be made between the results reported in [27] and the histogram of
fwaveRMSamplitude displayed in Fig. 3.4b. The results are in fairly good agreement
with each other, since, following multiplication of 2.8, the f wave amplitudes in
Fig. 3.4b range from 35 to 340 µV (117±48 µV), to be compared with 60 to 350 µV
(131±54 µV).

6.3 Atrial Fibrillatory Rate and Beyond

Atrial fibrillatory rate, being the other fundamental f wave characteristic, has received
considerable clinical attention during the last two decades [3]. A spectral approach is
commonly used to estimate the AFR, since estimation based on the occurrence times
of the f waves is compounded by the difficulty to define a consistent fiducial point.
Another reason is that the signal-to-noise ratio (SNR) may be poor. In contrast, when
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invasively recorded signals are subject to analysis, the AFR is often determined from
the occurrence times of the local activations, with complex wavefront morphologies
and low SNR as the factors which have the most influence on the accuracy of AFR
estimation. Considerable research effort has been spent on developing techniques
for estimation of local activation times [34–40] as an alternative to using spectral
analysis [41–43].

Spectral analysis of the extracted f wave signal plays an important role not only
in AFR estimation, but also in the characterization of f wave morphology. When
changes in the spectral content of the f wave signal are of interest to investigate,
whether spontaneous or due to intervention, time–frequency analysis is better suited
for quantifying such changes.

In the engineering oriented literature, the term dominant atrial frequency (DAF)
is usually substituted for AFR, where “dominant” refers to the largest spectral peak.
In the clinical literature, the term dominant atrial cycle length (DACL) is sometimes
substituted for AFR. Atrial fibrillatory rate, DAF, and DACL convey the same infor-
mation, though they are expressed in units of fibrillations per minute (fpm), Hertz,
and milliseconds, respectively. Since the DAF estimate is used to determine both
AFR and DACL, DAF is the preferred terminology in the following.

6.3.1 Dominant Atrial Frequency

The position of the largest peak in the power spectrum of the extracted f wave sig-
nal defines the DAF, denoted ω0. Nonparametric spectral estimation is typically
employed, which, in most cases, is synonymous to Welch’s method, where the sig-
nal is divided into shorter, overlapping segments, followed by windowing of each
segment [44].3 The power spectrum is obtained by averaging the power spectra
(periodograms) of the segments. Each segment is padded with zeros so that the posi-
tion of the spectral peak can be determined more accurately; however, zero padding
does not improve spectral resolution in the sense that two closely spaced spectral
peaks are better resolved when the original signal is padded with zeros. A signal
length of a few seconds is needed to produce an acceptable variance of the power
spectrum. If better spectral resolution is needed, longer segments need to be ana-
lyzed. For example, a 10-s segment yields, at best, a frequency resolution of 0.1Hz
depending on the window chosen.

Figure6.2 displays the power spectra computed from extracted f wave signals in
leads V1, V2, and V3. The largest spectral peak occurs at approximately the same
position in all three leads, where the f waves of V1 have the largest amplitude. In
this example, the position of the next largest peak in V1 and V2 is not harmonically
related to the position of the largest peak; the next largest peak is likely the expression
of a time-varying DAF, discussed below.

3Since the amplitude spectrum is analyzed in some studies, obtained as the square root of the power
spectrum, caution should be exercised when comparing amplitude-related results.
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Fig. 6.2 Power spectra of extracted f wave signals in leads V1, V2, and V3. The dominant peak is
marked with “*”

Since f waves aremostly characterized by frequencies up to 25Hz, a sampling rate
much lower than that required for f wave extraction can be used. Thus, the original
ECG sampling rate can be decimated to 50Hz without loss of clinical informa-
tion. Although sampling rate decimation is not a critical operation when performing
nonparametric spectral analysis, it is critical when performing parametric spectral
analysis based on autoregressive modeling due to the risk of producing spectra with
spurious peaks for too high a sampling rate [45].

Instead of performing spectral analysis of the extracted f wave signal, the analy-
sis may be confined to the samples of successive TQ intervals [46]. In such cases,
a technique must be employed which can handle unevenly sampled signals. Using
iterative singular spectrum analysis (SSA), cf. Sect. 5.7, an atrial subspace is first
determined from several, consecutive TQ intervals, after which the f wave signal of
the QRST intervals is estimated by projecting the QRST samples on the atrial sub-
space. The resulting signal, composed of interpolated samples in the QRST intervals
and observed samples in the TQ intervals, is then subject to spectral analysis using,
for example, Welch’s method.

Using simulated f wave signals, all with 1-min duration and a 7-Hz DAF, iterative
SSA was used to estimate the DAF [46]. The results showed that the estimation
error rarely exceeded 1.0Hz at heart rates up to 130–140 beats per minute (bpm)
and relatively low SNRs. Recalling general results on the variance of frequency
estimators [47, Chap. 3], the spectral estimation error is lower at higher frequencies,
but higher at lower frequencies. Thus, not surprisingly, the best performing scenario
for the iterative SSA is one with a slower heart rate, i.e., the TQ intervals are longer,
and a higher DAF. The SSA-based technique was developed for estimating the DAF,
whereas information on other harmonics, needed to compute some of the spectral
parameters described below, is not captured.

Lomb’s periodogram is another technique for estimating the power spectrum of
an unevenly sampled signal [30, 48]. This periodogram is determined by minimiz-
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ing the squared error between the observed samples and a sinusoidal model signal
composed of different frequencies. The accuracy of DAF estimates obtained from
Lomb’s periodogram is similar to that of estimates obtained from iterative SSA,
although the latter method tended to produce lower errors at lower heart rates [46].

As a rule, spectral analysis of multi-lead ECGs is performed on a lead-by-lead
basis, resulting in a set of parameters characterizing the spatial distribution of spec-
tral information. Another, less common approach is provided by the spectral enve-
lope method [49] which combines spectral information of the different leads into
a single power spectrum, where periodic components are emphasized and noise is
suppressed [50, 51].

6.3.2 Spectral Parameters

The parameter spectral organization (SO) describes the harmonic structure of the
f wave signal [52, 53]. A more organized signal, manifested by a harmonic spectrum
with a dominant spectral peak, is hypothesized to reflect fewer wavelets circulating
within the atria. Conversely, a less organized signal, manifested by “more frequency
components added to the atrial signal,” is hypothesized to reflect more wavelets.
Spectral organization is defined by

PSO =

K∑

k=1

∫ Δω

−Δω

Sx (ω̂k−1 + ω)dω

∫ ωmax

ωmin

Sx (ω)dω

, (6.2)

where Sx (ω) is the power spectrum of x(n), and ω0, . . . , ωK−1 denote the positions
of the K harmonics, i.e., the k-th harmonic is associated with ωk−1. Four harmonics
were analyzed in [52, 53], whereas two harmonics were analyzed in [51, 54]. The
integration limits Δω and ωmin were set to 0.5Hz and 2.5 Hz, respectively, and ωmax

was set to ((K + 1)ω̂0 − Δω). Since the actual positions of the second and higher
harmonics often differ slightly from the expected positions at kω̂0, k = 2, . . . , K ,
ω̂k is determined by a grid search restricted to an interval centered around kω̂0.
A time-varying version of PSO has been proposed in [54], involving an adaptive
algorithm for tracking of the harmonics, see Sect. 6.4.1.

Another approach to characterizing the harmonic structure is based on the spectral
line model, where the decay of the amplitude of the harmonics constitutes the crucial
parameter [55]. The model is defined by the magnitude a0 of the dominant spectral
peak at ω0, the exponential decay γ , referred to as the harmonic decay (HD), and
the harmonic frequencies ω0, . . . , ωK−1,

SHD(ω) = a0e−γ kδ(ω − ωk), k = 0, . . . , K − 1, (6.3)



6 Characterization of f Waves 229

where a0 and γ are unknown parameters, whereas ω0, . . . , ωK−1 may be determined
as described above. By taking the logarithm of SHD(ω), the estimation of a0 and γ is
transformed into a problem of fitting a line to ln Sx (ω). Using the least squares (LS)
method, joint minimization of the cost function

J (ln a0, γ ) =
K−1∑

k=0

(
ln Sx (ω̂k) − (ln a0 − γ k)

)2
(6.4)

with respect to a0 and γ yields the following two estimators:

â0 = exp

[
2(2K − 1)

K (K + 1)

K−1∑

k=0

ln Sx (ω̂k) − 6

K (K + 1)

K−1∑

k=0

k ln Sx (ω̂k)

]
, (6.5)

γ̂ = − 6

K (K + 1)

K−1∑

k=0

ln Sx (ω̂k) + 12

K (K 2 − 1)

K−1∑

k=0

k ln Sx (ω̂k), (6.6)

where exponentiation is used to transform back to the original model parameters
in (6.3). A wide range of f wave morphologies can be represented by the spectral
line model, spanning from sawtooth-like waves, observed at an early stage of AF,
to sinusoidal-like waves, observed in permanent AF, illustrated in Fig. 6.3. Since a
slower AFR is usually associated with sawtooth-like waves, i.e., characterized by
several harmonics, and a faster AFR with more sinusoidal-like waves, i.e., charac-
terized by the fundamental frequency, it is plausible to assume that ω0 and γ are
positively correlated as AF progresses [55].

The logarithm of the spectral power ratio (SPR), defined by the harmonics posi-
tioned at ω̂0 and ω̂1, is yet another parameter for harmonic characterization [56],

PSPR = ln

(
Sx (ω̂0)

Sx (ω̂1)

)
. (6.7)

Fig. 6.3 Simulated f waves
with different morphologies,
obtained by varying the
parameters f0 and γ of the
spectral line model in (6.3),
assuming that ωk = k2π f0

f0   2.5 Hz,  γ = 0.3 

f0   3.6 Hz,  γ = 0.7 

f0  5.0 Hz,  γ = 0.6 

f0  6.1 Hz,  γ = 1.0 

f0  6.3 Hz,  γ = 1.2 

f0  6.6 Hz,  γ = 1.4 

f0  6.6 Hz,  γ = 1.7 

f0  8.5 Hz,  γ = 1.8 
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A large value of PSPR reflects a spectrum with less pronounced harmonic structure,
and vice versa.

The spectral parameters PSO, γ , and PSPR require that at least two harmonics are
present. Using spectral entropy (SE), less emphasis is put on the harmonic structure
of Sx (ω) and more on the complexity of the f wave signal [50, 51]. The spectral
entropy of a narrowband signal is lower than that of a broadband signal. Since the
entropy definition involves a probability mass function with unit area, the spectrum
needs to be converted into such a function by normalizing each frequency component
Sx (ωl) with the sum of all L components,

Sx (ωl) = Sx (ωl)

L∑

i=1

Sx (ωi )

, l = 1, . . . , L , (6.8)

where ω1 and ωL denote the lower and upper frequency limits, respectively, and
ω2, . . . , ωL−1 are equidistantly spaced frequencies between ω1 and ωL ; thus, ωl

does not denote a harmonic frequency in (6.8). The SE is defined by [57]

ISE = −
L∑

l=1

Sx (ωl) log2 Sx (ωl). (6.9)

The spectral width of the largest peak is yet another parameter which has been
investigated in a few studies [56, 58, 59]. However, this measurement is influenced
by the spectral leakage effect, manifested by the power of a sinusoid leaking into
adjacent frequencies within a bandwidth of approximately 4π/N , where N is the
length of x(n) [44]. Moreover, the temporal variation often observed in DAF has
profound influence on the spectral width. Together, these two factors explain why
the spectral width has had very limited significance in clinical studies.

6.3.3 Time–Frequency Analysis

Power spectral analysis reflects the average signal behavior of the analyzed interval,
and the position of the largest spectral peak represents the main carrier of clinically
significant information. In case of bi- or multimodal spectral peaks, the presence of
joint frequencies is not necessarily reflected, but just as well that the DAF varies
within the analyzed interval. Using time–frequency analysis in patients with perma-
nent AF [60], the variation in the DAF was found to be as large as 2.5Hz during just
a few seconds, suggesting that temporal variation in the DAF is a characteristic of
the underlying, complex electrical activation patterns in the atria. Another reason to
pursue time–frequency analysis is the wish to characterize changes in the DAF due
to intervention, e.g., drug administration and tilt table testing.
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A plethora of techniques have been developed for time–frequency analysis, of
which the simplest, and the most common, is the short-term Fourier transform
(STFT), being a linear, nonparametric method. The STFT results frommodifying the
one-dimensional discrete-time Fourier transform to include a sliding time window
w(n)which extracts a segment from x(n) for analysis, resulting in a two-dimensional
function X (n, ω) defined by

X (n, ω) =
∞∑

l=−∞
x(l)w(l − n)e− jωl . (6.10)

The length of w(n) determines the resolution in time and frequency: a short window
yields good time resolution but poor frequency resolution, and vice versa. By analogy
with the computation of the periodogram, the spectrogram is obtained by computing
the squared magnitude of the STFT,

Sx (n, ω) = |X (n, ω)|2. (6.11)

In certain clinical applications, it may be desirable to track changes in the DAF as
small as 0.1Hz, thus calling for a segment length of at least 10 s.On the other hand, the
DAF may change so rapidly over time that a time resolution of 10s is insufficient.
These conflicting demands have proven difficult to achieve with the STFT, and,
therefore, depending on the AF application at hand [59–61], other techniques for
time–frequency analysis with better resolution in both time and frequency have been
investigated.

The Wigner–Ville distribution (WVD) is a well-known quadratic, nonparametric
transform offering better resolution than the STFT [30, 62, 63]. Unfortunately, the
quadratic structure also means the introduction of cross-terms in the time–frequency
domain, arising between different signal components as well as between signal and
noise components.Although the influence of cross-terms can be reduced by including
a kernel function, the practical use of theWVD is still limited when multicomponent
signals are encountered. Since the tracking of changes in the DAF is an important
aspect of time–frequency analysis, the cross Wigner–Ville distribution (XWVD) is
an attractive choice as it integrates the estimation of a varying frequency with the
computation of the WVD [64]. The XWVD is initiated by the frequency series
ω̂0,0(n), determined from the STFT, where the two indices denote harmonic number
and iteration number. The XWVD is computed between x(n) and a sinusoid defined
by ω̂0,0(n), from which an improved ω̂0,1(n) can be estimated using peak detection
of the XWVD. Based on ω̂0,1(n), a new XWVD is computed, and so on, until the
frequency series no longer changes from iteration to iteration.

Using the XWVD, spontaneous temporal variation can be uncovered in the DAF,
illustrated in Fig. 6.4where theXWVDof a 1-min extracted fwave signal is analyzed,
obtained from a patient with permanent AF. The presence of such variation most
likely explains why the dominant peak of the power spectrum is broad or bimodal
as is the case in Fig. 6.2 [60].
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Fig. 6.4 The cross Wigner–Ville distribution of a 1-min f wave signal obtained from a patient with
permanent AF, using a 2.5-s Hanning window. The distribution is displayed for leads a V1, b V2,
and c V3. The DAF is centered around 6Hz in all three leads, with considerable variation ranging
from about 5–7 Hz

The spectral profile method [55] was developed to address the limitation that
the DAF is the focus of the XWVD, while other harmonics are ignored. The spec-
tral profile results from averaging of frequency-aligned spectra of successive signal
segments. By using a logarithmic frequency scale, rather than the conventional lin-
ear scale, spectra with different harmonic frequencies can be properly aligned and
averaged. The resulting spectral profile exhibits a more distinct harmonic pattern
than the spectra of separate segments, and, therefore, lends itself better to f wave
characterization. In this method, the time–frequency distribution is similar to that
produced by the STFT, except that a nonuniform, discrete-time Fourier transform is
employed. The spectrum of each segment is aligned to the spectral profile by finding
the frequency shift that minimizes the weighted LS error, after which the spectral
profile is updated with the aligned spectrum.

In this method, each spectrum qp of the time–frequency distribution is obtained
by computing the nonuniform, discrete-time Fourier transform of xp,

qp = FWxp, (6.12)

where the column vector xp contains the N samples of the p-th signal segment; the
computation is eithermade in overlapping or nonoverlapping segments. The resulting
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column vector qp contains L different frequencies, the N × N diagonal matrix W
defines the window function w(n) applied to xp, and the L × N transform matrix F
is defined by L nonuniformly sampled frequencies,

F = [
e− j0ωωω e− j1ωωω e− j2ωωω · · · e− j (N−1)ωωω

]
, (6.13)

where ωωω = [
ν0 · · · νL−1

]T
is a column vector with logarithmically spaced frequen-

cies νl , defined by

νl = νlowπ
ηl
L , l = 0, . . . , L − 1. (6.14)

The two parameters νlow and η determine together the frequency interval relevant
for f wave characterization, and L determines the sampling rate of the logarithmic
frequency scale. Using νlow = 0.31 and η = 2, together with a 50-Hz sampling rate
of the extracted f wave signal, the nonuniform Fourier transform is computed for
frequencies ranging from 2.5Hz to about 25 Hz [55].

Thanks to the logarithmic frequency sampling in (6.14), two spectra with different
harmonic structures can be aligned. For example, a spectrumwith harmonic frequen-
cies at 5 and 10Hz can be aligned to another spectrum with harmonic frequencies at
6 and 12 Hz, since the number of samples between the two harmonics is the same for
logarithmically sampled spectra. Using linear frequency sampling, these two spectra
cannot be aligned since the number of samples between the harmonics differ.

The magnitude of the spectrum, i.e., |qp|, is assumed to be described by a
frequency-shifted (θp) and amplitude-scaled (ap) version of the L × 1 spectral pro-
file vectorφφφ p, given by ap Jθp φφφ p. The shift matrix Jθp , defined in (5.25), takes care of
the frequency shifting neededwhen updatingφφφ p with new information. Theweighted
LS error criterion

J (θp, ap) = (|qp| − ap Jθp φφφ p)
T D (|qp| − ap Jθp φφφ p) (6.15)

is employed to estimate the unknown parameters θp and ap. The primary purpose of
the diagonal weight matrix D is to correct for the oversampling at lower frequencies
due to the logarithmic sampling. However, the weight matrixD alsomakes it possible
to emphasize frequencieswhichmaybe of special interest.Minimization of J (θp, ap)

with respect to θp and ap yields the following estimators:

θ̂p = argmax
θp

(
|qT

p |D 1
2 JθpD

1
2φφφ p

)
, (6.16)

âp = |qT
p |D 1

2 Jθ̂p
D

1
2φφφ p. (6.17)

Design considerations on D, as well as details on the minimization of J (θp, ap), are
described in [55].

Since the spectral profile φφφ p is not known a priori, it can be estimated using
exponential averaging of |qp| once shifted to the position of the first harmonic in the

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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spectral profile,

φ̂φφ p+1 = (1 − αp)φ̂φφ p + αp

J−θ̂p
|q̆p|

‖J−θ̂p
|q̆p|‖ , p ≥ 0, (6.18)

where αp is set to a positive value (0 < αp < 1), unless xp contains an ectopic beat,
large QRS-related residuals, or judged to be unreliable for some other reason, when
αp is set to zero. The spectral profileφ̂φφ0 is initialized by setting one frequency equal to
one at a positionwhere theDAF is likely to occur,whereas all other frequencies are set
to a value close to zero. The notation q̆p signifies that qp has been pre- and appended
with a sufficient number of samples to allow for frequency shifting; these additional
samples are also set to a value close to zero. Normalization by ‖J−θ̂p

|q̆p|‖ in (6.18)
is necessary to ensure that the spectral profile allows for meaningful estimation of ap

in (6.17).
In the spectral profile, the first harmonic has a fixed position throughout the

analysis of xp, and, therefore, the spectral profile needs to be properly shifted before
it can be interpreted as a spectrum. In particular, the first harmonic of the p-th
segment, denoted ω̂0,p, is obtained as

ω̂0,p = ω̂0,0 − θ̂p. (6.19)

It should be noted that âp is a measure of f wave amplitude, thus providing yet
another definition to those earlier described in Sect. 6.2. The amplitude estimate âp

may also be used as a normalization factor when evaluating themodel error J (θ̂p, âp)

in successive signal segments [55].
Figure6.5 shows that the harmonics of the spectral profile are considerably less

smeared than are those of the amplitude spectrum obtained byWelch’s method. This
property can be ascribed to the frequency shifting which is part of the update of the
spectral profile in (6.18).

The STFT, the XWVD, and the spectral profile method provide various degrees of
insight into the time-varying nature of the DAF, as well as the harmonic composition
of the f wave signal. Although time–frequency analysis provides more information
than power spectral analysis, its impact on clinical studies has been rather limited.
One reason may be the lack of an hypothesis connecting a certain property of the
time–frequency distribution to an electrophysiological mechanism. Another reason
may be that parameters are largely lacking for characterizing properties which are
intrinsic to the time–frequency distribution, one of the few exceptions being the
parameter tailored to investigatewhether controlled respiration,mediated through the
autonomic nervous system, influences the DAF in patients with permanent AF [65].
In that study, the frequency components in the interval 0.15–0.40 Hz of the power
spectrum of the DAF series were quantified, since these components are known to
reflect modulation of vagal tone, primarily through respiration, and therefore related
to parasympathetic activation [66].
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Fig. 6.5 Time–frequency analysis using the spectral profile method applied to a 60-s extracted
f wave signal which either a contains a large second harmonic or b lacks a second harmonic.
The time–frequency distribution, the DAF series, and the spectral profile (solid line) are displayed
from left to right. The spectral profile obtained at the end of the 60-s interval is the one which
is displayed. For comparison, the conventional amplitude spectrum (dotted line) is shown in the
rightmost diagrams. In both a and b, the variation in the DAF is considerable

6.3.4 Frequency Tracking

When the time-varying characteristics of the harmonic components represent the
main focus of investigation, time–frequency analysis may be replaced by single
frequency tracking or harmonic frequency tracking, depending on whether one or
more harmonic frequencies are of interest to analyze. Of the numerous techniques
developed for single frequency tracking, the adaptive line enhancer is probably the
most well-known [67, 68], composed of a time-varying bandpass filter H(z; n) to
enhance the harmonic component of the input signal x(n), and an adaptive algorithm
to estimate the instantaneous frequencyω0(n) of the output signal y(n). The resulting
estimate ω̂0(n) is used to update the center frequency of the bandpass filter. Single
frequency tracking can be extended to harmonic frequency tracking by assigning
a time-varying bandpass filter and an adaptive algorithm to each of the harmonic
components, resulting in a tracker with filter bank structure.

In the context of f wave characterization, single frequency tracking is part of a
method developed for the purpose of selecting suitable patient candidates for restora-
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tion of sinus rhythm using catheter ablation [54]. The single frequency frequency
tracker, belonging to the class of adaptive line enhancers, assumes that the input
signal is modeled by [54, 69]

x(n) = A0e jω0n + v(n), (6.20)

where A0 and ω0 denote amplitude and fundamental frequency, respectively; the
noise v(n) is assumed to be white. Although the quantities in (6.20) are complex-
valued, the model is still relevant to a real-valued signal since its complex-valued
analytic representation can be used, defined by the observed, real-valued signal and
its Hilbert transform, see Sect. 6.4.1.

A time-varying, first-order bandpass filter with complex-valued coefficients
enhances the sinusoidal component in x(n), defined by

H(z; n) = 1 − β

1 − βe jω(n)z−1
, (6.21)

where ω(n) is the time-varying center frequency, and β (0 � β < 1) defines the
bandwidth. The filter H(z; n) has unit gain and zero phase delay at ω(n), ensuring
that the harmonic component is undistorted.

The center frequency ω(n) is estimated by an adaptive algorithm which, at each
time instant n, tries to minimize the mean square error (MSE)

J (n) = E
[|y(n) − e jω(n+1)y(n − 1))|2] , (6.22)

where y(n) denotes the output of H(z; n). When y(n) = e jω0n , J (n) is minimized
for ω(n) = ω0, thus motivating the definition of J (n) in (6.22). The MSE estimator
of ω0(n) is determined by differentiating J (n) with respect to ω(n) and setting the
result equal to zero, yielding

ω̂0(n + 1) = arg(E
[
y(n)y∗(n − 1)

]
). (6.23)

Similar to the derivation of the well-known least mean square (LMS) algorithm [68],
the expected value may be replaced by its instantaneous estimate at time n,

ω̂0(n + 1) ≈ arg(y(n)y∗(n − 1)). (6.24)

Since this estimator is sensitive to noise, exponential averaging is performed so that
a smoothed estimate Q(n) of the expected value in (6.23) is produced, while, at the
same time, making sure that slow changes in ω(n) can be tracked. Hence, together
with (6.21), the single frequency tracker is defined by the following two equations:

Q(n) = Q(n − 1) + α(y(n)y∗(n − 1) − Q(n − 1)), (6.25)

ω̂0(n + 1) = arg(Q(n)), (6.26)
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where ω̂0(n) is an estimate of theDAF andα (0 < α < 1) is aweight factor determin-
ing the speed of tracking. The estimate ω̂0(n) is inserted in H(z; n) so that the next
filtered sample can be computed, and so on. Single frequency tracking is illustrated
in Fig. 6.6 for an extracted, bandpass filtered f wave signal, where the changes in the
DAF are relatively small, oscillating at around 7 Hz, except for a marked increase to
9 Hz after 21 s due to an artifact; after a few seconds, however, ω̂0(n) returns to the
earlier estimate.

The interest in harmonic analysis, which spurred the development of the spectral
profile method, was also part of the motivation to extend the single frequency tracker
to the handling of several harmonic frequencies. The starting point is the signalmodel
with K harmonics [69],

x(n) =
K∑

k=1

Ake jkω0n + v(n). (6.27)

This model implies that the tracker should have a filter bank structure, consisting of
K bandpass filters Hk(z; n), where each filter has its center frequency at an integer
multiple of ω(n),

Hk(z; n) = 1 − β

1 − βe jkω(n)z−1
, k = 1, . . . , K , (6.28)
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Fig. 6.6 a Extracted, bandpass filtered (4–12 Hz) f wave signal x(n), and b related dominant atrial
frequency (DAF), estimated using single frequency tracking (α = 0.05, β = 0.95)
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see Fig. 6.7. The adaptive algorithm used in single frequency tracking is also
employed in harmonic frequency tracking, except that an estimate of the fundamental
frequency is computed for each of the K harmonic components yk(n),

Qk(n) = Qk(n − 1) + α(yk(n)y∗
k (n − 1) − Qk(n − 1)), (6.29)

ω̂0,k(n + 1) = arg(Qk(n))

k
. (6.30)

A global estimate ofω0(n + 1) is obtained as a linear combination of the different
estimates ω̂0,k(n),

ω̂0(n + 1) =
K∑

k=1

wk(n)ω̂0,k(n + 1). (6.31)

The choice of the weights wk(n) is based on the same principle as that of weighted
averaging, namely that wk(n) are inversely proportional to the noise variance,
cf. (5.12). Since the noise variance is not defined for the harmonic model in (6.27),
the minimum MSE error Jk,min(n) has been proposed as a surrogate measure of the
noise variance [69]. Thus, before ω̂0(n + 1) can be computed, wk(n) is computed
using the following equations:

Adaptive
algorithm

y1(n)

x(n)

ω̂0(n)

y2(n)

yK(n)

H1(z;n)

H2(z;n)

HK(z;n)

Fig. 6.7 Block diagram of the harmonic frequency tracker, composed of a filter bank with K
bandpass filters Hk(z; n) with harmonically coupled center frequencies and an adaptive algorithm
for updating the center frequencies of the filters

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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Ĵk,min(n) = Ĵk,min(n − 1)

+ α(|yk(n) − e jkω̂0(n)yk(n − 1))|2 − Ĵk,min(n − 1)), (6.32)

Êk(n) = Êk(n − 1) + α(|yk(n)|2 − Êk(n − 1)), (6.33)

σ̂ 2
ω,k(n) = Ĵk,min(n)

Êk(n)
, (6.34)

wk(n) =
1

σ̂ 2
ω,k(n)

K∑

i=1

1

σ̂ 2
ω,i (n)

, (6.35)

where Êk(n) is a smoothed estimate of the energy of yk(n) which is used to nor-
malize Ĵk,min(n) so that wk(n) reflects the local SNR. It should be noted that the
second and higher harmonics are defined as integers of the fundamental frequency,
although these frequencies are actually estimated by arg(Qk(n)) in (6.30). In con-
trast to time–frequency analysis, the harmonic frequency tracker produces harmonic
signal components as a by-product, useful for various purposes such as the analysis
of phase differences, which is the topic of the Sect. 6.4.

A precursor to single and harmonic frequency tracking is the DAF-controlled
bandpass filter, designed to produce the first harmonic component, sometimes
referred to as the main atrial wave [70, 71]. The DAF-controlled approach to band-
pass filteringwas introduced to reduce the effect of noise, being of critical importance
to the computation of the sample entropy [70], but also as part of a method for char-
acterizing f wave morphology [71]. While single and harmonic frequency tracking
update the center frequency of the bandpass filter(s) on a sample-by-sample basis, the
center frequency of the DAF-controlled filter is updated on a segment-by-segment
basis, estimated in each segment from the power spectrum of the f wave signal.

6.4 f Wave Morphology and Regularity

Certain information on f wave morphology is provided by power spectral analysis
and time–frequency analysis, for example, conveyed by the harmonic decay γ which
reflectswhether fwaves have a sinusoid- or a sawtooth-lookingmorphology, cf. (6.3).
However, the phase information is discarded in both these types of analysis, and, con-
sequently, much of the morphologic information is discarded. By decomposing the
extracted f wave signal into its harmonic components and comparing the respective
phases, information on morphology can be retrieved (Sect. 6.4.1). Since phase anal-
ysis requires a relatively high SNR and relatively well-organized f waves, there is
a need for robust approaches to morphologic characterization. One such approach
considers the few largest eigenvalues of the correlation matrix of the f wave signal
as a measure of regularity (Sect. 6.4.2). Another approach considers pairwise sim-
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ilarity of individual f waves, using a robust similarity measure (Sect. 6.4.3). These
approaches have in common that they produce a parameter which characterizes the
morphology of several, consecutive fwaves, rather than themorphology of individual
f waves. Hence, “f wave regularity” may be a more appropriate notion than “f wave
morphology.” Nonlinear techniques have also been considered for characterizing
f wave regularity, including different measures of entropy (Sect. 6.4.4).

6.4.1 Phase Analysis

The classical approach to phase analysis of a lowpass signal x(n) is based on its
analytic representation, defined by

xA(n) = x(n) + j x̃(n), n = 0, . . . , N − 1, (6.36)

where x̃(n) denotes the Hilbert transform of x(n). This transform shifts the phase of
the positive frequency components by −90◦ and the negative ones by 90◦ [72, 73].
Since the analytic signal xA(n) is complex-valued, it can alternatively be represented
by its magnitude and phase,

xA(n) = a(n)e jψ(n), (6.37)

where

a(n) =
√

x2(n) + x̃2(n), (6.38)

ψ(n) = arctan

(
x̃(n)

x(n)

)
. (6.39)

Here, the functionψ(n) defines the notion “phase” in a broad sense, without referring
to sinusoidal phase. To interpret ψ(n) as sinusoidal phase, the polar representation
in (6.37) of a narrowband signal y(n), obtained by bandpass filtering of x(n) with
center frequency ω0, is considered:

yA(n) = y(n) + j ỹ(n) = a(n)e jψ(n)

= a(n)e jφ(n)e jω0n. (6.40)

It is easily shown that the real-valued part of y(n), i.e., the part with practical interest,
can be expressed as

y(n) = a(n) cos(ω0n + φ(n)). (6.41)

Before computing the sinusoidal phase φ(n), x(n) needs to be bandpass filtered
to ensure that it is not a multi-component or broadband signal [74]. Even with the
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inclusion of bandpass filtering, φ(n) is still an instantaneous measurement which is
vulnerable to noise.

Another approach to phase analysis is based on statistical modeling of the har-
monic signal components [71].As afirst step, the observed signal x(n) is decomposed
into K different harmonic components yk(n), k = 1, . . . , K , using a filter bank of
linear, time-invariant bandpass filters. The center frequency of the filter H1(z), pro-
ducing y1(n), is determined by the position of the largest spectral peak of Sx (ω),
i.e., ω̂0. Since the second and higher harmonic frequencies often differ slightly from
their expected positions at kω̂0 due to changes in f wave morphology, the center fre-
quencies of H2(z), H3(z), . . . are determined by searching for the respective peaks
in intervals centered around kω̂0, cf. the computation of PSO in (6.2). Figure6.8
illustrates a harmonic power spectrum and the passbands of the bandpass filter bank
determined from the spectrum.

In a second step, the bandpass filtered signals yk(n) are subject to analysis in
nonoverlapping segments with L samples,

yk,p(n) = yk(n − pL), n = 0, . . . , L − 1, (6.42)

where p is the segment number. In [71], the lengths N and L were set to 10 and 0.5 s,
respectively, where the latter setting implies that the analysis of f wavemorphology is
performed almost on a wave-to-wave basis (though the boundaries between f waves
are not taken into consideration). In each segment, yk,p(n) is modeled by a sinusoid
in Gaussian, white noise vk,p(n),
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Fig. 6.8 Harmonic power spectrum and related passbands of the bandpass filters (dotted lines)
for producing three harmonic components. The passbands are centered around the spectral peaks
(marked with circles) and are increasingly wider at higher harmonic frequencies
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yk,p(n) = ak,p sin(ωk,pn + φk,p) + vk,p(n), (6.43)

where ak,p, ωk,p, and φk,p are unknown parameters. The maximum likelihood (ML)
estimators of these three parameters are given by [47]

ω̂k,p = argmax
ω

∣∣∣∣∣
1

L

L−1∑

n=0

yk,p(n)e− jωn

∣∣∣∣∣

2

, (6.44)

âk,p = 2

L

∣∣∣∣∣

L−1∑

n=0

yk,p(n)e− jω̂k,pn

∣∣∣∣∣ , (6.45)

φ̂k,p = arctan

⎛

⎜⎜⎜⎜⎜⎝

L−1∑

n=0

yk,p(n) cos(ω̂k,pn)

L−1∑

n=0

yk,p(n) sin(ω̂k,pn)

⎞

⎟⎟⎟⎟⎟⎠
. (6.46)

Thus, ω̂k,p is determined by the position of the largest peak of the periodogram
of yk,p(n), required before estimation of ak,p and φk,p. The accuracy of sinusoidal
modeling can be quantified by the MSE εp between x p(n) and its reconstructed,
noise-free counterpart x̂ p(n),

εp = 1

L

L−1∑

n=0

(x p(n) − x̂ p(n))2, (6.47)

where

x̂ p(n) =
K∑

k=1

âk,p sin(kω̂0,pn + φ̂k,p). (6.48)

Alternatively, x̂ p(n) may be obtained by replacing kω̂0,p in (6.48) with ω̂k,p as sug-
gested by the model in (6.43).

In a third step, the phase parameters characterizing f wave morphology are com-
puted, defined by the differences between φ̂2,p and φ̂1,p, φ̂3,p and φ̂1,p, and so on.
A straightforward comparison of two phase estimates is, however, not meaningful
since the estimates relate to different frequencies, i.e., ω̂k,p and ω̂1,p, and therefore
not comparable. To solve this problem, φ̂k,p is converted to the same scale as φ̂1,p by
division with k. Moreover, since the k-th harmonic completes about k periods when
the first harmonic completes one period, the k-th harmonic is periodic by 2π in its
own scale, and approximately periodic by 2π/k in the scale of φ̂1,p. Therefore, the
phase difference θ̂k,p is computed using the following expression:

θ̂k,p = φ̂k,p

k
− φ̂1,p ± l · 2π

k
, k = 2, . . . , K , (6.49)
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where φ̂1,p is adjusted with an integer multiple l of 2π/k to become unique within
the interval [−π/k, π/k].

Characterization of f wave morphology using phase information is illustrated in
Fig. 6.9, where f waves are positioned according to θ̂2,p. The phase difference θ̂3,p

usually plays a much more subordinate role, since â3,p is usually much smaller than
â2,p, and thus θ̂3,p has much less influence on f wave morphology. It is noted that a
change of θ̂2,p by π

4 results in reversed wave polarity. Moreover, Fig. 6.9 shows that
f waves positioned at about −π

8 have a steeper upslope than downslope, whereas
f waves positioned at the opposite position, i.e., about 3π

8 , have a downslope steeper
than the upslope.

Clustering of f wave segments is an application where the phase differences θk,p

have been explored, with the aim of determining a representative, reconstructed
f wave signal better suited for morphologic characterization than the observed f wave
signal itself, see Fig. 6.10 [71].

Considering that the spectral characteristics of the f waves can change over time,
there is a risk that the harmonic frequencies wander outside the passbands of the
time-invariant bandpass filters H1(z), H2(z), . . . , HK (z)—a risk that increases with
increasing length of the signal segment used for designing the filter bank. When
such a situation arises, the harmonic components yk,p(n) become less reliable, with
repercussions on the reliability of θ̂k,p. This problem can be addressed by adaptively
tracking the harmonic frequencies, using, for example, the algorithm described in
Sect. 6.3.4 [54]. With such tracking, the filter passbands are updated on a sample-to-
sample basis, implying that the phase differences can be estimated on a sample-to-

Fig. 6.9 Morphologic
f wave characterization
based on the phase
difference θ̂2,p , defined
in (6.49) and confined to the
interval [− π

2 , π
2 ). The

diagram is a variant of the
well-known phasor diagram
whose range is here adjusted
to suit θ̂2,p . The f waves are
generated using the sawtooth
model in (3.1)

http://dx.doi.org/10.1007/978-3-319-68515-1_3
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Fig. 6.10 a Extracted 10-s f wave signals obtained from six different patients with persistent
AF, and b reconstructed f waves judged to be representative of the corresponding signals in (a).
Nonoverlapping 0.5-s segments of x(n) are clustered based on θ1,p and θ2,p , after which the f waves
belonging to the largest cluster are reconstructed; for details, see [71]

sample basis from the harmonic components yk(n). Thus, the segment-based estimate
θ̂k,p is replaced by θ̂k(n).

Once yk(n) is available, the instantaneous phase φk(n) is computed by

φ̂k(n) = arctan

(
ỹk(n)

yk(n)

)
, k = 1, . . . , K , (6.50)

followed by computation of the instantaneous phase difference θ̂k(n). Since φ̂k(n)

is vulnerable to noise, lowpass filtering of the phase difference θ̂k(n) has been sug-
gested [54]. The filtering was accompanied by the hypothesis that a change in f wave
morphology is reflected by a change in the slope of a straight line which, in a sliding
window, is fitted to θ̂2(n); higher-order phase differences were not analyzed. Mor-
phologic regularity was quantified by the variance of the resulting slopes: a variance
close to zero indicated a strong coupling between the first and the second harmonics,
and vice versa.

6.4.2 PCA-Based Characterization of Regularity

Since phase analysis is only suitable for f wave signals with a relatively high SNR,
PCA-based approaches have been investigated which, to some extent, trade mor-
phologic detail for robustness. In particular, the mapping of estimated parameters to
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wave morphology offered by phase analysis, cf. the signal model in (6.43), is traded
for a more robust, data-driven characterization of f wave regularity where the link to
a signal model is lost.

The starting point of PCA is the data matrix X, formed by dividing the extracted
f wave signal into M nonoverlapping segments containing N samples each,

X = [
x1 x2 · · · xM

]
, (6.51)

where each column xp has been centered. The signal segments, forming the columns
inX, have not been aligned relative to any fiducial point. Thus, the definition ofX in
(6.51) differs from the one in (5.100), where the columns have been aligned relative
to the occurrence times of the QRS complexes. Time alignment was also involved in
the study which first pursued PCA-based characterization of AF signals [75]; in that
study, the occurrence times of the atrial activations in the intracardiac electrogram
were used for alignment.

The principal components are associated with the variances given by the
eigenvalues λ1, . . . , λN of the N × N sample correlation matrix R̂x = 1

M XXT ,
cf. Sect. (5.6.1). When f wave morphology is regular across the analyzed signal
segments, only a few eigenvectors are required to represent the f waves. A measure
of how well the K most significant eigenvectors represent, on average, the M signals
in X is provided by the normalized, cumulative sum of the K largest eigenvalues
[30, 75–77]:

RK =

K∑

i=1

λi

N∑

i=1

λi

, 0 < RK ≤ 1, (6.52)

where λi are sorted in decreasing order λ1 > λ2 > · · · > λN and K � N .4 Inter-
estingly, R5 has been used to quantify the overall quality of ECG signals in various
types of arrhythmia [79], though not on extracted f wave signals.

Figure6.11 illustrates R3 for two different signals: one with regular f wave mor-
phology, and another with more irregular morphology and higher noise level. The
difference in signal characteristic is well-reflected by R3. Since the f wave signals
xp are not aligned, the ensemble X is heterogenous, leading to much lower values of
R3 than what is often reported in studies on ECG analysis.

A minor variation on RK as a measure of regularity is to determine the number
of eigenvalues K needed to make RK exceed a certain preset level, and then use
that particular value of K as a measure of regularity [80]. Obviously, a smaller K
indicates a more regular signal since fewer eigenvectors are, on average, required to
reconstruct the analyzed signal.

4When the data matrixX is composed of overlapping segments, defined by a sliding window shifted
with one sample at a time, RK is known as the fractional spectral radius and used to quantify the
stochastic complexity of a signal [57], see also [78].

http://dx.doi.org/10.1007/978-3-319-68515-1_5
http://dx.doi.org/10.1007/978-3-319-68515-1_5
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Fig. 6.11 a Regular and b
irregular f wave signals
characterized by R3 = 0.40
and 0.25, respectively [77]

10 2 3 4

Time (s)

(b)

(a)

As a complement to RK which characterizes the overall regularity of all signal
segments in X, the reconstruction error associated with xp, using the K most signif-
icant eigenvectors, may serve as a measure of regularity in individual segments. The
reconstruction error of the p-th segment is defined by

εp,K = 1

N
(xp − ŝp,K )T (xp − ŝp,K ), (6.53)

where the reconstructed signal ŝp,K results from projecting xp on the K most signif-
icant eigenvectors of R̂x ,

ŝp,K = ΦΦΦKΦΦΦT
Kxp, (6.54)

with
ΦΦΦK = [

ϕϕϕ1 ϕϕϕ2 · · · ϕϕϕK
]
. (6.55)

It is noted that the expected value of εp,K is related to RK through the following
expression [30]:

E
[
εp,K

] = 1

N

N∑

i=K+1

λi = 1

N
(1 − RK )

N∑

i=1

λi . (6.56)

Early on in the history of automated ECG analysis, εp,K was used to exclude noisy
QRS complexes and artifacts from classifying QRS complexes in single-lead ECGs.
However, a set of Gaussian functions were then used instead of the eigenvectors
in (6.55) [81]. More recently, related to f wave characterization, the definition in
(6.53) has been generalized so that it applies to multi-lead ECGs, with the aim
of characterizing stationarity of atrial wavefront patterns during AF [80, 82], see
Sect. 6.6.
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6.4.3 Similarity-Based Characterization of Regularity

Morphologic similarity is a crucial feature when clustering QRS complexes
[83–85], which may be quantified by the correlation between two QRS complexes
once they have been properly aligned in time, cf. (5.159). The correlation-based
approach requires that QRS detection and QRS delineation have been performed.
This approach can be applied to f waves as well, but then requiring that detection
and delineation of individual f waves have been performed [86]. Compared to QRS
detection and QRS delineation, the conditions under which the corresponding f wave
algorithms should operate are much more challenging since f waves wax and wane
and sometimes completely disappear. Moreover, since there is no clinical consensus
on what defines f wave onset and end, delineation performance cannot be evaluated
on annotated databases. For the algorithms proposed in [86], the occurrence time
and onset of each f wave are determined using mathematical morphology operators
[87–89]. It should be noted that only f wave onset needs to be determined since
f wave end is identical to the onset of the subsequent f wave.

The main idea behind the correlation-based approach is to first assess morpho-
logic similarity for all pairwise combinations of the M different f waves xi (n), i =
1, . . . , M, contained in the analyzed segment. The resulting correlation coefficients
are then merged into one single parameter describing morphologic regularity. Since
Pearson’s correlation coefficient suffers from the disadvantages of being invariant
to changes in amplitude and vulnerable to impulsive noise, the signed correlation
coefficient (SCC) has been proposed, avoiding these disadvantages by coarse quan-
tization of the observed signal xi (n) into three parts (“trichotomization”) [90]:

xt,i (n) =
⎧
⎨

⎩

1, xi (n) ∈ Sp,

0, xi (n) ∈ Sz,

−1, xi (n) ∈ Sn.

(6.57)

The signal space is spanned by the positive subspace Sp, the zero subspace Sz , and
the negative subspace Sn , which are mutually disjunct. Each subspace is defined
by a set of signal-dependent thresholds which can be fixed or variable over time.
Before trichotomization, xi (n) is normalized by its maximum amplitude or some
other suitable signal feature.

The products computed in Pearson’s correlation coefficient are replaced by signed
products of the two trichotomized signals xt,i (n) and xt, j (n), denoted ⊗ and defined
by

xt,i (n) ⊗ xt, j (n) =
⎧
⎨

⎩

1, xt,i (n) = xt, j (n),

−1, xt,i (n) = −xt, j (n) and xt,i (n) �= 0,
0, otherwise,

(6.58)

where i, j = 1, . . . , M . Hence, the SCC is given by

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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PSCC,i, j =

N−1∑

n=0

xt,i (n) ⊗ xt, j (n)

√√√√
N−1∑

n=0

xt,i (n) ⊗ xt,i (n)

√√√√
N−1∑

n=0

xt, j (n) ⊗ xt, j (n)

= 1

N

N−1∑

n=0

xt,i (n) ⊗ xt, j (n). (6.59)

Similar to Pearson’s correlation coefficient, the signed correlation coefficient is lim-
ited to −1 ≤ PSCC,i, j ≤ 1, where 1 and −1 correspond to identical morphology but
with equal or opposite polarity, respectively. Due to trichotomization, the product
of the square root terms in the denominator of (6.59) equals N . Since the length of
xt,i (n) typically varies from f wave to f wave, the shortest signal of xt,i (n) and xt, j (n)

determines N ; the length is determined after alignment.
In a simplified version of the SCC, the trichotomization in (6.57) is omitted,

i.e., xt,i (n) ≡ xi (n), and the signed product is redefined so that dichotomization is
performed on the difference between xt,i (n) and xt, j (n) [86],

xt,i (n) ⊗ xt, j (n) =
{
1, |xt,i (n) − xt, j (n)| ≤ η,

−1, |xt,i (n) − xt, j (n)| > η.
(6.60)

The threshold η can be taken as a percentage of the combined peak-to-peak ampli-
tudes of xt,i (n) and xt, j (n).

Based on PSCC,i, j , i, j = 1, . . . , M , whether determined using dicho- or tri-
chotomization, morphologic regularity can be quantified by the following func-
tion [86]:

κ(r) = 2

M(M − 1)

M∑

i=1

M∑

j=i+1

exp

[
− (PSCC,i, j − 1)2

r2

]
, (6.61)

where 0 ≤ κ(r) ≤ 1. The function κ(r) reaches its maximum when all f waves have
identicalmorphology, i.e., PSCC,i, j = 1 for all combinations of i and j . The parameter
r (r > 0) can be viewed as a threshold determining whether pairs of f waves are
similar, i.e., fewer pairs are similar when r is set to a value close to zero. While
exponents other than two in (6.61) have been investigated, this choice has been found
to yield good overall performance [86, 91]. Thus, the three parameters M, η, and r
need to be set in the correlation-based approach to characterizing f wave regularity.

Figure6.12 illustrates the use of κ(r) for an extracted f wave signal exhibiting sub-
stantial variation in both amplitude and morphology. It is noted that κ(r) approaches
zero in intervals with waning f waves, but is close to one in intervals with waxing
f waves.
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Fig. 6.12 a Extracted fwave signal and b related regularity function κ(r = 1) computed in a sliding
window, using M = 5 and η = 0.15

6.4.4 Entropy-Based Characterization of Regularity

Entropy measures provide information on nonlinear characteristics of a signal which
is complementary to the information provided by linear transformationmethods such
as spectral analysis and PCA. The signal characteristic quantified by entropy is usu-
ally referred to as complexity, with regularity, predictability, repeatability, and self-
similarity as alternative descriptions. For f wave signals, entropy may also be viewed
as a measure of “AF organization” [92]—a term originating from electrogram-based
analysis where the aim is to quantify the organization of local activity as well as the
spatial organization (coordination) between different regions of the atria [93]. How-
ever, a widely accepted definition of “AF organization” is unfortunately missing.

A large number of entropy measures have been proposed, most of them resulting
fromdifferent approaches to estimation [94, 95]. Shannon entropy IShEn [96], approx-
imate entropy IApEn [97], sample entropy ISampEn [98], spectral entropy ISE [99],
wavelet entropy [100], conditional entropy [101], and fuzzy entropy [91] have all
been investigated in the realm of AF, either to characterize RR interval irregularity in
AF detection and AFmanagement (Chaps. 4 and 7, respectively) or f wave regularity,
i.e., the topic of this section.

In an early study, ISampEn was used to predict the termination of AF episodes
in ambulatory ECG recordings [78]. The results showed that ISampEn could not
distinguish terminating from nonterminating AF, probably due to the often poor sig-
nal quality which precluded reliable computation of ISampEn. In a later study, it was
shown that both ISampEn and IApEn are sensitive to the presence of spike artifacts [102],
i.e., QRS-related residuals, which would lead to improper characterization of f wave
regularity. Thus, the accuracy of ISampEn depends on the prevailing signal quality.

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_7
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A means to reduce the influence of noise is to bandpass filter the extracted f wave
signal, implemented either by reconstructing the signal from the wavelet coefficients
of the scale containing the DAF [103, 104], or using the output of a bandpass filter
whose center frequency is defined by the DAF [70], i.e., the approach employed in
phase analysis, cf. Sect. 6.4.1. Interestingly, when computing ISampEn from a DAF-
controlled bandpass filtered signal with a 3-Hz bandwidth [70], termination of parox-
ysmal AF could be predicted in the database previously analyzed in [78] without
success. This result demonstrates that AF termination is associated with a change in
f wave regularity which becomes increasingly more regular just before termination.
It also demonstrates that entropy-based prediction calls for bandpass filtering of the
f wave signal.

The idea to use a DAF-controlled bandpass filter was later expanded into a
DAF-controlled filter bank, composed of harmonically-related bandpass filters,
cf. Sect. 6.4.1, thus making it possible to compute ISampEn for each harmonic compo-
nent [105]. Since ISampEn does not in itself convey any information on the strength of
a harmonic component, a measure of strength is needed to judge the significance of
the harmonics. In [105], strength was quantified by the relative energy of the second
and the third harmonic components.

Before computation of ISampEn, three parameters need to be set: the length m of
the two subsequences to be compared, the similarity tolerance r , and the number of
samples N , cf. the definition in (4.12). With respect to m and r , an early recommen-
dation was to use m = 1 or 2 together with 0.1 ≤ r/σx ≤ 0.2, where σx denotes the
standard deviation of the analyzed signal [106–108]. This recommendation, which
was based on biomedical signals with relatively slow dynamics, was later found to
be less appropriate for signals with fast dynamics [109], thus motivating an inves-
tigation of how to choose optimal values of m and r in applications where f wave
characterization is required. Using ISampEn to predict termination of paroxysmal AF
and outcome of electrical cardioversion in persistent AF, the choice of m and r was
found to have significant influence on prediction performance [110]. In particular,
when optimizing the performance of a predictor or classifier, the results suggested
that a wider range of values of m and r should be considered than suggested by the
early recommendation.

The sampling rate of the f wave signal influences the computation of ISampEn, since
the probability that two subsequences are identical, i.e., the maximum norm in (4.11)
is below r , becomes increasingly higher as the sampling rate becomes increasingly
faster, i.e., the sample-to-sample changes become increasingly smaller. To mitigate
the problem that oversampling can produce misleading values of ISampEn, a lag of L
samples may be introduced between successive samples in the two subsequences for
comparison, where L is related to the degree of oversampling [111]. When counting
the number of similar subsequences in (4.12), only those which are L samples apart
are considered. The lag may be determined from the properties of the autocorrelation
function of the analyzed signal, e.g., its first zero-crossing [111]. Using simulated
signals, the lag-based definition of ISampEn was found to produce consistent results
at different sampling rates, while the original definition did not.

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
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A straightforward approach to choosing the sampling rate is to rely on knowledge
from spectral analysis of the f wave signal, suggesting that frequencies up to about
25Hz are relevant and thus a sampling rate of at least 50Hz should be used. However,
higher frequencies may still be relevant to the computation of ISampEn, therefore
motivating the use of a sampling rate higher than 50 Hz. Yet another approach is
to choose the sampling rate which offers the best performance, for example, when
the aim is to predict AF termination or to predict the outcome of electrical cardio-
version [110]; for these two prediction problems, the best-performing sampling rate
was found to be as high as 250 Hz.

The number of samples N should be chosen large enough so that the dynamics
of several f waves is captured, where at least one second of the f wave signal is
used to compute ISampEn [110]. While the choice of N is related to the sampling
rate, there seems to be general consensus that N should not be less than 200–250
samples, irrespective of sampling rate, to provide reasonably accurate estimates of
ISampEn [110, 112, 113].

6.5 Signal Quality Control

Several indices have been proposed for assessing the overall quality of ECG signals,
e.g., the relative power of baseline variation, signal kurtosis, and the ratio of the
number of beats detected by two different QRS detectors where one detector is
tuned to be more sensitive to noise than the other [79, 114]. Unfortunately, these
indices do not provide information onwhether f wave characterization can be reliably
performed. Therefore, a few methods have been developed for assessment of the
signal quality, operating either in the time domain (Sect. 6.5.1) or the frequency
domain (Sect. 6.5.2). Segments are discarded if the signal quality index (SQI) fulfills
certain criteria. A completely different approach to dealing with poor signal quality
is to postprocess the series of DAF estimates resulting from time–frequency analysis
of the f wave signal [115].

6.5.1 Time Domain Analysis

Model-based assessment of signal quality explores basic information of the f wave
signal, such as the variational patterns of amplitude and repetition rate. The harmonic
model in (6.27), but with phase also included, is useful for such assessment [116].
Building on the observation that the variation in the DAF is restricted in short signal
segments, a model signal can be reconstructed accounting for local variation in
frequency and amplitude. The SQI is defined by the error between the observed
signal and the reconstructed model signal.

The f-waves are modeled by a complex signal defined by the sum of K harmon-
ically related, complex exponentials with fundamental frequency ω0, corrupted by
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additive, white, complex Gaussian noise v(n),

x(n) =
K∑

k=1

Ake j (kω0n+φk ) + v(n), n = 0, . . . , N − 1, (6.62)

where Ak and φk denote the amplitude and phase, respectively, of the k-th harmonic.
The parameters A1, φ1, . . . , AK , φK , contained in the 2K × 1 vector

θθθ = [
A1 φ1 · · · AK φK

]T
, (6.63)

and ω0 are assumed to be deterministic, but unknown. In matrix format, the model
in (6.62) is given by

x = Z(ω0)a(θθθ) + v, (6.64)

where a(θθθ) is a K × 1 vector,

a(θθθ) = [
A1e jφ1 · · · AK e jφK

]T
. (6.65)

and Z(ω0) is an N × K Vandermonde matrix containing the frequency information,

Z(ω0) =

⎡

⎢⎢⎢⎣

1 1 · · · 1
e jω01 e j2ω01 · · · e j Kω01

...
...

. . .
...

e jω0(N−1) e j2ω0(N−1) · · · e j Kω0(N−1)

⎤

⎥⎥⎥⎦ . (6.66)

Unfortunately, joint ML estimation of a(θθθ) and ω0, defined by [116],

[ω̂0, θ̂θθ ] = argmin
ω0,θθθ

‖x − Z(ω0)a(θθθ)‖2, (6.67)

does not result in closed-form expressions of the estimators ω̂0 and θ̂θθ . Therefore, a
suboptimal, two-step approach is considered in which a(θθθ) is first determined by LS
estimation, followed by insertion of the resulting â(θθθ) into the ML estimator of ω0.
For a given ω0, the LS estimator is given by [117], see also (5.53):

â(θθθ) = (Z(ω0)
HZ(ω0))

−1Z(ω0)
Hx. (6.68)

Inserting â(θθθ) in (6.67), the ML estimator of ω0 is defined by

ω̂0 = arg min
ω0,min≤ω0≤ω0,max

‖x − Z(ω0)(Z(ω0)
HZ(ω0))

−1Z(ω0)
Hx‖2, (6.69)

where minimization is performed using a grid search over the frequency interval
[ω0,min, ω0,max] in which the DAF is likely to be found. The estimate ω̂0 represents

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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a global frequency estimate as it is based on the segment with N samples, having a
length of several seconds.

Variation in the DAF is allowed by dividing x into P overlapping subsegments xp,
p = 1, . . . , P . Each subsegment contains L samples, with L chosen so that the
subsegment contains at least one f-wave. For each subsegment, a local frequency
estimate ω̂0,p is determined, using

ω̂0,p = arg min
|ω0,p−ω̂0|≤Δω0

‖xp − ZL(ω0,p)(ZL(ω0,p)
HZL(ω0,p))

−1ZL(ω0,p)
Hxp‖2,

(6.70)

where ZL(ω0,p) consists of the first L rows of Z(ω0,p) and Δω0 is the maximum
deviation from ω̂0 in any of the P subsegments. This implies that ω̂0,p accounts for
short-time variation as long as it does not deviate more than Δω0 from ω̂0.

Reconstruction in terms of the signal part in (6.62) has the disadvantage of yield-
ing a fixed amplitude and a fixed phase within the analyzed N -sample segment,
thus motivating the use of a basis vector approach which can produce a signal with
time-varying amplitude. The local DAF estimates ω̂0,p are used to create constant-
amplitudebasis vectorsbk , k = 1, . . . , K , describing thephasevariationof the signal.
The vector âp(θθθ p), containing local amplitude and phase information, is obtained
using the LS estimator in (6.68), but with ZL(ω̂0,p) replacing Z(ω0) and xp replac-
ing x. The vector yk,p is then computed from φk,p, i.e., the phase of the k-th element
of âp(θθθ p), and ω̂0,p,

yk,p =
⎡

⎢⎣
kω̂0,p0 + φk,p

...

kω̂0,p(L − 1) + φk,p

⎤

⎥⎦ , p = 1, . . . , P. (6.71)

Since the related phase vectors yk,p are overlapping, the overlapping parts are aver-
aged to produce a global N × 1 phase vector yk which then is used to construct the
constant-amplitude basis vector bk ,

bk = cos(yk), (6.72)

capturing the phase variation in x.
The time-varying amplitude of the reconstructed signal is described by the N × 1

vectors αααk ,

αααk = [
αk(0) αk(1) · · · αk(N − 1)

]T
, (6.73)

whose maximum sample-to-sample variation in αk(n) is limited by Δαk ,

|αk(n) − αk(n − 1)| ≤ Δαk . (6.74)
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The tolerance Δαk should be chosen so that the variation in f-wave amplitude is
captured, but not the variation due to noise. The model signal ŝ is obtained by sum-
ming the elementwise product of the basis vectors and the amplitude estimates of
the harmonic components,

ŝ(n) =
K∑

k=1

α̂k(n)bk(n), (6.75)

where bk(n) denotes the n-th element of bk . The amplitude estimator α̂ααk is obtained
by minimizing the following expression:

α̂ααk = argmin
αααk

N−1∑

n=0

‖αk(n)bk(n) − Re [x(n)] ‖2, (6.76)

which, along with the N − 1 constraints in (6.74), defines a convex optimization
problem which is solved numerically; the notion “Re” denotes the real part.

The SQI is defined by the normalized RMS of the model error ê = x − ŝ,

S = 1 − σê

σx
, (6.77)

where σê and σx denote the RMS of ê and x, respectively. For any reasonable estimate
of ŝ, S is restricted to the interval [0, 1], where 0 indicates poor signal quality and 1
indicates perfect modeling of x. A fixed threshold ηS can be used to indicate whether
the f-waves in the analyzed segment have sufficient quality for characterization, see
Fig. 6.13.

6.5.2 Frequency Domain Analysis

A disadvantage with the spectral profile method is its lack of control of what goes
into the update of the spectral profile: the spectrum of a segment with large QRS-
related residuals is just as influential as is the spectrum of a segment with noise-free
f waves. Although the spectral profile can have a slow adaptation rate which limits
the sensitivity to occasional noisy segments, several consecutive noisy segments will
cause the spectral profile to lose its structure and, accordingly, the DAF estimates
can no longer be trusted. Once the spectral profile has lost its structure, the recovery
time may become unacceptably long, even if subsequent segments are associated
with a harmonic structure. This limitation can be remedied by adopting a spectral
modeling approach inwhich the spectrum of each segment is checked before entering
the update of the spectral profile [118]. A harmonic spectrum is modeled as a sum
of Gaussian functions (cf. (5.68)),

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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Fig. 6.13 Illustration of signal quality assessment. a ECG signal obtained from a patient with
AF, b extracted f wave signal containing a noisy episode, c signal quality index S (solid line) and
threshold ηS defining acceptable signal quality (dashed line), and d extracted f wave signal where
the low-quality segment has been removed based on the information in c. The segment lengths N
and L were set to 5 and 0.5 s, respectively

Sx (ω,θθθ p) =
K∑

k=1

Ak,p exp

[
− (ω − kω0,p − Δk,p)

2

2σ 2
k,p

]
, (6.78)

where K is the number of Gaussians, Ak,p is the spectral magnitude, σk,p is the width,
and Δk,p is the frequency jitter associated with the second and higher frequencies
kω0,p, k = 2, . . . , K ; thus, Δ1,p = 0. The model parameter vector θθθ p, containing

θθθ p = [
A1,p · · · AK ,p σ1,p · · · σK ,p Δ2,p · · · ΔK ,p ω0,p

]T
, (6.79)

is estimated by minimizing the following weighted LS error criterion with respect
to θθθ p:

J (θθθ p) = (|qp| − s(θθθ p))
TDEp(|qp| − s(θθθ p)), (6.80)

where qp is the nonuniform, windowed Fourier transform of the analyzed signal
segment, defined in (6.12). The vector s(θθθ p) is obtained by sampling the Gaussian
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model in (6.78) at the logarithmic frequencies νl defined in (6.14), yielding

s(θθθ p) = [
Sx (ν0, θθθ p) · · · Sx (νL−1, θθθ p)

]T
. (6.81)

The matrices D and Ep are both diagonal, but handle different aspects of spectral
weighting. Identical to the spectral profile method, D corrects for the oversampling
at lower frequencies due to the logarithmic sampling. The matrix Ep, on the other
hand, is designed so that the frequency intervals in |qp| with harmonic components
are weighted with one, whereas the remaining intervals are weighted with a value
close to zero; thus, this matrix is segment-dependent, while D is not. Details on
the design of the matrices D and Ep, as well as the multidimensional optimization
procedure associated with J (θθθ p), can be found in [118].

A set of parameters characterizing the harmonic pattern is introduced to decide
whether qp should be excluded from the spectral profile update, i.e., whether or not
αp in (6.18) should be set to zero. The following three parameters, of which the first
two relate to the model in (6.78), are used to exclude spectra which do not exhibit a
harmonic structure [118]:

1. Theminimized error J (θ̂θθ p), quantifying the similarity between qp and themodel
spectrum s(θ̂θθ p).

2. The width σ̂1,p, characterizing the spectral peak of the first harmonic.
3. The ratio of themaximummagnitude between the first and the second harmonics

and the magnitude of the first harmonic, picking up the occurrence of spurious
peaks between the first and the second harmonic.

For poor-quality signals, Fig. 6.14a, b present the spectral profile when computed
without and with application of the exclusion criteria. It is obvious that the domi-
nant peak becomes much more distinct when noisy segments are excluded from the
update of the spectral profile. For good-quality signals, the spectral profile remains
essentially unchanged after application of the exclusion criteria, see Fig. 6.14c, d.

6.6 Spatial Characterization

Most parameters proposed for f wave characterization are defined with reference to
single-lead analysis, and extended to multi-lead ECG analysis by simply comput-
ing the parameters on a lead-by-lead basis. This approach has the disadvantage of
ignoring intrinsic spatial information resulting from joint analysis of available leads.
The vectorcardiographic f wave loops, defined by the orthogonal leads X, Y, and
Z, provide basic spatial information (Sect. 6.6.1), whereas body surface potential
mapping (BSPM) can provide much more comprehensive spatial information on AF
activation patterns (Sect. 6.6.2). For example, the regions which are responsible for
AF maintenance may be localized from such maps, with potential implications on
AF treatment since regional information may contribute to improve the planning of
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Fig. 6.14 Spectral profiles a before (dashed line) and b after application of exclusion criteria (solid
line), obtained from extracted f wave signals containing large-amplitude QRS residuals. Spectral
profiles c before and d after application of exclusion criteria, obtained from f wave signals with
good quality

an ablation procedure [119]. From an engineering viewpoint, spatial characterization
of body surface maps is still in its infancy, leaving much room for the development
of robust, tailored signal processing algorithms. So far, most types of spatial analysis
are extended versions of single-lead analysis, e.g., estimation of the DAF and phase
analysis.

Body surface potential mapping is also the starting point for reconstruction of the
potentials on the epicardial surface of the heart—a technique known asECG imaging
(ECGI). From the time sequence of epicardial potentials, electrograms can be con-
structed at different locations on the epicardium. Since ECG imaging involves several
advanced aspects which are far outside the scope of this book, such as techniques
for solving the inverse problem and imaging techniques to obtain subject-specific
information on the geometries of the heart and the torso surfaces (based on computer
tomography or magnetic resonance imaging), the interested reader is referred to the
literature in this area [20, 120–124].
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6.6.1 Vectorcardiogram Loop Analysis

The precursor to vectorcardiogram (VCG) loop analysis of f waves was a study
which investigated the characteristics of loops in atrial flutter [125]. Since the reentry
circuit of isthmus-dependent atrial flutter is known to contribute significantly to the
VCG, it was hypothesized that flutter loops would be mostly contained in a two-
dimensional plane whose orientation is approximately parallel to the reentry circuit.
To corroborate this hypothesis, the planarity of each flutter loop was determined, as
well as the orientation of the plane, described by the azimuth and elevation angles
relative to the frontal plane. By analyzing the VCG synthesized from the 12-lead
ECG,5 recorded in patients before undergoing catheter ablation of atrial flutter, it
was shown that flutter loops were mainly planar and had orientations concentrated to
a narrow region of azimuth and elevation angles, likely corresponding anatomically
with the expected flutter circuit. Atrial flutter waves in intervals without ventricular
activitywere analyzed on awave-by-wave basis, i.e., each flutterwavewas delineated
manually.

This study laid the foundation for a number of studies investigating f wave
loops [128–130], see also [131]. In contrast to flutter waves, f waves are less orga-
nized, and, therefore, spatial f wave analysis is more difficult to pursue. Spatial
analysis can either be based on individual f waves in TQ intervals [128, 129] or
an extracted signal containing multiple f waves. The latter case is preferable when
low-amplitude f waves and noise, in combination with short TQ intervals, are to be
analyzed [130]. Moreover, in the latter case, there is no need to delineate individual
f waves, but a segment of the extracted signal can be analyzed. The data matrix is
formed by the three orthogonal leads X, Y, and Z,

X = [
xX xY xZ

]T
. (6.82)

where each column vector, i.e., lead, contains N samples. Segment lengths of 1-s
and 60-s were analyzed in [130].

The orientation of the plane-of-best-fit is defined as the two-dimensional pro-
jection of the loop producing the minimum MSE with respect to the original loop.
The plane is determined from eigenanalysis of the sample correlation matrix of
the data in X, resulting in the three eigenvectors ϕϕϕ1,ϕϕϕ2, and ϕϕϕ3 associated with the
eigenvalues λ1 ≥ λ2 ≥ λ3. The eigenvectorϕϕϕ1 defines the principal axis, i.e., the axis
with the largest correlation among the data, ϕϕϕ2 spans the plane-of-best-fit together
with the principal axis, and ϕϕϕ3 = [

ϕ3,X, ϕ3,Y, ϕ3,Z
]T

is the perpendicular axis which
defines the azimuth and elevation angles of the plane-of-best-fit:

5The orthogonal leads X, Y, and Z can be synthesized from the 12-lead ECG using, for example,
the inverse Dower matrix [126, 127], see also page 64.
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φAZ = arctan

(
ϕ3,Z

ϕ3,X

)
, (6.83)

φEL =
∣∣∣∣∣∣
arctan

⎛

⎝ ϕ3,Y√
ϕ2
3,X + ϕ2

3,Z

⎞

⎠

∣∣∣∣∣∣
, (6.84)

where −90◦ < φAZ < 90◦ and 0 < φEL < 90◦. Loop planarity is defined as [132]

ψPL = λ3

λ1 + λ2 + λ3
, (6.85)

which is close to zero when when the loop is essentially planar. Thus, the charac-
terization of a segment containing several f waves embraces the three parameters
φAZ, φEL, and ψPL [130].

Although the results from VCG loop analysis have had few implications on AF
treatment, they have still provided certain qualitative information. Notably, vary-
ing degrees of organization have been observed, where the more organized cases
have their plane-of-best-fit near the sagittal plane [128]. Moreover, a relatively weak
coupling between loop morphology and the DAF was observed, suggesting that
both these parameters may have a place in AF classification [130]. Analysis of the
pseudo-VCG, defined by the leads V5, aVF, and V1, suggests that changes in loop
morphology may be used to predict conversion from AF to atrial tachycardia, infor-
mation which in turn may be used to establish when the therapy is on an effective
path [133].

6.6.2 Body Surface Potential Mapping

Noninvasive, spatiotemporal analysis of electrical activation patterns may be per-
formed on a body surface map constructed from a large number of leads which
are placed on the anterior and posterior thorax. In the context of AF, such analysis
was first considered in [134], with the overall aim of establishing whether single
wavefronts as well as multiple simultaneous wavefronts, previously observed in
intracardiac maps [135–137], could also be observed in body surface maps. Of the
56 leads, recorded during four minutes, 40 were arranged in matrix format on the
anterior thorax and 16 on the posterior thorax. The traditional approaches to car-
diac mapping of invasive data, i.e., isopotential mapping and isochronal mapping,
were adopted for visualizing and analyzing cardiac activation [134]. The isopoten-
tial map displays the voltage for different electrode positions on the body surface
at a given time instant, with contour lines connecting points of equal voltage. The
isochronal map displays contour lines which connect points of equal activation time,
often accompanied by one or several arrows to indicate the major propagation path.
While it is straightforward to construct a isopotential map from the samples of the
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multi-lead f wave signal, the isochronal map requires that the activation time is
determined for each electrode position. Each isochronal contour line is identified
from the isopotential map as the line for which the voltage is equal to zero; to have
a single representation of each activation wavefront, instead of having both forward
and backward movement of the wavefront (i.e., atrial de- and repolarization), only
points with a positive slope should be used for identification of the contour line.
To improve spatial resolution, interpolation can be applied to the isopotential map,
which in turn implies improved resolution of the isochronal map.

The information conveyed by noninvasive isochronal maps has been assessed
qualitatively by classifying maps into the following three types [134], originally
developed for electrogram-based analysis [138]: Type I (single wavefront), Type II
(single wavefront with wave breakages and splitting), or Type III (multiple simulta-
neouswavefronts or none at all). On a data set consisting of 14 patientswith persistent
AF, all three types were represented, leading the authors to conclude that isochronal
mapping has the potential to characterize activation patterns in AF. However, no
comparison was made to invasively recorded activation maps. Figure6.15 illustrates
isopotential and isochronal maps, in both cases determined from a subinterval of an
f wave.

Accurate identification of isochronal contour lines calls for high-quality signals,
which in BSPM analysis implies the use of bandpass filtering to reduce the influence
of baseline wander (particularly critical when finding the time for zero voltage) and
myoelectrical noise. So far, TQ-based f wave analysis has been performed instead
of f wave extraction to avoid the risk of analyzing QRS-related residuals [14, 80,
119, 134, 139]. Even when these precautions are taken, f wave amplitude may be
so low that accurate determination of the activation times is not possible, especially
for leads positioned far away from the atria. Since an isochronal map displays only
one activation, variation in f wave amplitude and morphology may call for multiple
maps, rendering the interpretation more complex [140].

Noninvasive isofrequency mapping in AF means the construction of a map dis-
playing the spatial distribution of theDAF (“DAFmap”), where theDAF is estimated
in each lead using any of the techniques described in Sect. 6.3.1. Since the DAF map
does not require the determination of activation times, its computation is much more
straightforward. An important application of the DAF map is the identification of
high-frequency sources which play an important role in themaintenance of AF [119].
Knowledge on the location of such sources are expected to improve the planning and
outcome of ablation—an expectation supported by results obtained from invasive
DAF maps showing that ablation guided by the identification of high-frequency
sources increases the likelihood for long-term maintenance of sinus rhythm [141].
A comparison of the locations of the highest frequency source in the surface and
invasive DAF maps, where the latter map served as the reference, demonstrated sta-
tistically significant correlation [119]. The agreement between these two types of
DAF map is illustrated in Fig. 6.16, where the highest frequency source has similar
location in both types of map.

Phase mapping is a tool particularly well-suited for characterizing temporal
changes in spatial activation patterns in cardiac fibrillation, notably rotor activ-
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Fig. 6.15 a Isopotential maps obtained at three time instants of an f wave, using a 56-lead system
for body surface potential mapping. Each isopotential map is composed of two submaps: one based
on the anterior leads and another, smaller based on the posterior leads. The solid, black line in each
map connects the points with zero voltage. b Isochronal map of the f wave in (a), where contour
lines are drawn every 2ms. Note that the three zero-voltage lines in (a) are also part of the isochronal
map, indicated by the numbers 1, 2, and 3. (Reprinted from [134] with permission)

ity [142]. The term “rotor” refers to an activation wavefront circulating in an
organized fashion around a center of rotation (“phase singularity point”). The engine
in phase mapping is the Hilbert-based instantaneous phase computation, defined in
(6.39), performed at regular time intervals in all the available leads to produce a time
sequence of phase maps (“phase movie”). From this movie, the presence of a phase
singularity point is identified as the site where the curved activation wavefront and
wavetail of the rotor meet each other, i.e., a point where the phase of the rotating
waves progresses through a complete cycle from −π to π [142, 143], see also [144,
145].

Identification of phase singularities is important since they pinpoint where the
tissue is capable of supporting rotors which drive AF. Hence, such points repre-
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Fig. 6.16 a Electrograms recorded at different atrial sites and related power spectra, with the
dominant atrial frequency (DAF) indicated, and b surface ECG leads and related power spectra.
c Invasive DAF map obtained by electroanatomical mapping. The arrow points to the right atrial
(RA) region with highest DAF. d Noninvasive DAF map with superimposed locations of the elec-
trodes used in (b). The following acronyms are used: coronary sinus (CS), left atrial (LA), left
inferior pulmonary vein (LIPV), left superior pulmonary vein (LSPV), right superior pulmonary
vein (RSPV), surface left (SL), surface posterior (SP), surface right (SR), and superior vena cava
(SVC). (Reprinted from [119] with permission)

sent potential targets for ablation. The significance of rotor-guided ablation has been
studied in patients with persistent AF, mostly with promising results [146–148],
although poor efficacy has also been reported [149]. In these studies, the instanta-
neous phase map was computed from intracardiac electrograms.

As noted in Sect. 6.4.1, stable, one-dimensional phase analysis requires that the
f wave signal is bandpass filtered before phase computation—an operation which is
equally needed in phase mapping. It has been demonstrated that bandpass filtering,
with center frequency defined by the highestDAFof all availableECG leads, provides
more accurate identification of phase singularity points than when bandpass filtering
is omitted [14], see also [150]. By performing bandpass filtering, rotors were found
to be more long-lasting, thereby facilitating the study of rotor characteristics such as
trajectory, stability, and life span, and promoting atrial sites as potential targets for
ablation.

The isopotential, isochronal, isofrequency, and phase maps have in common that
they provide a basis for identification of featureswith electrophysiological interpreta-
tion. An overall approach to noninvasive BSPM analysis, disregarding map-specific
features, is based on PCA of the temporal sequence of isopotential maps, proposed
for quantifying spatial complexity of atrial wavefronts [80], see also [51]. In this
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approach, spatial complexity is linked to dimensionality reduction: a map which can
be approximated by a few eigenvectors is considered less complex (more organized)
than a map which requires several eigenvectors. The starting point for analysis is the
L × N data matrix

X = [
x(0) x(1) · · · x(N − 1)

]
(6.86)

whose columns x(n) contain L leads at time n,

x(n) =

⎡

⎢⎢⎢⎣

x1(n)

x2(n)
...

xL(n)

⎤

⎥⎥⎥⎦ , n = 0, . . . , N − 1, (6.87)

where N is the number of samples subject to analysis. Each column x(n) contains
a spatial map, and thus X contains the entire temporal sequence of maps. Each row
of X, i.e., xl(0), . . . , xl(N − 1), contains the samples of successive, concatenated
TQ intervals of the l-th lead.6 The onset and end of each TQ interval is determined
either by the intervals related to the occurrence times of the surrounding QRS com-
plexes [80], or delineation of T wave end and QRS onset [139]. As already noted on
page 155, the presence of f waves makes delineation challenging, especially when
using a delineation algorithm not designed for, nor evaluated on, ECG signals in
AF [139, 153].

The normalized cumulative sum RK of the K largest eigenvalues λi , defined
in (6.52), obtained from the sample correlation matrix of X, cf. (5.106), provides
a statistical measure of how well X is approximated by X̃, obtained as a truncated
series expansion of separable matrices resulting from SVD of X,

X̃ =
K∑

k=1

σkukvT
k , (6.88)

where σk are the ordered singular values and uk and vk are the associated left and
right singular vectors, respectively. Thus, for a fixed K ,X is considered less complex
when RK is close to one, and vice versa; K was set to 3 in [80, 139]. Alternatively,
K can be set to that value which makes RK exceed 0.95 [80], and thus K0.95 replaces
RK as the main information carrier; a larger K0.95 implies higher spatial complexity.
To smooth out the influence of temporal variation, R3 and K0.95 were computed in
six consecutive 10-s segments and averaged.

6Principal component analysis of 180-lead isopotentialmaps, recorded in sinus rhythm,was pursued
already in 1964, but then motivated by the completely different question “What is the minimum
number of leads which can contain all of the electrocardiographic information available on the
body surface?” [151], see also [152]. In those studies, the data matrix was defined by one single
isopotential map, while X in (6.86) contains N maps. Thus, the former approach is purely spatial,
while the approach in [80] may be labelled “spatiotemporal”.

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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It should be emphasized that the approximation in (6.88) is identical to the one
earlier encountered in (6.54). This is realized by forming a data matrix with the
reconstructed signals ŝp,K , i.e., X̃ = [

ŝ1,K · · · ŝP,K
]
, so that (6.54) can be expressed

as X̃ = ΦΦΦKΦΦΦT
KX. SinceΦΦΦ = U and X = U���VT , cf. page 184, then

X̃ = UKUT
KX = UK���KVT

K =
K∑

k=1

σkukvT
k . (6.89)

For overall characterization of spatial complexity, the number of leads is not as
critical as it is for the maps which offer an electrophysiological interpretation. Using
PCA, this aspectwas investigated by computing a complexitymeasure closely related
to RK for a 64-leadmap, aswell as for 32- and10-leadmaps,where the latter twomaps
were subsets of the 64-leadmap. In particular, the 10-leadmapwas chosen such that it
closely approximated the standard 12-lead ECG [139]. The results demonstrated that
similar information can be derived from all three maps, suggesting that the standard
12-lead ECG is actually useful for determining spatial complexity.

6.7 f Wave Characterization in Clinical Applications

This section provides a brief overview of popular clinical applications, where f wave
characteristics are explored with the goal of monitoring, detecting, or predicting
changes in the atrial activity, either due to procedural intervention or spontaneous in
origin. These applications, having emerged during the last decade, call for advances in
methodological development as well as for further clinical studies to better establish
the significance of f wave characteristics.

Whether monitoring, detection, or prediction is of interest, a single-parameter
approach is usually pursuedfirst, involvingmeasurements from the leadwith themost
prominent f waves. The natural extension of this approach is to consider multi-lead
measurements of a single parameter. In decision-oriented applications, for example,
the prediction of catheter ablation outcome, a multi-parameter approach is likely to
achieve better performance than a single-parameter approach. However, the more
parameters involved in the decision-making, the larger needs the data set to be to
adequately characterize performance.

6.7.1 Monitoring of Drug Response

The use of antiarrhythmic drugs is one of several approaches to long-term AF man-
agement which aims at restoring and maintaining sinus rhythm, an approach known
as “rhythm-control therapy,” cf. Sect. 1.8.3. Since antiarrhythmic drugs are moder-
ately effective andmay have serious side effects including life-threatening ventricular

http://dx.doi.org/10.1007/978-3-319-68515-1_1
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arrhythmias, it is important to develop ECG-based tests for quantifying the feasibility
and dosage of a selected drug bymonitoring various f wave characteristics. Such tests
may also prove useful for drug development as they avoid the complexity of invasive
electrophysiological testing, and offer a valuable complement to pharmacokinetic
studies.

Dominant atrial frequency has been extensively studied for a great number of
antiarrhythmic drugs designed to increase refractoriness and/or delay conduction of
the atrial myocardium [154]. Most studies report on a substantial decrease in the
DAF in patients responding to the drug [155–160]. This is a desirable result since a
lower DAF usually means a more favorable outcome of rhythm-control therapy as
it may lead to conversion to sinus rhythm. A decrease in the DAF is illustrated in
Fig. 6.17 for an antiarrhythmic drug administered at several occasions during a time
span of almost three days; the largest decrease in the DAF took place during the first
day.

For a drug under development, administered to patients with persistent AF, the
short-term dynamics of the DAFwas studied using the spectral profile method [161].
The results showed that the “baseline” DAF, i.e., the DAF determined just before the
time of the first drug administration, was not predictive of conversion to sinus rhythm.
On the other hand, the decrease in the DAF was significantly more rapid in patients
converting to sinus rhythm than in those not converting. A similar rapid decrease was
observed in the harmonic decay and the standard deviation of theDAF, computed in 1-
min intervals, suggesting that drug treatment increases AF organization, as reflected
by more pronounced harmonics, and stabilizes the DAF.

So far, entropy and other nonlinear measures have not been considered for non-
invasive monitoring and evaluation of drug response.
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Fig. 6.17 Response of the dominant atrial frequency (DAF) to an antiarrhythmic drug (flecainide).
The drug was administered at the onset of the recording and repeated after 16, 27, 42, 52, and 66h
(indicated by dashed lines)
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6.7.2 Prediction of Catheter Ablation Outcome

Outcome prediction performed before catheter ablation can prevent unnecessary
procedural risk in patients with low chance of successful AF termination [162].
Conversely, outcome prediction can be useful for selecting patients who require
more aggressive ablation techniques than what is offered by catheter ablation. The
significance of preoperative outcome prediction applies particularly to patients with
persistent AF, since catheter ablation in patients with paroxysmal AF is associated
with better success rate. The time span of prediction may differ from study to study:
short-term prediction concerns successful AF termination in direct connection with
catheter ablation, i.e., intraprocedural outcome [31, 163], while long-term prediction
concerns maintenance of sinus rhythm a few months or longer following catheter
ablation [19, 56, 164, 165]. Short-term prediction usually represents a simpler task
than long-term prediction and is therefore associated with better performance—an
observation which should be kept in mind when comparing the results of different
studies on outcome prediction.

The significance of f wave amplitude in prediction of catheter ablation outcome
has been investigated in patients with persistent AF [19, 31, 56, 163]. Clinical studies
have shown that patients with lower f wave amplitude are less likely to benefit from
catheter ablation [4, 5].7 The lower amplitude may be related to a more disorganized
(complex) form of AF, characterized by several activation wavefronts propagating in
different directions which lead to wavefront collisions and a lower f wave amplitude.

Outcome prediction can be restricted to analyzing only the lead with the most
prominent f waves, typically lead V1, [56], or all available leads so that lead-
dependent measurements can be produced [19, 31, 163]. In [19, 56], both addressing
long-term prediction and applying traditional amplitude measures, i.e., peak-to-peak
amplitude and spectral power |Ŝx (ω̂0)|2, to the preoperative ECG, no statistically
significant difference was found in f wave amplitude between terminating and non-
terminating AF. Thus, these two studies, using automated amplitude measurements,
do not support the results of the above-mentioned clinical studies [4, 5]which showed
that a lower f wave amplitude is predictive of AF recurrence.

Alternatively, amplitude measurements can be derived from a PCA-based rank-
one approximation of the data matrix containing the preoperative 12-lead ECG [31],
cf. (6.88) with K = 1. The main reason for performing PCA-based dimensional-
ity reduction is to retain the main f wave characteristics, while at the same time
making amplitude measurements less sensitive to noise due to, for example, loosely
attached electrodes. The envelope-based definition of f wave amplitude, illustrated
in Fig. 6.1, is applied to the rank-one approximated data matrix. Using this approach
in short-term prediction, f wave amplitude was found to differ significantly between
terminating and nonterminating AF.

7It is somewhat remarkable that outcome prediction was based on manual f wave amplitude mea-
surements in recent studies [4, 5], although algorithms for amplitude measurements have been
available for many years.
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Invasive studies have shown that a low DAF is predictive of long-term catheter
ablation outcome in patients with persistent AF [166–168]. Similar results have been
reported in noninvasive studies, where the DAF also differed significantly between
terminating and nonterminating AF, either in lead V1 [164] or in leads I, aVR, and
V5 [163]; however, no such difference was reported in [56]. Out of several spectral
parameters, including the DAF, the position of the second harmonic, the harmonic
decay, the spectral concentration, and the spectral power, it was only the harmonic
decay that differed significantly between the two groups [56]. The results suggested
that patients with more organized AF, reflected by more harmonics, are less likely to
relapse to AF following catheter ablation.

Sample entropy could not predict AF termination, irrespective of whether DAF-
controlled bandpass filtering was performed [163] or not [31]. Neither could spectral
entropy predict AF termination [163].

While the results reported from single-parameter prediction may not be particu-
larly striking, it has been noted that the performance of ECG-derived parameters to
predict AF termination and long-term success of catheter ablation in patients with
persistent AF is at least as good as that achieved by clinical parameters [163].

6.7.3 Prediction of Cardioversion Outcome

Electrical cardioversion is a well-established, noninvasive procedure with which AF
is converted to sinus rhythm by delivering a high energy electrical shock, usually by
placing two electrodes on the chest [169], cf. page 14. The shock is synchronized
with the QRS complex to avoid delivery during ventricular repolarization, i.e., the
T wave, which can induce ventricular fibrillation. Electrical cardioversion is usually
accompanied by administration of an antiarrhythmic drug to increase the likelihood
of conversion.

Unfortunately, asmany as 35%of patientswith persistentAFwho undergo cardio-
version relapse to AF, most of them within two weeks [170]. Consequently, in the
same way as prediction of catheter ablation outcome can provide better selection of
patients who will maintain sinus rhythm after ablation, prediction of cardioversion
outcome can provide better selection of patients. From an engineering perspective,
however, there is little difference between the problemsof predicting catheter ablation
and cardioversion outcome.

Early studies on ECG-based predictors in patients with persistent AF suggest that
a lower DAFmay be used as a long-term predictor ofmaintenance of sinus rhythm [7,
171]. Subsequent studies demonstrated the significance of a lower DAF for mainte-
nance, especially when prediction was performed in AF of short duration [172] or
when prediction was based on the DAF computed after an unsuccessful shock [173].
However, one study found the harmonic decay, being faster in patients relapsing to
AF than in patients maintaining sinus rhythm, to be a more powerful predictor than
the DAF, although the DAF was also a statistically significant predictor [174]. In
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all these studies, the spectral parameters were determined from the extracted f wave
signal.

Rather than focusing on the dominant spectral peak, some studies have proposed
predictive parameters for quantifying the spectral content of certain scales of the
wavelet transform. Using the original ECG, rather than an extracted f wave signal or
TQ intervals, the wavelet entropy was proposed as a predictor, computed from the
scales containing 20–30 Hz components [175]. Using instead the extracted f wave
signal, the sample entropy [103] and the central tendency [176], i.e., a measure
describing the degree of signal variability, were computed from the scale containing
theDAFand used as independent predictors. The results of these three studies showed
that wavelet-based parameters may be used to predict maintenance of sinus rhythm
following cardioversion.

6.7.4 Prediction of Spontaneous AF Termination

The question whether it is possible to predict spontaneous termination of an AF
episode was highlighted to the engineering community in the PhysioNet/Computing
in Cardiology Challenge in 2004 [177, 178]. As a result, several subsequent papers
addressed this question using the AF Termination Database (AFTDB) which was
made available for this challenge. Prediction of spontaneous termination relates to
the hypothesis that subtle changes in f wave characteristics precede AF termination.
With successful prediction, the parameters employed to characterize the fwave signal
may help to explain why AF is terminating in certain individuals, but not in others.
Such information may not only lead to more effective therapy, but also to avoidance
of ineffective therapeutic intervention and reduced patient risk.

Early experimental studies, analyzing intracardiac electrograms, showed that pro-
longation of the DACL is a significant determinant of spontaneously terminating AF
episodes in many patients [179, 180]. This result has been shown to carry over to
the analysis of the surface ECG, where spontaneous termination is also preceded by
a decrease in the DAF [59, 78, 178, 181]. The time course of the decrease before
termination differs from study to study, where periods of about 5 to 10 minutes have
been reported. In one study, a decrease in the DAFwas only observed in patients who
converted to sinus rhythm during morning hours, but not in those who converted in
the afternoon or evening—results suggesting that electrophysiological mechanisms
of termination may be different depending on the time of day [181]. For studies using
the AFTDB, the decrease occurred immediately before spontaneous termination [78,
178].

Using parameters derived from the spectral profile, spontaneous termination in
AFTDB was best predicted by a low DAF, a slow harmonic decay, and a stable DAF,
while fwave amplitude, defined by (6.17), sample entropy, and spectral entropy could
not discriminate between terminating and nonterminating AF [78]. Using parame-
ters derived from the STFT, the DAF was, together with the average heart rate, the
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best-performing predictors [59], while f wave amplitude, defined by |Ŝx (ω̂0)|2, and
spectral width did not contribute to better prediction.

Introducing DAF-controlled bandpass filtering of the extracted f wave signal, a
decrease in sample entropy was observed before termination [70]. Interestingly, the
prediction performance achieved using sample entropy was identical to that achieved
using the DAF [78], thus emphasizing the importance of prefiltering to reduce the
sensitivity of sample entropy to noise. Similar prediction performance was achieved
when the sample entropy was computed from a filtered f wave signal, obtained
by reconstructing the signal from the wavelet coefficients of the scale containing
the DAF [103, 104]. Wavelet decomposition was later considered for prediction of
spontaneous AF termination [182], but then accompanied by computation of the
wavelet entropy, defined by the Shannon entropy of the relative energies of the
different scales, cf. page 207. However, other nonlinear parameters than entropy have
been found to offer better prediction performance on AFTDB; for details, see [92].

6.7.5 Detection and Characterization of Circadian Variation

It is well-known that heart rate and blood pressure increase during daytime and
decrease during night-time in healthy subjects. However, many other bodily func-
tions also exhibit circadian variation. Information on circadian rhythms can help to
establish proper timing of drug administration so that the effect of a drug can be
maximized (chronotherapy) [183, 184]. The attenuation or absence of circadian
variation may be indicative of certain risk conditions.

Circadian variation is driven by various external factors, e.g., sleep–wake routine,
meal consumption, emotional state, and intrinsic activity of the autonomic nervous
system. The latter type of activity is well-studied in the literature, with results demon-
strating that sympathetic tone dominates during daytime activity, while vagal tone
dominates during night-time sleep.

Detection and characterization of circadian variation usually involve a sinusoidal
model which is fitted to the observed data using LS techniques [184, 185]. In this
approach, the offset, commonly referred to as the “midline estimating statistic of
rhythm” (MESOR), the amplitude, and the phase of the sinusoid, whose period is
24 h, constitute the model parameters. Detection can be based on a comparison of
the MSE associated with two different models, namely 1. the MSE between the
observed data and the non-circadian model defined by the MESOR only, and 2. the
MSE between the observed data and the sinusoidal model. Themost relevant of these
two models is determined using a statistical test, for example, a paired bootstrap
hypothesis test [77].

With respect to f wave characteristics and circadianity, the DAF was the first
parameter to be investigated, determined every sixth hour from 24-h ambulatory
recordings in patients with persistent AF [186]. A significant decrease in the DAF
was observed at night, and an increase during the morning hours, reaching its maxi-
mum during the afternoon hours. To a large extent, these results were reproduced in
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subsequent studies on patients with persistent or permanent AF, although circadian
variation was not detected in all patients [187, 188]. It has been pointed out that
the short-term variation often observed in the DAF, uncovered by time–frequency
analysis, may exceed the circadian variation, with implications on the accuracy of
detecting circadian variation [188].

These studies share the limitation of a short recording duration, ranging from
15 to 24 h [186–188]. Hence, less than one sinusoidal period was available for
parameter estimation, implying a large variance of the resulting estimates. To address
this limitation, the DAF was studied on 7-day recordings in patients with persistent
AF [77]. The results showed that the circadian variation detected in a 7-day recording
was not always detected in all seven 24-h periods of the same recording, thus casting
doubt on the validity of the conclusions made in [186–188]. In addition to the DAF,
the eigenvalue-based parameter R3, defined in (6.52), and the sample entropy were
also studied. These parameters exhibited circadian variation although not always in
the same patient.
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Chapter 7
Modeling and Analysis of Ventricular
Response in Atrial Fibrillation

Valentina D. A. Corino, Frida Sandberg, Luca T. Mainardi
and Leif Sörnmo

7.1 Introduction

The ventricular response in atrial fibrillation (AF) is highly irregular, mainly due to
the atrial impulses arriving irregularly at the atrioventricular (AV) node. As a result,
the RR intervals differ dramatically in length. Despite the irregularity, the ventricular
response is not completely random, but exhibits weak correlation [1] and certain
short- or long-term predictability [2]. Another characteristic is that the ventricular
rate is often higher in AF than in normal sinus rhythm, a characteristic explored in
AF detection, see Chap.4. The RR interval series observed in normal sinus rhythm
and AF differ with respect to both variability and irregularity, two aspects which are
illustrated in Fig. 7.1.

The ventricular response plays a significant role in the management of patients
with AF [3]. In fact, the control of ventricular rate effectively reduces the risk of com-
plication and improves the quality of life. Therefore, the study of factors influencing
ventricular rate and its dynamics is of great importance as it may lead to strengthened
decision-making in AF management.

To characterize normal sinus rhythm, a wide range of parameters have been inves-
tigated, often categorized into dispersion parameters to characterize RR variability,
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Fig. 7.1 24-h RR interval series in a normal sinus rhythm and bAF. The 24-h plots (top row) show
that the dispersion is much larger in AF than in normal sinus rhythm. The zoomed-in segments
(bottom row) demonstrate that the RR interval series in AF not only has larger dispersion, but it is
also much more irregular

spectral parameters to characterize autonomic influence on the sinus node, and dif-
ferent types of entropy to characterize RR irregularity. To characterize AF, spectral
parameters have received very limited interest since the RR interval spectrum is
essentially flat, and lacks peaks which may carry physiological information [4]. On
the other hand, dispersion parameters and entropy measures have conveyed clini-
cally valuable information: for example, lower variability and/or irregularity of the
RR interval series have been associated with poor outcome in patients with AF [5, 6].
Given the growing clinical interest to understand the characteristics of the RR inter-
vals, an overview of results reported in clinical studies is provided in Sect. 7.2.

The analysis of ventricular response can be augmented with information on
f waves so that the coupling between the atria and the ventricles, through the AV
node, can be investigated. The AV node plays a particularly important role in AF
by acting as a “filter” which blocks certain atrial impulses, with repercussions on
ventricular activation. By developing methods for analyzing AV nodal properties,
patient-specific information may be obtained which describes the effect of a certain
antiarrhythmic drug. The properties can be studied by means of mathematical mod-
eling, considered either for simulation of various scenarios or estimation of model
parameters. In the latter case, the observed signal is acquired either invasively or
from the surface ECG. Signal processing techniques are usually required to separate
the atrial from the ventricular activity before parameter estimation can be performed,
see Chap.5.

Section7.3 provides a brief overview of methods for heuristic assessment of the
AV node. Section7.4 describes a method for analyzing the relationship between

http://dx.doi.org/10.1007/978-3-319-68515-1_5
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atrial input and ventricular response during AF. Sections7.5 and 7.6 review several
AV node models for simulation and parameter estimation, respectively. The chapter
concludes with a comparison of AV node models in Sect. 7.7.

7.2 RR Interval Analysis

Classical dispersion parameters such as the coefficient of variation and the root mean
square of successive differences (RMSSD), defined in (4.2) and (4.3), respectively,
have been found useful for characterizing the variability of RR intervals inAF [2, 7].1

However, variability parameters provide an incomplete characterization of RR inter-
vals, since they cannot characterize irregularity, i.e., the degree of unpredictability.
Therefore, variability parameters have been complemented with different entropy
measures to characterize irregularity, including approximate entropy IApEn, sample
entropy ISampEn, and Shannon entropy IShEn (see Sect. 4.2.1 for definitions), as well
as conditional entropy [8]. Figure7.2 illustrates the difference between variability
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Fig. 7.2 Illustration of the difference between variability, quantified by the standard deviation,
and irregularity, quantified by the sample entropy. Each row shows a time series with identical
irregularity (given by the numbers to the left of the diagrams), but increasing variability from left
to right, whereas each column shows series with identical variability (given by the numbers on
above the diagrams), but increasing irregularity from top to bottom. The units of the horizontal and
vertical axes are arbitrary

1The reason for not using the term “ventricular response” in this section is that it implies, at least
in this book, that an atrial input is also part of the analysis.

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
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and irregularity for different time series with identical variability but different irreg-
ularity, and vice versa.

Two early studies analyzed the RR interval series in patients with AF, demonstrat-
ing that reduced variability is associated with worse outcome [5, 6]. Using the 24-h
ambulatory ECG, reduced RR interval irregularity was found to have independent
prognostic value for cardiac mortality during long-term follow-up in patients with
permanent AF [9].

The association between RR intervals and long-term clinical outcome has been
evaluated in a population of ambulatory patients with mild-to-moderate heart fail-
ure and AF at baseline. Patients with symptomatic heart failure were enrolled in
a multicenter study on sudden death [10]. Both IApEn and IShEn were found to be
significantly lower in nonsurvivors than in survivors for all subgroups of death (total
mortality, sudden death, and heart failure death). Patients with a lower IApEn had
significantly lower survival: Kaplan–Meier analysis [11] showed that a lower IApEn
was associated with a nearly fourfold higher total mortality (40% vs. 12%) and more
than six times higher mortality due to progression of heart failure (19% vs. 3%) and
sudden death (18 vs. 3%). The criterion IApEn < 1.68, where 1.68 is the lower tertile
of the data set, was found to be a significant predictor of all types of mortality after
adjustment for significant clinical covariates [12], leading up to the main finding that
lower irregularity is associated with worse outcome in AF patients.

Results in the literature suggest that irregularity parameters may be used as risk
indicators. Thus, it is of interest to investigate towhat extent irregularity is affected by
commonly used rate-control drugs. The effect of the selective A1-receptor agonist
tecadenoson, alone as well as in combination with the beta blocker esmolol, was
assessed in a small group of AF patients [13]. Tecadenoson was found to reduce
heart rate and increase variability, but did not have any effect on irregularity. Beta
blockade with intravenous esmolol further increased variability and decreased heart
rate. In another study [14], no significant differences in RR irregularity, as quantified
by IApEn, were observed in patients with AF and congestive heart failure when treated
with beta blockers, digoxin, or amiodarone. The effect of rate-control drugs on RR
variability/irregularity was investigated in 60 patients with permanent AF, involving
the drugs diltiazem, verapamil (both calcium channel blockers), metoprolol, and
carvedilol (beta blocker) [15]. Variability was assessed by well-known parameters
such as the standard deviation and the RMSSD, whereas irregularity was assessed
by IApEn, IShEn, and a measure based on conditional entropy [16]. A significantly
lower heart rate was obtained for all investigated drugs, reaching its lowest rate
for the calcium channel blockers. Moreover, all drugs were found to increase RR
variability significantly relative to the baseline recording, whereas only the beta
blockers increased RR irregularity significantly.

Using the data set in [15], circadian variation was investigated by means of five
ambulatory recordings per patient, obtained at baseline as well as during the four dif-
ferent drug regimens [17]. Variability and irregularity parameters were computed in
nonoverlapping, 20-min segments. Circadianity was assessed using cosinor analysis
of the resulting series, characterized by the 24-h mean and the excursion over the
mean described by the amplitude of the cosine fitted to the data [18]. Heart rate and
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variability parameters, including the standard deviation and the RMSSD, exhibited
significant circadian variation in most patients, whereas circadian variation in IApEn
and ISampEn wasdetected inonly a fewpatients.Whencircadianvariationwasdetected
in IApEn at baseline, the patients had more severe symptoms. All drugs decreased the
rhythm-adjusted mean of the heart rate and increased the rhythm-adjusted mean of
variability parameters (the rhythm-adjusted mean is also referred to as “midline esti-
mating statistic of rhythm”,MESOR [19]). Only carvedilol andmetoprolol decreased
the normalized amplitude over the 24h of the irregularity parameters and heart rate.
The results suggested that circadian variation can be observed in most patients using
variability parameters, but only in a few patients using irregularity parameters.

The above-mentioned clinical studies are limited by small patient groups. There-
fore, further studies are needed to better assess whether variability and irregularity
parameters are predictive of patient status.

7.3 Heuristic Assessment of the Atrioventricular Node

Rate-control drugs act on atrial and/or AV nodal properties to lower the ventricular
rate. During drug development, electrophysiological effects of antiarrhythmic drugs
are usually assessed invasively in sinus rhythm. Since an atrial pacing protocol cannot
be applied in patients with AF, the electrophysiological drug effects on the AV node
are still not completely understood. When optimizing drug therapy, noninvasive
assessment ofAVnodal electrophysiologymay help to select optimal therapy.During
the early clinical phases of drug development, noninvasive characterization of the
AV node may facilitate data collection from large patient cohorts and favor patient-
tailored therapy. Estimation of the AV nodal refractory period using the surface
ECG has been attempted in several studies, employing different heuristic approaches
[20–24].

Heuristic assessment of AV nodal electrophysiology has relied on simple
approaches to characterizing the RR intervals. Noninvasive estimation of the func-
tional refractory period of the AV node during AF has been attempted by simply
selecting the shortest RR interval or the 5-th percentile of the RR interval series [20,
23, 25]. In dogs, it was demonstrated that the shortest RR interval correlated sta-
tistically with the functional refractory period, determined using a pacing protocol.
Therefore, the shortest RR interval was used as a surrogate measurement of the
functional refractory period [20].

Using the Poincaré plot, where each RR interval is plotted against the preceding
RR interval, an estimate of the functional refractory period can be obtained as well.
The value of the lower envelope, determined as a regression line, at 1 s (“1 s intercept”)
and the degree of scatter above the lower envelope have been proposed as surrogate
measurements of AV nodal refractoriness and concealed AV conduction, i.e., the
effect of blocked impulses on the conduction of subsequent impulses, respectively.
The circadian variation of the 1-s intercept of the lower envelope was investigated
in 120 patients who underwent 24-h ambulatory monitoring at baseline [24]. During
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an observation period of 33 ± 16 months, there were 25 deaths, including 13 cardiac
and 8 stroke deaths. All patients showed significant circadian rhythms in the lower
envelope, however, patients dying subsequently from cardiac causes, but not from
fatal stroke, had less pronounced circadian rhythm, with amplitudes which were
less than 55% of those in surviving patients. It was suggested that blunted circadian
rhythm of AV conduction represents an independent risk of cardiac death in patients
with permanent AF.

The presence of clusters in the histogram-based Poincaré plot, based on the
RR intervals derived from the 24-h ambulatory ECG, has been suggested as a marker
of higher AF organization to predict the outcome of electrical cardioversion [26].
A cluster was considered to be present when a peak in the histogram plot could be
identified visually. Later, the histogram-based Poincaré plot served as the basis for
the Poincaré surface profile, i.e., a univariate histogram defined by those RR inter-
vals which are preceded by RR intervals of approximately the same length [27],
cf. Sect. 4.2.2. The Poincaré surface profile was proposed as a tool for characterizing
AV nodal memory effect and detecting preferential AV nodal conduction. However,
neither the Poincaré plot nor the histogram-based Poincaré plot analysis have raised
much interest in the research community. This may be due to a number of reasons,
including that the plot is strongly dependent on bin size, the bins must be sufficiently
well-populated with points to produce meaningful results, and manual interaction is
often needed to determine the lower envelope [24].

7.4 Synchrogram Analysis

Synchrogramanalysis has been introduced for exploratory analysis of the relationship
between atrial input and ventricular response during AF, providing valuable insights
into AV nodal function [28]. Themethod is purely phenomenological, and no attempt
ismade to account forAVnodal electrophysiological properties such as refractoriness
and conduction delay. The analysis is applied to atrial activations, determined from
the electrogram, and ventricular activations, determined from the ECG, to analyze
AV coupling. The analysis is performed by observing the phase of the ventricular
activations at time instants triggered by the atrial activations. The instantaneous
ventricular phase is assumed to be a monotonically increasing, piecewise linear
function, defined by

φv(t) = 2π
t − tv,n−1

tv,n − tv,n−1
+ 2πn, tv,n−1 ≤ t < tv,n, n = 0, . . . , N − 1, (7.1)

where tv,n is the time of n-th ventricular activation and N is the total number of
ventricular activations. To be consistent with the indexing of RR intervals adopted
in Chap.4, the first RR interval, defined by x0 = tv,0 − tv,−1, requires that the time
of the first ventricular activation is indexed by −1.

The instantaneous ventricular phase is normalized to the interval [0, q], and sam-
pled at the time of atrial activations ta,k for the purpose of detecting whether p : q
coupling is present,

http://dx.doi.org/10.1007/978-3-319-68515-1_4
http://dx.doi.org/10.1007/978-3-319-68515-1_4
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Ψq(ta,k) = 1

2π

(
φv(ta,k) mod (2πq)

)
, q = 1, 2, 3, (7.2)

where p is the number of atrial activations and q is the number of ventricular activa-
tions. Epochs of synchronization are automatically detected by alternately dividing
the values of Ψq(ta,k) into different subgroups. The normalized phases are classified
as p : q coupling whenever the absolute difference between Ψq(ta,k+p) and Ψq(ta,k)

within a subgroup is below a predefined tolerance threshold. The synchrogram anal-
ysis is illustrated in Fig. 7.3.

The synchrogram was investigated in both atrial flutter and AF. As expected, the
percentage of coupled beats and the duration of coupled epochs were significantly
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higher in atrial flutter than in AF [28]. Moreover, the synchrogramwas used to assess
the dynamics of AV coupling as a function of atrial fibrillatory rate (AFR) in a small
group of patients during spontaneous acceleration of the AFR at the onset of an AF
episode; in this particular assessment, the AFR was estimated from the electrogram.
The results demonstrated that the occurrence and the duration of coupled epochs
decreased as the AFR increased, and that the average AV conduction ratio, i.e., the
ratio of ventricular to atrial activations, was significantly smaller at higherAFRs [29].

Synchrogram analysis has also been considered for investigating the effects of
atrial activity and AV nodal conduction on the ventricular response in patients with
paroxysmal AF [30]. The results showed that ventricular rate and RR variability are
significantly correlated with the average AV conduction ratio and the variability of
the atrial input. On the other hand, the AFR is not correlated with ventricular rate
nor with RR variability.

7.5 Mathematical Modeling of the Atrioventricular Node

Refractoriness and concealed conduction of the AV node are important AV nodal
properties which contribute to forming the ventricular response. Due to refractori-
ness, many atrial impulses are blocked when arriving to the AV node. Concealed
conduction of a single atrial impulse, occurring when the impulse only partially pen-
etrates into the AV node without reaching the ventricles, influences the conduction
of subsequent atrial impulses. Moreover, the existence of two dominant pathways
through the AV node, each with its own electrophysiological properties, is well-
documented and plays an important role in AF.

The properties of AV nodal function can be studied by mathematical modeling
which may be categorized into:

• Models primarily developed for simulation to provide better understanding of AV
nodal properties, sometimes involving intracardiac information on atrial activity
where the arrival times of the atrial impulses are known (this section).

• Models primarily developed for statistical estimation of AV node parameters, rely-
ing entirely on information derived from the surface ECG. The arrival times of
atrial impulses are modeled as a random process (Sect. 7.6).

7.5.1 Modeling of Conduction Delay in Non-AF Rhythms

Conduction delay is an important AV nodal property, and has therefore received
considerable attention in mathematical model building. With reference to AV nodal
conduction in Wenckebach periodicity, i.e., a non-AF rhythm, the conduction delay
dk related to the k-th atrial impulse depends on the AV nodal recovery time (RT)
ΔtRT,k . The conduction delay is modeled by [21]
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dk = dmin + αmax exp

[
−ΔtRT,k

γc

]
, (7.3)

where dmin is the minimal conduction delay, αmax is the maximal prolongation of the
conduction delay, and γc is the time constant of the exponential conduction curve.
The recovery timeΔtRT,k is given by the time elapsing from the preceding ventricular
activation tv,n to the current AV nodal activation time ta,k ,

ΔtRT,k = ta,k − tv,n, ta,k > tv,n, (7.4)

where ventricular activations are indexed by n.
The basic model of conduction delay in (7.3) can be expanded to include rate-

dependent shortening of the conduction delay, referred to as facilitation (fac), and
rate-dependent prolongation of the recovery time, referred to as fatigue (fat) [21],
see also [31]. In the expanded model, the conduction delay dk in (7.3) is denoted d ′

k ,
αmax is replaced by αk to model facilitation, and the term sk is introduced to model
fatigue,

d ′
k = dmin + sk + αk exp

[
−ΔtRT,k

γc

]
. (7.5)

Facilitation is incorporated into the model by assuming that the maximal prolonga-
tion αmax depends on the interval Δta,k−1 between two successive atrial impulses
immediately preceding ta,k , commonly referred to as the AA interval,

αk = αmax − κ exp

[
−Δta,k−1

γfac

]
, (7.6)

where
Δta,k = ta,k − ta,k−1, (7.7)

and αmax, γfac, and κ are model constants. Fatigue is incorporated by assuming that
each AV nodal activation causes a slowing of the conduction delay of all subsequent
impulses, modeled by

sk = sk−1 exp

[
−Δta,k−1

γfat

]
+ η exp

[
−ΔtRT,k

γfat

]
, (7.8)

where η and γfat are model constants.
The conduction delay model, defined by (7.3)–(7.8), was fitted to experimen-

tal data obtained from seven autonomically blocked dogs during pacing [21].
The results showed that the model can accurately predict dynamic changes in
Wenckebach periodicity. Although themodel does not account for concealed conduc-
tion, it has nonetheless served as a starting point forAVnodemodeling inAF [32–35].
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7.5.2 Modeling of Conduction Delay in AF

An AV node model accounting for conduction delay, defined by (7.3), and refrac-
toriness in AF was proposed in [33, 34], however, fatigue and facilitation were not
modeled. In that model, the AV node becomes refractory after an atrial impulse has
been conducted through the AV node to the ventricles. Impulses arriving to the AV
node during the refractory period are blocked (concealed), and each blocked impulse
causes the refractory period to be prolonged, first with a fixed length [33], but later
with a Gaussian random variable [34].

The proposed model, with fixed prolongation of the refractory period, was tested
on one, single intracardiac recording from a patient with AF, exhibiting an agreement
between the estimated and the observed RR series which is not particularly satisfac-
tory, see Fig. 7.4. Using instead the model with random prolongation [34], a better
fit was obtained. The significance of these two conduction delay models remain to
be established on a larger set of data.

More recently, a dual-pathway AV node model has been proposed in which the
conduction delay, similar to the model in [21], is assumed to be affected by the
stimulation history [36]. The conduction delay is described by the model in (7.3),
except that αmax and γc are assumed to be functionally dependent on the preceding
conduction delay dk−1,
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from [33] with permission)



7 Modeling and Analysis of Ventricular Response in Atrial Fibrillation 291

αmax,k = a1d
2
k−1 + a2dk−1 + a3, (7.9)

and

γc,k = b1 +
(
dk−1

b2

)b3

, (7.10)

respectively. The model constants a1, a2, a3, b1, b2, and b3 are assumed to differ
between the two pathways. Concealed conduction is modeled by a virtual conduction
delay d̃k which depends on the AA interval Δta,k [36],

d̃k = c1 − c2 exp

[
−Δta,k

c3

]
, (7.11)

implying that ΔtRT,k in (7.3) is replaced by (Δta,k − d̃k−1),

dk = dmin + αmax,k exp

[

− (Δta,k − d̃k−1)

γc,k

]

. (7.12)

Themodel constants c1, c2, and c3 are assumed to differ between the two pathways. It
should be noted that the effect of replacingΔtRT,k by (Δta,k − d̃k−1) is similar to that
of prolongation of the refractory period due to concealed conduction, see Sect. 7.5.4.

The model parameters were estimated by fitting αmax,k and γc,k to data obtained
using a pacing protocol. The fitted model could predict the conducting pathway with
specificity and sensitivity exceeding 85% when AF-like random stimulation was
applied to a rabbit preparation. His’ electrogram alternans was used to determine the
pathway of each conducted impulse in the experimental data [37].

7.5.3 Modeling of Refractory Period in AF

In a simplemodel accounting for the refractoryperiod, the atrial impulses are assumed
to arrive randomly in time at the AV node according to a Gaussian distribution [38].
Each atrial impulse results in ventricular activation, unless the AV node is refrac-
tory which causes the atrial impulses to be blocked and the refractory period to be
prolonged. For each blocked atrial impulse, the refractory period τk , following the
k-th atrial impulse arriving at the AV node after ventricular activation, is prolonged
according to the following equation:

τk+1 = τk + uk(0.9 − τk), k ≥ 0. (7.13)

The time-dependent prolongation uk of the refractory period is described by the
logistic function
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uk = 1

1 + e−a(zk−b)
, (7.14)

where
zk = 1 − ta,k

τk
, τk > ta,k, (7.15)

and a and b are positive-valued model constants. The index k is reset to 0 and τ0 is
reset to 0.3 s when a ventricular activation occurs [38]. The parameters a and b define
the shape of the RR interval histogram, but lack a physiological interpretation. For
the model in (7.13)–(7.15), an atrial impulse arriving close in time to a conducted
atrial impulse prolongs the refractory period more than an atrial impulse arriving at
the end of the refractory period. The blocked atrial impulses prolong the refractory
period τk towards its upper limit of 0.9 s.

7.5.4 Modeling of Refractory Period and Conduction Delay
in AF

A much more sophisticated AV node model for the simulation of ventricular activa-
tion during AF was proposed in [35, 39], see also [40, 41], where conduction delay,
prolongation of the refractory period due to concealed conduction, and ventricular
pacing (VP) are also taken into account. The AV node is activated due to the com-
bined effect of spontaneous depolarization and AF bombardment. However, the AV
node can also be activated by a VP-induced, retrograde wave. The activation initi-
ates a refractory period during which the AV node is nonresponsive to atrial impulses
as well as to a VP-induced retrograde wave. When the refractory period ends, the
transmembrane potential returns to its resting potential and initiates a spontaneous,
linear increase in the transmembrane potential. Each time an AF impulse arrives
at the AV node when not being in a refractory state, its transmembrane potential is
increased by a discrete amount, see Fig. 7.5. If instead a VP-induced retrograde wave
penetrates the AV node in a nonrefractory state, the transmembrane potential reaches
its threshold immediately.

In this model, the conduction delay dk is modeled by (7.3), and the refractory
period τk is modeled by

τk = τmin + β

(
1 − exp

[
−ΔtRT,k

γr

])
, (7.16)

where τmin is the shortest refractory period, β is the maximal prolongation of the
refractory period, and γr is the time constant of the exponential refractory curve.
Moreover, the model accounts for prolongation of the refractory period due to con-
cealed conduction. The prolonged refractory period is a product of two factors: one
depending on the arrival time of the atrial impulse and another depending on the
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Fig. 7.5 a Schematic representation of the AV node model in [35], and b related modeling of the
transmembrane potential Vm of the AV node. The resting value Vr can increase spontaneously in a
linear fashion as well as by a discrete amountΔV when an atrial impulse arrives. When Vm exceeds
the threshold Vt , an action potential is fired and the AV node becomes refractory for a certain period
of time τ ′

k (indicated by the grey area). Ventricular activation is associated with a delay dk , modeled
by (7.3). Prolongation of the refractory period due to a blocked atrial impulse is modeled by (7.17)

strength of the atrial impulse,

τ ′
k = τk + τmin

(
ta,k

τk

)ρ1
(
min

(
1,

ΔV

Vt − Vr

))ρ2

, (7.17)

where τ ′
k is the prolonged refractory period andΔV is the strength of an atrial impulse.

The voltages Vt and Vr are defined in Fig. 7.5. The two positive-valued exponents ρ1

and ρ2 are model constants.
Figure7.6 shows two simulated RR series generated using different model param-

eter settings [35, 39]. The simulation is based on the assumption that atrial impulses
arrive to the AV node according to a Poisson process with mean arrival rate λa .

The authors stated that the simulationmodelmayprovide a quantitative framework
to investigating drug effects by fitting their model to experimental data. However,
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Fig. 7.6 Simulated RR intervals series obtained for two different settings of model parameters [35]
(top row), and corresponding (b) histogram (middle row), and c autocorrelation function (bottom
row). The following model parameter values were used: a λa = 8 per second, ΔV = 20mV, ρ1 =
10, ρ2 = 10, and b λa = 4 per second,ΔV = 10mV, ρ1 = 10, ρ2 = 10. (Reprinted from [35] with
permission)
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no results have so far been published which investigate such effects. The problem of
fitting the model to observed data is likely to be challenging since the model involves
a large number of parameters.

7.5.5 Modeling of Spatial Dynamics

A radically different approach to modeling is to treat the AV node as a con-
nected graph [42], consisting of a series of interacting nodes, rather than having
a lumped structure as the above-described AV node models. An advantage of the
graph approach is that it accounts for spatial propagation of atrial impulses in the
AV node, implying that phenomena such as concealed conduction and retrograde
conduction are intrinsic to the model structure.

The nodes in the graph model propagate impulses, corresponding to action poten-
tials, along the graph edges, see Fig. 7.7. Each node corresponds to a localized part
of the AV node with its own conduction delay and refractory period, both quanti-
ties depending on the stimulation history of the node. When an impulse arrives at a
node, the conduction delay and the refractory period are updated according to (7.3)
and (7.16), respectively. Each node has its own dynamics and is characterized by its
own recovery time ΔtRT, thus differing from the above-described models where the
recovery time applies to the whole AV node.

The proposed model consists of 21 nodes, where 10 nodes characterize the fast
pathway and 11 the slow pathway. The parameters modeling conduction delay, i.e.,
dmin, αmax, and γc in (7.3), and refractory period, i.e., τmin, β, and γr in (7.16), are
identical for all nodes of the slow pathway; the same applies to all nodes of the
fast pathway. Hence, the model is defined by 12 parameters. To simulate conduction
through the model, it is assumed that the first nodes on the atrial side of the slow
and the fast pathways are simultaneously activated. A ventricular activation occurs

Slow pathway

Fast pathway

Fig. 7.7 Schematic presentation of the spatial AV node model proposed in [42]. The graph nodes
propagate impulses along the edges. Each node is characterized by its own refractory period and
conduction delay, both depending on the stimulation history of the node. The full model comprises
21 nodes
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when the atrial impulse reaches the rightmost end of the graph, corresponding to the
bundle of His.

Simulations were performed using AA intervals determined from electrograms
recorded from patients with AF, as well as from simulated AA intervals determined
by a Poisson process with mean arrival rate λa . A genetic algorithm was used to fit
the model by minimizing the difference between simulated RR series and observed
RR interval series, obtained from a number of ECG recordings. In the simulations
using electrogram-derived series of atrial activations, the differencewas quantified by
themean square error of the times of ventricular activations. If simulatedAA intervals
were used and only the ECG was available, the difference was quantified based on
the RR interval histogram. The model could accurately replicate the RR intervals
determined from the ECG.

Themodel fittingwas repeated 1000 times for different initial conditions, resulting
in 1000 estimates of each parameter for each recording [42]. No unique solution was
obtained since several different parameter sets resulted in a similarmodel fit, however,
the ranges of the estimated model parameters were limited. For ECG data, 90% of
the estimated values of τmin and β were within ±20% of the median value of the
estimates, whereas this did not apply to dmin and αmax.

7.6 Statistical Modeling of the Atrioventricular Node
and Parameter Estimation

In the very first paper dealing with statistical modeling, the AV node was treated as
a lumped structure whose behavior represents the temporal and spatial summation
of the cellular electrical activity [43]. In that model, briefly described in Sect. 7.6.1,
the atrial impulses are assumed to arrive randomly in time at the AV node, modeled
by a Poisson process with mean rate λa [44]. The conduction time is not explicitly
modeled.

Many years later, an improved statistical model was proposedwhich also accounts
for dual AV nodal conduction [45, 46], see Sect. 7.6.2. Since the model parameters
can be estimated from the surface ECG, without use of any intracardiac information,
noninvasive electrophysiological characterization of the AV node is made possi-
ble. In a subsequent study, the model was further improved to incorporate pathway
switching, accompanied by more robust parameter estimation [47], see Sect. 7.6.3.

7.6.1 A First Statistical Model of the AV Node

In this statistical model, the AV node is always in one of two states. In the first state,
the AV node is absolutely refractory to stimulation by atrial impulses. At the onset
of the second state, the transmembrane potential is at its resting value, and increases
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spontaneously at a constant rate as well as by a discrete amount ΔV when an atrial
impulse arrives. When the transmembrane potential reaches its threshold value Vt

as a result of any combination of spontaneous and stepwise depolarization, the AV
node fires and a new refractory period is initiated, see Fig. 7.8.

The refractory period is assumed to be rate-dependent, implying that a longer
RR interval is followed by a longer refractory period, and vice versa. The relation
between refractory period and RR interval is modeled by an exponential function,

τn = τ∞
(
1 − exp

[
− xn

τ∞

])
, (7.18)
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Fig. 7.8 a Schematic representation of the AV node model in [43], and b related modeling of the
transmembrane potential Vm of the AV node. The resting value Vr can increase spontaneously in a
linear fashion (defined by the slope v) as well as by a discrete amount ΔV when an atrial impulse
arrives. When Vm exceeds the threshold Vt , an action potential is fired and the AV node becomes
refractory for a certain period (indicated by the grey area). Thismodel differs from the one in Fig. 7.5
as it does not account for the delay d associated with ventricular activation
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where τn is the refractory period following the n-th ventricular activation, τ∞ is the
maximal refractory period, and xn is the RR interval preceding the n-th ventricular
activation,

xn = tv,n − tv,n−1. (7.19)

The conduction delay is not explicitly modeled.
The model is defined by the following four parameters:

• the mean arrival rate λa of atrial impulses,
• the relative amplitude ΔV of atrial impulses,
• the rate v of spontaneous AV depolarization, measured in units of ΔV , and
• the maximal refractory period τ∞.

Although this model is statistical in nature, no well-established statistical estima-
tion procedure, such as the maximum likelihood (ML) technique, was considered
in [43]. Instead, the model parameters were determined using an ad hoc optimization
procedure which yielded unphysiological parameter estimates.

7.6.2 Statistical Modeling of Dual AV Nodal Pathways

The improved AV node model accounts for concealed conduction, relative refrac-
toriness, and dual AV nodal pathways [45], see Fig. 7.9. In this model, each atrial
impulse is assumed to result in ventricular activation, unless the impulse is blocked
by a refractory AV node. The probability of an atrial impulse passing through the AV
node depends on the time elapsed since the preceding ventricular activation tv,n−1.
The refractory period is defined by the sum of a deterministic period τ and a ran-
dom period, uniformly distributed in the interval [0, τp]. The random period models
prolongation due to concealed conduction and/or relative refractoriness. All atrial
impulses arriving at the AV node before the end of the deterministic period τ are
blocked, whereas impulses with arrival time in the interval [τ, τ + τp] have linearly
increasing likelihood of passing through the AV node. No impulses are blocked if
they arrive after τ + τp.

The model accounts for a fast pathway with a longer refractory period, defined
by τ f and τ f,p, and a slow pathway with a shorter refractory period, defined by τs
and τs,p (depending on pathway, the indices “s” and “f” are added to τ and τp).
In mathematical terms, the refractoriness of the slow pathway is defined by the
function βs(t),

βs(t) =

⎧
⎪⎨

⎪⎩

0, 0 < t < τs,
t − τs
τs,p

, τs ≤ t < τs + τs,p,

1, t ≥ τs + τs,p,

(7.20)

where, for convenience, t is used instead of ΔtRT,k . The function β f (t) characterizes
refractoriness of the fast pathway and is identical to βs(t) except that τ f and τ f,p
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Fig. 7.9 a Schematic representation of the AV node model in [45], and b related modeling of the
transmembrane potential Vm of the AV node. When an atrial impulse arrives at the AV node, the
resting value Vr increases by a discrete amount ΔV which always makes Vm exceed the threshold
Vt , an action potential to be fired, and the AV node refractory for a certain period of time (indicated
by the grey area)

are substituted for τs and τs,p, respectively. The deterministic part of the refractory
periods τs and τ f are assumed to depend linearly on the preceding RR interval xn−1,
implying that a longer RR interval is followed by a longer refractory period, and vice
versa. Moreover, it is assumed that the AV conduction time is incorporated into βs(t)
and β f (t) so that a ventricular activation occurs immediately after a non-blocked
atrial impulse.

Since non-blocked atrial impulses are assumed to occur according to an inhomo-
geneous Poisson process characterized by the intensity function λaβs(t), the PDF of
an RR interval x , related to the slow pathway, is given by [45]

px,s(x) = λaβs(x) exp

[
−

∫ x

0
λaβs(τ )dτ

]
, (7.21)

which, after insertion of (7.20), becomes



300 V. D. A. Corino et al.

px,s(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < x < τs,

λa(x − τs)

τs,p
exp

[
−λa(x − τs)

2

2τs,p

]
, τs ≤ x < τs + τs,p,

λa exp

[
−λaτs,p

2
− λa(x − τs − τs,p)

]
, x ≥ τs + τs,p.

(7.22)

The PDF px, f (x), related to the fast pathway, is obtained by substituting τ f and τ f,p

for τs and τs,p in (7.22), respectively.
Conduction through the slow and fast pathways are assumed to occur with proba-

bilities ε and 1 − ε, respectively. Assuming that ventricular activations occur accord-
ing to a Poisson process, the intervals between successive ventricular activations are
statistically independent, and the joint probability of the RR intervals x0, . . . , xN−1

is given by

px (x0, x1, . . . , xN−1) =
N−1∏

n=0

px (xn)

=
N−1∏

n=0

(εpx,s(xn) + (1 − ε)px, f (xn)). (7.23)

The mean arrival rate λa is estimated from the f wave signal extracted from the
ECG, but corrected to account for atrial refractoriness, using [46]

λ̂a = λAF

1 − δλAF
, (7.24)

where λAF is taken as the AFR, estimated from the ECG, and δ is the minimal
time interval between successive impulses arriving to the AV node. The five model
parameters θθθ = [

ε τs τs,p τ f τ f,p
]
are estimated from the observed RR interval

series using the ML technique, defined by

θ̂θθ = argmax
θθθ

log px (x0, x1, . . . , xN−1|θθθ; λ̂a). (7.25)

Since no closed-form solution can be found for the estimator θ̂θθ , combined with the
fact that the gradient is discontinuous, the multi-swarm particle swarm optimization
is used to optimize the log-likelihood function [48, 49]. It should be noted that since
τs and τ f depend on the preceding RR interval, the original RR interval series is
subject to decorrelation before ML estimation is performed, to better comply with
the assumption of statistical independence in (7.23) [45].

The parameters of the single pathwaymodel, i.e.,
[
τ τp

]T
, are also estimated. The

Bayes information criterion is then used to determine which of the single- and the
dual-pathway model is most likely the observed [46].
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The block diagram in Fig. 7.10 shows the main signal processing steps required
to estimate the model parameters from the ECG. Figure7.11 illustrates, in histogram
form, the RR intervals produced by three different parameter settings of the AV node
model.

The AV node model was fitted to clinical data acquired during treatment with
different drugs for the purpose of investigating drug-induced changes in AV nodal
properties [50–52]. The hypothesis was that the estimates of AV nodal refractory
periods would reflect the main changes in AV nodal properties previously reported
in studies performed in sinus rhythm and based on invasive data. The effects of
tecadenoson and esmolol were investigated in a small cohort of patients [50]. The
parameters τs and τ f , accounting for both effective refractory period and conduction
interval, were prolonged for both tecadenoson and esmolol [50]. The increase in τs
and τ f , observed for both pathways, suggested either prolonged effective refractory
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model

parameters
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λa

Fig. 7.10 The main signal processing steps required for estimating the AV node model parameters
from the ECG
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Fig. 7.11 RR interval histogram (area defined by grey bars) and fitted model PDF (solid line)
for three different parameter settings. The histograms derive from model data with increasing
probability ε of an atrial impulse passing through the slow pathway, set to either 0, 0.25, or 0.5 (left
to right); the other model parameters were held constant. (Reprinted from [45] with permission)
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period2 or prolonged AV conduction, or both. In addition, tecadenoson was shown
to affect heart rate but not AFR, suggesting that a decrease in heart rate may be
attributed to that tecadenoson affects the AV node. These results are in agreement
with previous studies demonstrating that tecadenoson prolongs the effective refrac-
tory period of the AV node and slows down its conduction [53], whereas esmolol
prolongs refractoriness and conduction time in both pathways during AV nodal reen-
trant tachycardia [54].

Changes in AV nodal properties were investigated during administration of beta
blockers (carvedilol and metoprolol) and calcium channel blockers (diltiazem and
verapamil) in a controlled setting [52]. For patients with permanent AF, this study
compared the effects of four once-daily drug regimens (metoprolol, diltiazem, ver-
apamil and carvedilol) on heart rate and arrhythmia-related symptoms. While the
results of this study are not directly comparable to previous studies, the changes in
estimated AV nodal properties are in agreement with previous electrophysiological
findings [55–58].

The results suggest that the noninvasively obtained parameter estimates reflect the
expected changes in AV nodal properties for the investigated drugs. Therefore, the
method shouldbe suitable for assessing thedrug effect onAVnodal electrophysiology
during AF, especially for antiarrhythmic compounds aimed at rate-control during AF
and tested in clinical trials during initial clinical phases of drug development.

Another application of the AV node model is to analyze data acquired during rest
and head-up tilt (75◦) from patients with persistent AF. A shortening of the refractory
periods τs and τ f was observed for both pathways during adrenergic activation [59]—
results which are in agreement with earlier reported results [60]. The effect of tilting
on the refractory period of the AV node has not been assessed previously, but invasive
studies have evaluated the effect of vagal tone onAVnode refractory periods by either
stimulating the vagal nerve directly [60] or by assessing the effect of vagolytic drugs.

7.6.3 Statistical Modeling of Pathway Switching

A limitation of the statistical model in [45] is the assumption that atrial impulses
arriving between two ventricular activations attempt conduction through the same
pathway, i.e., pathway switching is not allowed. Therefore, another model suitable
for ECG-based estimation of the model parameters was proposed in [47]. Similar to
the model in [45], atrial impulses are assumed to arrive at the AV node according to
a Poisson process with mean arrival rate λa . Each impulse attempts to pass through
either the slow or the fast pathway, being blocked according to the time-dependent
functions βs(t) and β f (t) depending on which pathway is chosen. The choice of
pathway is independent of the pathway taken by the preceding atrial impulse. Con-
duction through the slow pathway is attempted with probability ε, and consequently
conduction through the fast pathway is attempted with probability 1 − ε.

2The effective refractory period is defined as the longest nonconducting AA interval.
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Since an atrial impulse is assumed to arrive at the AV node according to a Poisson
process, the PDF of the arrival time of the first atrial impulse following a ventricular
activation is given by [61]

p1(t) =
⎧
⎨

⎩

λae−λa t , t ≥ 0,

0, t < 0.
(7.26)

The first impulse attempts conduction through the slow pathway with probability ε,
where conduction is characterized by βs(t), defined in (7.20). Hence, the PDF of the
arrival time of the first impulse conducted through the slow pathway is given by

p1,cs(t) = εβs(t)p1(t). (7.27)

The PDF of the arrival time of the first impulse conducted through the fast pathway
p1,cf(t) is obtained by replacing βs(t)with β f (t) and εwith 1 − ε. The notations “cs”
and “cf” refers to conduction through the slow and the fast pathway, respectively.

The PDF of the arrival time of the second atrial impulse depends on the arrival
time of preceding blocked atrial impulses as well as the time interval between the
second and the first atrial impulses, i.e., the AA interval. Since AA intervals are
statistically independent in the Poisson model, the PDF of the arrival time of the
second atrial impulse following a ventricular activation is given by

p2(t) =
∫ ∞

0
p1(t − ρ)(p1,bs(ρ) + p1,bf(ρ))dρ, (7.28)

where p1,bs(t) and p1,bf(t) denotes the PDF of the arrival time of the first impulse
blocked in the slow and the fast pathway, respectively. To account for pathway switch-
ing, the second atrial impulse attempts to pass through the slow pathway with proba-
bility ε irrespectively of the pathway in which the first impulse was blocked. Hence,
p2,cs(t) and p2,cf(t) are computed analogously to p1,cs(t) and p1,cf(t).

A general expression for recursive computation of the PDF of the arrival times is
given by

pi,cs(t) = εβs(t)pi (t), (7.29)

pi,cf(t) = (1 − ε)β f (t)pi (t), (7.30)

pi,bs(t) = ε(1 − βs(t))pi (t), (7.31)

pi,bf(t) = (1 − ε)(1 − β f (t))pi (t), (7.32)

pi+1(t) =
∫ ∞

0
p1(t − ρ)(pi,bs(ρ) + pi,bf(ρ))dρ, (7.33)

where pi+1(t) denotes the PDF of the arrival time of the (i + 1):st atrial impulse
following a ventricular activation, pi,cs(t) and pi,cf(t) denote the PDFs of the arrival
time of the i-th atrial impulse conducted through the slow pathway and the fast
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pathway, respectively, and pi,bs(t) and pi,bf(t) denote the corresponding PDFs of
blocked atrial impulses.

A conducted atrial impulse is assumed to immediately cause a ventricular activa-
tion. Hence, the PDF of the time intervals between ventricular activations, i.e., xn , is
obtained by summing the PDFs of all conducted atrial impulses,

pc(xn; J ) =
J∑

i=1

(pi,cs(xn) + pi,cf(xn)), (7.34)

where J denotes the maximal number of blocked atrial impulses between successive
ventricular activations. This number is chosen so thatmore than 90%of the conducted
atrial impulses are accounted for [47].

When applying the model in [47] to ECG signals, the probability ε of choosing
the slow pathway was simply set to 0.5, whereas the remaining model parameters
θθθ = [

τs τ f τs,p τ f,p
]
were estimated using the ML technique,

θ̂θθ = argmax
θθθ

(
N−1∑

n=0

log pc(xn|θθθ; λ̂a)

)

, (7.35)

where the mean arrival rate λa was estimated as described in Sect. 7.6.2.
The ratio of atrial impulses conducted through the slow pathway, defined by

α =

J∑

i=1

∫ ∞

0
pi,cs(t)dt

∫ ∞

0
pc, (t; I )dt

, (7.36)

can be used to quantify the reliability of the parameter estimates in θ̂θθ . A small α

indicates that few impulses are conducted through the slow pathway, and, therefore,
τ̂s and τ̂s,p are less reliable. Conversely, a large α indicates that few impulses are
conducted through the fast pathway, and, therefore, τ̂ f and τ̂ f,p are less reliable.

The AV node model has been fitted to each nonoverlapping, 30-min segment of
24-h ECG recordings from 60 patients in permanent AF [47]. Based on results from
simulated data, a threshold was applied to α in order to judge whether the estimated
model parameters were reliable. Figure7.12 illustrates how the four parameters char-
acterizing the refractory periods change over a 24h period, using the models in [45,
47]. It is obvious fromFig. 7.12 that the estimates based on theAVnodemodel in [47]
is associated with less variation in τ̂s,p and τ̂ f,p than is the model in [45]. It should be
noted that the model in [47] leads to an unequally sampled series of parameter esti-
mates, since several estimates are omitted because the reliability, determined by α,
is judged to be too low.
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Fig. 7.12 Model parameter estimates obtained from a 24-h ECG recording of a patient with per-
manent AF, using the models in [47] (red line, “o” markers) and [45] (black line, “x” markers).
Successive estimates, indicated by markers, are connected with straight lines (see text for further
explanations)

7.7 Comparison of AV Models

The AV node models described in this chapter were developed for different pur-
poses, one purpose being to simulate ventricular activation series resembling those
observed during AF and to characterize AV nodal function from intracardiac record-
ings (Sect. 7.5), another purpose being to characterize AV nodal function from the
surface ECG (Sect. 7.6). These purposes are reflected in the structure and complexity
of the differentmodels.While the earlymodels embrace two to six parameters [33, 34,
38, 43], the more recent ones, primarily used for simulation and electrogram-based
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characterization are considerably more complex, embracing 12 to 16 parameters [35,
36, 42]. The statistical models for ECG-based characterization consist of four to five
model parameters which make them better suited for estimation [45, 47].

The AV node models differ in their respective approach to handling the following
properties:

• Atrial activation times
• Refractory period
• Conduction delay
• Ventricular activation
• Concealed conduction
• Dual pathways

The atrial activation times are usuallymodeled by a homogenous Poisson process,
implying that the AA intervals are exponentially distributed [35, 42, 43, 45, 47].
A Gaussian distribution of the AA intervals has also been proposed [38], although
the atrial activation times can no longer be treated as a Poisson process. In the very
first statistical model, the mean arrival rate λa of the Poisson process assumed an
unphysiological value [43]—a problem which was later solved by relating λa to the
AFR, estimated from the f waves in the ECG [42, 45, 47]. For models where the
AV node is characterized using intracardiac information, the atrial activation times
are determined by the peaks of the atrial electrogram [33, 34, 36]. Positioning of
the electrodes relative to the AV node entrance is particularly important during AF
because of the disorganized atrial activity.

From experimental data obtained using a pacing protocol, the effective refractory
period is known to be dependent on the paced atrial rate [62]. This rate dependence
can be modeled in different ways. For example, the refractory period can depend
on the preceding RR interval according to an exponential curve defined by the max-
imal refractory period τ∞, cf. (7.18) [43]. Another approach is to assume that the
refractory period is linearly dependent on the preceding RR interval, calling for
decorrelation of the observed RR interval series before parameter estimation can be
performed [45, 47]. Yet another approach is to assume that the refractory period is
recovery-dependent, i.e., dependent on the time elapsed since the end of the preced-
ing refractory period according to an exponential curvemodeled by three parameters:
the minimal refractory period τmin, the maximal prolongation β, and the time con-
stant γr of the exponential refractory curve, cf. (7.16) [35, 42]. In some models, the
rate dependence of the refractory period is not explicitly modeled [33, 34, 36, 38].

The conduction delay is an important property of the AV node during normal
sinus rhythm, known to be dependent on the paced atrial rate [62]. The AV nodal
conduction delay may be incorporated in the refractory period so that its dynamics
is not explicitly modeled [43, 45, 47]. Alternatively, the conduction delay can be
made dependent on the recovery time, where recovery dependence is modeled by an
exponential curve defined by three model parameters: the minimal conduction delay
dmin, the maximal prolongation αmax, and the time constant γc of the exponential
conduction curve, cf. (7.3) [33–35, 42]. A similar approach was considered in [36],
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although the maximal prolongation and the time constant of the conduction curve
were assumed to depend on the preceding conduction delay.

In most models, ventricular activation is directly linked to the arrival of one atrial
impulse. Each atrial impulse is assumed to result in a ventricular activation, unless
it is blocked due to AV nodal refractoriness. However, more than one atrial impulse
may be needed to cause a ventricular activation [35, 43]. The AV node may also fire
spontaneously.

Concealed conduction is incorporated in the models in different ways. For each
blocked impulse, the refractory period can be incremented by a fixed [33] or random
time [34]. The refractory period prolongation can depend on the timing of the blocked
impulse [38], or on both the timing and the strength of the blocked impulse [35].
Blocked impulses can alter the conduction time of the following impulse, so that a
longer AA interval results in a longer conduction delay [36]. Concealed conduction
can also be disregarded, assuming a refractory period which is not influenced by
blocked impulses [43]. The refractory period prolongation caused by each blocked
impulse is not always explicitly modeled, but concealed conduction is modeled by a
random, uniformly distributed prolongation of the refractory period [45, 47]. Con-
cealed conduction can also be an intrinsic feature of the chosen model structure [42].

The earlier models [33–35, 38, 43] did not account for dual pathways of the AV
node, while the more recent models account for separate conduction time [36, 42]
and refractory period [42, 45, 47] of the two pathways.

The model in [43] was fitted to observed RR series using an ad hoc procedure. For
somemodels, no attempts have beenmade at all to fit themodels to observed data [35,
38]. The models proposed for characterization of AV nodal function based on intrac-
ardiac recordings were fitted using a grid search to find the minimum error between
observed and simulated RR intervals, given the observed AA intervals as input [33,
34, 42]. The model parameters in [36] were assessed by fitting data obtained using

Table 7.1 Comparison of atrioventricular node models with respect to structure and atrial impulse
assumptions. The models are listed in chronological order

Model proposed by Model
parameters

Parameter
estimation

Atrial
impulses

Impulses
required

Cohen et al. [43] 4 No Poisson ≥0

Jorgensen et al. [33] 6 Ad hoc Invasive data 1

Rashidi and Khodarahmi [38] 2 No Gaussian 1

Mangin et al. [34] 6 Ad hoc Invasive data 1

Lian et al. [35] 16 No Poisson ≥0

Climent et al. [36] 18 Ad hoc Invasive data 1

Corino et al. [45] 6 ML Poisson 1

Henriksson et al. [47] 5 ML Poisson 1

Wallman and Sandberg [42] 12 Ad hoc Poisson 1
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Table 7.2 Comparison of atrioventricular nodemodels with respect to various electrophysiological
properties. The functional dependence of the refractory period is indicated,where xn is the preceding
RR interval, and ΔtRT,k is the AV nodal recovery time, cf. (7.4)

Model proposed by Conduction
delay

Refractory
period

Concealed
conduction

Dual
pathways

Cohen et al. [43] No xn No No

Jorgensen et al. [33] Yes Fixed Fixed
increment

No

Rashidi and Khodarahmi [38] No Fixed Timing No

Mangin et al. [34] Yes Fixed Random
increment

No

Lian et al. [35] yes ΔtRT,k Timing and
strength

No

Climent et al. [36] Yes No Timing Yes

Corino et al. [45] No xn Random Yes

Henriksson et al. [47] No xn Random Yes

Wallman and Sandberg [42] Yes ΔtRT,k Intrinsic Yes

a dedicated pacing protocol. For ECG-based characterization of AV nodal function
during AF, the mean arrival rate of atrial impulses is estimated from an extracted
f wave signal [42, 45, 47]; the remaining model parameters are estimated from an
RR interval series using ML estimation [45, 47].

Tables7.1 and 7.2 provides a comparison of AV node models described in this
chapter and their respective properties.
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relative spectral, 110
sample, 284
sample entropy, 86, 249
Shannon, 84, 284
spectral, 109, 230
wavelet, 107, 113, 207

Episode duration, 74
Event recorders, 34

continuous loop, 34
symptom, 34

Exponential averaging, 143

F
FastICA, 200
Fibrosis, 7, 11
Frequency tracking, 235
Fuzzy entropy, 88

Fuzzy logic, 115
F wave characterization, 221
F wave detection information, 108
F wave extraction, 137

performance, 210
performance measures, 204

F wave morphology, 239
F wave regularity, 239
F wave replication model, 55
F wave sawtooth model, 55

G
Gaussian model, 164, 254

H
Handheld recorders, 36
Harmonic decay, 228
Harmonic signal model, 236, 237, 251
Hilbert transform, 240
Histogram-based parameters, 82

I
Implantable devices, 10, 38
Implantable loop recorders, 10, 34
Impulse-correlated reference input, 170
Independent component analysis, 197

f wave component identification, 202
model assumptions, 201

Instantaneous phase, 244
Interpolation, 157

autoregressive, 161
JQ based, 157
sine/cosine-based, 159
TQ based, 157

Ischemic stroke, 11, 38, 42
Isochronal mapping, 259
Isofrequency mapping, 260
Isopotential mapping, 259

K
Kalman filter

discrete-time, 163
extended, 162, 166

Karhunen–Loève transform, 181
Kullberg–Leibler divergence, 110
Kurtosis, 199, 202

L
Lead system

AF-tailored, 28
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EASI, 32
modified Lewis, 31
original Lewis, 30
reduced, 30

Least squares, 150, 160, 176, 229, 252
LMS linear filtering, 169
Lomb’s periodogram, 161, 227
Loop planarity, 259

M
Magnetic resonance imaging, 7
Main atrial wave, 239
Mapping

isochronal, 259
isofrequency, 260
isopotential, 259
phase, 260

Maximum likelihood estimation, 145, 242,
252

Mean absolute error, 209
Mean square cross prediction error, 195
Mean square error, 143, 145, 163, 170, 208,

236, 242, 258, 269
Median filtering, 98
Midline estimating statistic of rhythm, 269,

285
Model

atrial premature beats, 61
f wave, 57
P wave, 60
QRS complex, 58
real components, 65
respiration, 61
rhythm switching, 65
sinus rhythm, 59
synthetic components, 56
ventricular rhythm, 57

Monitoring strategies, 42
Multi-swarm particle swarm optimization,

156, 300

N
Negentropy, 199
Neural network

deep convolution, 116
echo state, 174
recurrent, 171

Noise level estimation, 111
Normalized mean of absolute successive

differences, 80
Normalized mean square error, 154, 208
Number of turning points, 81

P
Performance measures

detection, 118
f wave extraction, 204

Phase analysis, 240
Phase mapping, 260
Phase singularity point, 261
Photoplethysmography, 40
Poincaré plot, 89, 285
Positive predictive value, 118
Prediction

cardioversion outcome, 267
catheter ablation outcome, 266
spontaneous termination, 268

Prediction error analysis, 193
Principal component analysis

f wave regularity, 244
mapping, 262
multi-lead, 185
single-lead, 179

P wave detection information, 104

R
Rate-control strategy, 12
Receiver operating characteristic, 118
Recording devices, 33
Recurrent neural network, 171
Refractory period, 285, 291, 292, 306
Relative spectral entropy, 110
Residual-constrained template, 155
Rhythm-control strategy, 13
Roadmap, 18
Root mean square of successive differences,

80
Rotor, 261
RR interval analysis, 283

S
Sample correlation matrix, 181, 245
Sample entropy, 86, 249, 284
Sampling rate, 227, 250
Second-order blind identification, 204
Sensitivity, 118
Shannon entropy, 84, 284
Short-term Fourier transform, 116, 231
Signal quality index, 251
Signed correlation coefficient, 247
Simulation, 54
Single beat cancellation, 186
Singular spectral analysis, 189
Singular value decomposition, 151, 184
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Smartphone-based devices, 37
SNR improvement, 209
Spatiotemporal QRST cancellation

one-template, 148
two-template, 153

Specificity, 118
Spectral concentration, 109, 206
Spectral entropy, 109, 230
Spectral entropy ratio, 112
Spectral organization, 228
Spectral power ratio, 229
Spectral profile method, 232
Spectral width, 230
Statistical dispersion, 79
Stroke, 9, 11, 38, 42
Support vector machine, 101
Synchrogram, 286

T
Time-Varying Coherence Function (TVCF),

94

V
Vectorcardiogram loops, 258
Ventricular premature beats, 74, 139, 211
Ventricular residue, 205

W
Wavelet entropy, 107, 113, 207
Weighted averaging, 144
Weighted least squares, 233, 255
Welch’s method, 226
Whitening, 177, 195, 198, 200
Wristband, 41
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