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Abstract
Social and medical problems associated with stress are increasing globally and seriously affect mental health and
well-being. However, an effective stress-level monitoring method is still not available. This paper presents a quan-
titative method for monitoring acute stress levels in healthy young people using biomarkers from physiological
signals that can be unobtrusively monitored. Two states were induced to 40 volunteers, a basal state generated with
a relaxation task and an acute stress state generated by applying a standard stress test that includes five different
tasks. Standard psychological questionnaires and biochemical markers were utilized as ground truth of stress levels.
A multivariable approach to comprehensively measure the physiological stress response is proposed using stress
biomarkers derived from skin temperature, heart rate, and pulse wave signals. Acute physiological stress levels
(total-range 0–100 au) were continuously estimated every 1 min showing medians of 29.06 au in the relaxation
tasks, while rising from 34.58 to 47.55 au in the stress tasks. Moreover, using the proposed method, five statistically
different stress levels induced by the performed tasks were also measured. Results obtained show that, in these
experimental conditions, stress can be monitored from unobtrusive biomarkers. Thus, a more general stress moni-
toring method could be derived based on this approach.
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Unobtrusive physiological signals

1 Introduction

The global incidence of anxiety, depression, multiple sclero-
sis, pathological stress and different stress-related diseases has
significantly increased in recent years; this is probably due to
dramatic changes in the daily lives of citizens. It has been
shown that stress generally has negative consequences in
terms of mental health and well-being [1–3] and that chronic
stress especially increases the risks of certain pathologies,
such as cardiovascular diseases, strokes, diabetes and others
[4, 5], and can even cause sudden death [6]. According to the
World Health Organisation [7], social and medical problems
associated with stress are clearly rising and seriously affecting
mental health and well-being not only in adults but also in
young people and children. Therefore, stress has become
one of the significant focal points of research interest [8].
Reliable markers that allow to measure the body’s stress re-
sponse could be utilized to monitor stress conditions in daily
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life. This would, in turn, enable an accurate monitoring of
patients, prevent illnesses and detect pathological conditions
in their early stages. However, to the best of our knowledge,
no reliable tool yet exists for measuring levels of stress
response.

Stress has been defined by Selye in 1950 as a state of
biological activation triggered by the person interacting with
external agents that force her or his capacity to adapt [9].
Stress is also defined as a disturbance of homeostatic balance
of the individual [10] that provokes a stress response, which is
the body’s (or individual’s) attempt to cope with the stressor.
Stress can be classified as either acute or chronic [3, 11]. Acute
stress is the immediate body’s response to a stressor. Chronic
stress, on the other hand, is the state caused by a continuous
stressor stimulus over a period of months (e.g. family care-
givers of terminal patients) or the state reached when the body
cannot to deal with the stressor and does not achieve a homeo-
static balance state (e.g. traumatic stress of war veterans).

The response to acute stress is designed to provide the
organism with the requisite alertness, energy, physiological
regulation and immunological activation to counterbalance
the effects of the stressor in order to reach a new adaptive state
and survive [11]. Consequentially, the activation of stress re-
sponse triggers changes in the autonomous nervous system
(sympathetic and parasympathetic balances) and a hormonal
response, as well as behavioural changes and a decrease in
cognitive skill [3, 11]. Thus, a diversity of body changes is
triggered, affecting different possible stress markers, which
have been used to assess stress so far.

Psychiatry, psychology and the medical community in gen-
eral have established, and are using, psychometric question-
naires as the appropriate tools to assess psychological stress
[12], measuring mostly behavioural and cognitive skill chang-
es. Among others, one of the most frequently used question-
naires are the subject’s self-reporting assessments (e.g. the
Visual Analogue Scale for Stress, VASS). Following a differ-
ent approach, researchers from biomedical fields are more
enthusiastic about using biochemical markers from the hor-
monal response, such as cortisol, prolactin, α-amylase [13],
interleukin-6, copeptin [14] and others [15, 16]. However,
even though biochemical samples and psychometric question-
naires constitute well-known stress makers, they cannot be
implemented in a continuous stress monitoring method.
Nevertheless, they are suitable for specific applications
and research studies. The limitations of these biochem-
ical markers include invasiveness and the impossibility
of being continuously measured. Additionally, it must
be noted that their dynamic response should be considered
in order to perform a proper measurement [17]. The relation-
ship between the body’s activation of biochemical markers
and the intensity of the stress perceived is both complex and
understudied, which also makes the use of biochemical
markers disadvantageous. The major drawbacks of the

psychometric questionnaires are that they are not designed
for frequent applications and they are subjective, depending
on the self-perception of the individual about her or his
condition.

On the other hand, diverse studies exist that assess stress
using mainly markers extracted from biosignals and thus mea-
sure the physiological reactions of the stress response on the
body (see [12, 18–20]). The most widely used biosignals are
electrocardiography (ECG) [21, 22] and skin conductance
(SC) [21, 23]. Some features extracted from these biosignals,
such as the heart rate (HR) and mainly its variations (HRV),
are driven by the autonomic nervous system (ANS) and, more
precisely, by its sympathetic and parasympathetic compo-
nents; thus, they constitute good stress markers. Other
biosignals are also used such as electroencephalogram [24],
skin temperature [25], pulse photoplethysmography (PPG),
respiration [21, 22], pupil diameter, electromyography and
blood pressure.

Most of these studies employed similar approaches. Firstly,
while some physiological signals are measured, a stress state
is induced under a real situation [21, 23, 26–28] or in a labo-
ratory [22, 24, 29, 30], by, for example, a mental arithmetic
[22, 23], the Stroop Test, film fragments or the Trier Social
Stress Test [25]. Subsequently, a variety of features are used
with either pattern recognition or machine learning techniques
that allow the automatic classification of stress states. The
applied techniques are also diverse, such as support vector
machines [22], fuzzy logic, Bayesian networks, decision trees
[23], artificial neural networks [31] and computer aided diag-
nostic tools [32]. Notwithstanding, most of these studies only
allow stress detection (stress/ no stress) [23], and few of them
identify three levels of stress [22, 29, 30], i.e. high, medium
and low, normally related to the intensity of the stressor.
Additionally, the methods that have been employed as the
ground truth of the induced stress intensity reference are di-
verse. Several studies employ standard psychometric ques-
tionnaires [22, 24] or subject’s self-report assessments as a
reference, regardless its previous mentioned limitations.
Other studies employ as a reference the status of the stressor
stimulus, i.e. active or not [33], while others use the amount of
work load and cognitive demand that is being applied as the
stressor agent [21].

Despite the efforts made, a scientifically supported, objec-
tive, reliable, repeatable and easily usable measurement meth-
od remains unavailable. Indeed, up to now, no agreement
among professionals or within the research community exists,
neither on a unique stress assessment method nor in a standard
stress measurement method.

We propose to use only physiological biomarkers that can
be unobtrusively monitored, aiming to obtain a reliable de-
scription of the stress response that can be easily monitored
in daily life. Therefore, themain objectives of this study are the
following: (1) to identify a set of features derived from
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physiological signals that comprehensively describe the phys-
iological stress response according to established stress
markers and (2) to then use them for a reliable quantitative
assessment of stress level as a first attempt towards stress mon-
itoring. Although the ultimate goal is to measure acute stress or
chronic stress in daily life, a potential stress measurement
method should first be validated under controlled stress condi-
tions. Thus, this work contributes to the extant literature by:

& Designing an experiment to quantify participants’ levels
of acute psychological induced stress

& Selecting a set of stress biomarkers from physiological
signals that describe the stress response level in a similar
range as do the standard psychological questionnaires and
biochemical stress markers

& Proposing a multimodal approach for stress-levels mea-
surement based on a comprehensive assessment of the
physiological response of the individual to a stressor agent

& Proving that, in these experimental conditions, stress re-
sponse levels can be unobtrusively and continuously mea-
sured from a set of physiological signals, as a viable alter-
native to the currently used stress assessment methods

2 Methods

The research presented in this paper involves experimental
measurements of physiological signals, biochemical variables
and psychometric questionnaires in healthy young students
from the Autonomous University of Barcelona (UAB), who
were under an acute psychological standard stressor.

Varieties of stressor stimuli have been employed in stress
research. The Trier Social Stress Test (TSST) has been chosen
in this study to induce acute psychological stress because
TSST is one of the most widely used and documented proto-
cols in stress research [34–37], and because it provides a ro-
bust and reliable acute stress inducement [38] compared with
other stressors.

Two main stress states were induced to the participants, a
basal state (BS) and an acute stress state (SS). Participant’s
stress response was assessed using a set of stress reference
variables (well-established stress markers). Suitable features
derived from the physiological signals were selected and com-
pared with a whole set of stress reference variables.
Afterwards, these features were used to make an estimation
of stress level.

2.1 A multimodal approach to stress measuring

The methodology and analysis of the results presented are
focused on objectively quantifying the physiological compo-
nents of the stress response, which can be understood as the

degree of disturbance of homeostasis [11], i.e. how
close or far an individual is from the state of homeo-
static balance. The response to stress triggers biological
changes that prepares the body to deal with a stressor
agent, which provoke the homeostatic imbalance that
will continue until the achievement of a new state that
is adapted to the new situation.

Consequently, the stress level response is determined
as a function of the particular reactions that the homeo-
static imbalance provokes in the individual. Such stress
reactions are dependent not only on the exposure time
to stressors (acute or chronic) but also on certain char-
acteristics of the stressor as they are perceived by the
individual, such as its intensity, her or his own ability
to control it and its predictability [39].

The physiological reactions of the homeostatic imbalance
triggered by the stress response can be broadly summarized as
follows [35]:

1) Neurohypophysis activation: vasopressin secretion lead-
ing to increased blood volume and pressure and increased
peripheral blood vessels resistance

2) Hypothalamic-pituitary-adrenal axis (HPA axis) activa-
tion: cortisol secretion leading to increased catabolism,
anabolism inhibition as well as immune system
depression

3) Sympathoadrenal system activation: sympathetic nervous
system sensitization

4) Nervous system activation: sympathetic nervous system
activation and parasympathetic withdrawal, causing in-
creased heart rate and respiratory frequency, bronchial
and pupil dilation, sweating skin, peristalsis inhibition
and hyperglycaemia and other symptoms

Thus, a single stress marker cannot globally assess
the stress response of an individual, as it is also con-
cluded in [20]. In order to be able to compare and
assess the stress level response, a method that considers
the different stress response reactions as a whole is req-
uisite. Therefore, a multivariable approach is proposed
in this study to assess the individual stress response to a
stressor.

2.2 Study design

The study is a quasi-experimental pre-post study with-
out a control group to elucidate the effect of a stressor
on psychological, biochemical and physiological stress
markers in a unique group of healthy students. The
experiment design included a Relax Session, as a con-
trol condition, and a Stress Session, performed on dif-
ferent dates, so that participants could be compared to
themselves in a basal state and a stress state.
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A preparatory relaxation period of 10min was conducted at
the start of each session to achieve a fairly similar baseline
state among participants for both sessions. The state reached
after the Relax Session was considered as the basal state while
the state reached at the end of the Stress Session was consid-
ered as the stress state. During both sessions, physiological
signals were continuously recordedwhile standard psycholog-
ical questionnaires were applied and biochemical markers col-
lected at the end of each session, as shown Fig. 1. The exper-
imental design shares its measurement framework with other
studies within the ES3 Project [8], which aims to cover all
complexities of stress.

2.2.1 Participants

Participants were recruited using an advertisement on the
UAB website, which was linked to the webpage of the ES3
Project [40]. All interested candidates completed an online
form beforehand to ensure that they met the selection criteria
for the study. After individually checking to determine wheth-
er they fulfilled the inclusion requirements, participants were
included in the study consecutively according to when they
were enrolled in the study. Appointments were made at
random.

The inclusion criteria were to be between 18 and 30 years
old and a non-regular consumer of psychotropic sub-
stances, alcohol or tobacco. The exclusion criteria were
a body mass index higher than 30, any chronic disease
or psychopathology and a stress level higher than 70%
on a visual analogue scale.

The UAB Ethics Committee approved the study protocol.
Participants gave their written informed consent. They were
instructed to avoid the use of any psychotropic substance,
alcohol or tobacco and to avoid doing any physical exercise
for 24 h prior to each session, wake up 2 h before the start of
the sessions and consume a light breakfast without coffee or
tea.

2.3 Experimental protocol

The Relax and the Stress Sessions were performed on
different dates, but at the same hour for each partici-
pant. The Relax Session comprised two stages, the base-
line stage (BLR) and the relax stage (RS), while the
Stress Session had a baseline stage (BLS) and five different
stages, inducing acute psychological stress through a standard
stressor.

The relaxation was induced by autogenic relaxation guided
by an audio recording conforming to Schultz’s method [41] at
stages BLR and RS in the Relax Session and BLS in the Stress
Session.

Acute psychological stress was generated with a modifica-
tion of TSSTas follows. Instead of the speech, the participants
performed a memory test while being video-recorded. Then,
the video was shown to her or him in the company of an
audience, after a prior stress anticipation period [42]. This
modification was introduced to compare the results from the
Memory Test with the study performed in [42] as part of the
ES3 Project [8].

The stress test included five different stages over 25 min.
Each stage had different demanding conditions, inducing dif-
ferent stress states in participants:

1) Story telling stage (ST): Three different short stories are
told to the subjects, and they are asked to remember as
many details as possible.

2) Memory test stage (MT): The subjects are requested to
repeat each story aloud, including as many details as they
can in a 30-s period per story. During this stage, the sub-
jects are notified that they will be video-recorded to assess
their performance.

3) Stress anticipation stage (SA): The participants are
asked to go to an adjacent, empty room under the
pretext of they should wait until the group of psy-
chologists assesses their video.

Fig. 1 Details of study protocol. The first saliva sample was taken after
the baseline stages (BLR, BLS) and the second saliva sample at the end of
the Relax and the Stress Sessions. A blood sample was taken and
psychometric tests were applied at the end of each session.
Physiological signals were measured during both the Relax Session and

during the Stress Session stages: story telling (ST), memory test (MT),
stress anticipation (SA), video display (VD), and arithmetic task (AT).
Stress states reached at the end of the Relax and the Stress Sessions were
basal state (BS) and acute stress state (SS), respectively
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4) Video display stage (VD): The participants return to the
previous room, where an unexpected audience of at least
three people is waiting for them. The video showing each
participant’s storytelling is played in front of the audience.
Each video is interwoven with another video, in which an
actor of the same gender is telling most of the details of
each story, to increase the subject’s arousal.

5) Arithmetic task stage (AT): The subjects are asked to
count backwards from 1022 in increments of 13, in less
than 5 min. If theymake a mistake, they should start again
from 1022.

At the end, the subject is required to complete the psycho-
metric questionnaire. Participants were seated the entire time,
except at the beginning and the end of the stress anticipation
stage, when they walked into the adjacent room.

2.4 Physiological signals: acquisition and processing

Electrocardiogram, pulse photoplethysmography, respiration,
skin conductance and face and finger temperature signals were
selected due to their relation with stress response, and because
they can be continuously and unobtrusively monitored. The
main aspects concerning signal selection, processing and fea-
ture extraction methods used in this research are listed below.
Among all those physiological signals that show changes re-
lated to stress [8], the signals that can be unobtrusively mon-
itored and that comprehensively describe the stress response
were selected. They are presented in Table 1.

The ECG signal was sampled at 1 kHz, while the other
signals were sampled at 250 Hz using the Medicom system,
ABP-10 module (Medicom MTD Ltd., Russia). Most record-
ings of skin conductance had to be discarded in the reported
experiment due to a sensor malfunction. Thus, skin conduc-
tance values were not considered in any further analyses.
Respiration signal was also excluded from this analysis, as it
is clearly artefacted during the MT and AT stages when the
participant had to talk.

2.4.1 Skin temperature

Variations in face and finger temperature are associated
with stress response due to the activation of the
vasoregulatory system (i.e. a peripheral vasoconstriction
together with a vasodilatation in the core and face) [25].
Both face (Tfa) and finger (Tfi) temperature signals were
filtered using a one-dimensional median filter (50 or-
ders), and then values out of the 20–40 °C range were
excluded. Subsequently, the following features were
computed:

& Temperature gradient (ΔT): temperature variation in slid-
ing windows of 1 min time

& Temperature power (T_Ptotal): defined as the average pow-
er of temperature measured via a rectangle approximation
of the integral of the power spectral density in sliding
windows of 1 min time

& Temperature ratio (Tratio): ratio between mean values of
finger (Tfa) and face (Tfi) temperatures in sliding windows
of 1 min time

2.4.2 Electrocardiogram

The ECG signal was analysed as in [43] to obtain a
time series of R to R-peak (RR series). The following
features were computed, which are explained in detail in
[44]:

& Time features: From the fixed RR series, mean heart rate
(HRmean), standard deviation of all RR intervals (RRSDNN)
and root mean square of successive differences of RR
(RRrMSSD) were computed.

& Frequency features: low frequency (LF) power
(PLF) and high frequency (HF) power (PHF), the
LF/HF ratio and power in the very low frequency
(PVLF) band

Table 1 Selection of
physiological signals Physiological measures Measurable physiological manifestation to stress

response
Sensor body position

Peripheral skin temperature Neurohypophysis activation and sympathetic
nervous system activation

Finger

Core skin temperature Neurohypophysis activation and sympathetic
nervous system activation

Cheek

Skin conductance Sympathetic nervous system activation Hand

Electrocardiogram HPA axis activation, sympathetic nervous system
activation and parasympathetic counterbalance

3 Orthogonal leads in
the thorax

Respiration rate Sympathetic nervous system activation and
parasympathetic counterbalance

Thorax

Photoplethysmography Neurohypophysis activation, HPA axis activation,
sympathetic nervous system activation and
parasympathetic counterbalance

Index finger
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2.4.3 Pulse Photoplethysmogram

A filter was applied to the PPG signal, as well as an artefact
detector as described in [45]. Fiducial points in pulse waves
were automatically determined from each pulse beat by an
implemented algorithm based on [46]. The detected points
for the ith pulse in PPG signal are seen in Fig. 2.

Pulse period (PPi) is the time interval between two consec-
utives nAi, and the pulse rate (PRi) is the inverse of the PPi
series. A subsequent analysis to obtain pulse period features
was equal to the aforementioned HR time features from the
ECG signal (PRmean, PPrMSSD, PPSDNN). Furthermore, addi-
tional time-based parameters were calculated (see Fig. 2), and
their median values and standard deviations in sliding win-
dows of 1 min time were assessed:

& Pulse transit time (PTT): The PTT is inversely proportion-
al to pulse wave velocity, which is associated with arterial
stiffness and cardiovascular output. Therefore, a decrease
in PTT is related to an increase in blood vessel resistance
and cardiovascular output, as well as being inversely re-
lated to blood pressure [47].

& Pulse wave rising time (PRT): The PRT is proportional to
the pulse amplitude and is related to arterial stiffness,
blood volume and systolic blood pressure peak [48];

& PulseWave Decreasing Time (PDT): The PDT is an index
of diastolic time, which is also highly related to PR.

& Pulse Width until Reflected Wave (PWr): The PWr is a
time index of the reflected pulse wave arrival and is
associated with the PRT, the peripheral central vas-
cular resistance, the cardiovascular output and the pulse
wave velocity [49].

2.5 Acquisition and analysis of stress reference
variables

The stress reference variables were selected from established
psychometric questionnaires and biochemical stress markers
taking into account a bibliographic review conducted and the
criteria of medical doctors and psychologist involved in the
ES3 Project, as described in [8]. These variables are used to
assess the stress state reached at the end of each session, the
basal state (BS) and stress state (SS), respectively.

2.5.1 Psychometric variables

The psychometric questionnaires applied were the Perceived
Stress Scale (PSS), the Visual Analogue Scale (VASS) and the
State-Trait Anxiety Inventory test (STAI). The PSS measures
the degree of overall stress of the individual or the extent to
which life situations are appraised as stressful [50]. The VASS
records the stress level that is self-perceived by the participant.
The STAI evaluates anxiety from two different points of view:
(1) as a measure of the subject’s state (STAI-s) at a given time
and (2) as the trait (STAI-t) or stable tendency of the individual
to respond by increasing her or his level of anxiety in stressful
situations [51]. These questionnaires were self-administered at
the end of each session.

2.5.2 Biochemical variables

Biochemical markers collected were copeptin and prolactin
obtained from blood samples and cortisol and α-amylase ob-
tained from saliva samples. In accordance with the circadian
rhythm of cortisol and α-amylase [52], the sessions were

Fig. 2 Detection points in ECG
and PPG signals. Each absolute
maximum of the PPG signal
between two successive QRS
complexes detected in the ECG
signal is considered an apex point
nAi of a PPG pulse. nBi: the basal
point is the absolute minimum of
the PPG signal between two
successive QRS complexes in the
ECG signal. nMi: the middle point
is the instant in time when the
PPG pulse reaches half of its
apex-to-basal amplitude. nARi: the
apex point of the reflected wave is
the maximum reflected pulse
wave. nNi: the dicrotic notch point
is the inflection point between the
pulse wave and the reflected wave
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scheduled in the morning (09:45–10:45 h), 2 h after waking
up. Two saliva samples were taken in each session: one before
the stimulus (relaxation or stress) and the other at the end of
the session [53] (i.e. 25-min in-between) to obtain cortisol
(Δcortisol) and α-amylase (Δα-amylase) variation per
session, see Fig. 1.

Cortisol and α-amylase were measured in the endocrinol-
ogy and radioimmune analysis service of the UAB
Neurosciences Institute. An immunoassay was performed to
determine cortisol concentration, and an enzyme assay
analysed the α-amylase enzyme kinetics (Salimetrics, State
College, PA, USA). The analysis of prolactin and copeptin
was quantified at the Centre of Biomedical Diagnostic at the
Clinic Hospital of Barcelona. All of the samples were proc-
essed in the same test to avoid any inter-test variability,
achieving intra-test variation coefficients lower than 5% in
both cases.

2.6 Stress reference level

The stress reference variables were used as a reference to
compute a stress reference scale applying the multivariable
approach presented in Section 2.1. The stress references var-
iables were re-scaled to a 0−100 range of arbitrary units. The
stress reference level of participant p, in state x (BS or SS), Sref
(p,x), is described as a linear combination of n stress reference
variables [54], as expressed by the following equation:

Sref p; xð Þ ¼ ∑
n

j¼1
c j ⋅ SRV j

0
p; xð Þ ; x∈ BSf ; SSg ð1Þ

where SRV′j (p,x) is the re-scaled value of the jth reference
variable for the participant p at state x; the coefficient cj repre-
sents the contribution of each SRV′j to the state’s differentiation.
This coefficient was assigned by using a ponderation of the first
and second components obtained from the principal component
analysis (PCA). Further information is described in [54].

The following analysis is focused on selecting a set of
physiological features and a model able to provide similar
values to the Sref (p,x) at the two identified states.

2.7 Stress estimation

A subset of the 27 features extracted from the physiological
signals was selected according to the experiment conditions
using the following criteria: (1) to show no significant differ-
ences between BLR and BLS stages’ values, (because equiva-
lent states at the end of both baseline stages were assumed)
and (2) to have a correlation coefficient higher than 0.4 with
the stress reference level, to ensure that the feature selected
and the stress level references share at least 15% of common
values (value in which the coefficient of determination is at
least 0.15).

Furthermore, in a second step, and to avoid linear depen-
dencies and redundancies among features, Pearson’s correla-
tion between them was computed at each stage. A correlation
coefficient greater than ± 0.98 in all stages was considered to
group-related features. One feature was selected per group of
related features.

A linear relationship between this subset of features
and the estimated stress level reference was assumed.
Feature values of RS and AT stages were associated to
BS and SS states, respectively. Coefficients of this lin-
ear function were computed using a linear regression
model between Sref values at BS and SS and the values
of the selected features at RS and AT. This is an alter-
native pathway to estimate the stress reference level using
physiological signals.

Additionally, through the linear function obtained,
stress level state or Sref was calculated for each stage
of the experiment, and its values were compared between
participants.

2.8 Statistical analysis

The participant’s state at the end of the Relax and the Stress
Sessions (BS and SS) was taken as the lower and higher band
of moderate the stress state, respectively. Variations in bio-
chemical variables, psychometric questionnaire scores and
stress reference levels between both sessions were analysed
using the Student’s t test for paired samples as they have
resulted in normally distributed data. The data were tested
for normality using the Kolmogorov-Smirnov test prior to
analysis.

Physiological feature values associated with each
stage are the median of the feature values over the
whole time stage interval (i.e. ST, MT, VD and AT) and for
stages that last more than 5 min (i.e. BLR, BLS, RS and SA).
The associated feature values were calculated over the last
5 min of the stage.

The statistical differences between the physiological
feature values of two different stages were checked
using the Wilcoxon signed rank test (non-parametric
test), as they are considered non-normally distributed
data. A Friedman’s test (repeated measurements analysis
of variance on ranks, non-parametric test) was per-
formed for each feature to determine whether there
was any change in the different stages of the values (a
p value < 0.05 was considered statistically significant,
meaning that there are at least two different median
stage values).

The correlation between psychometric, biochemical
and proposed stress reference levels with the physiolog-
ical features was studied through the linear Pearson’s
correlation. Sessions were analysed using the Student’s
t test for paired samples.
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3 Results

The study included 40 healthy young participants. The group
constituted a socio-demographic homogeneous data sample,
including 23 females and 17 male subjects, with mean age of
21.3 ± 2.8 and a body mass index of 22.1 ± 2.7. For the sub-
sequent analysis, only 38 of the 40 participants were consid-
ered, since two participants did not attend the second session.

3.1 Stress reference variables

The results of the psychometric questionnaires values, the
biochemical variables and calculated stress reference level
are presented in Table 2. Values for the STAI-s and VASS
questionnaires were statistically significantly higher in the
Stress Session than in the Relax Session, thus reflecting the
subjects’ stress states. Results of PSS and STAI-t scales are
similar in both sessions, in that they represent individuals’
traits thereby indicating coherence in the experiment. Values
of Δcortisol, copeptin and prolactin were significantly differ-
ent between sessions. In contrast,Δα-amylase did not exhibit
significant differences, although median values showed a
small increase. This may be because α-amylase concentration
has a faster dynamic [55].

3.2 Stress reference level

Reference variables showing statistically significant differ-
ences between BS and SS states were utilized to produce the
stress level reference scale. The contribution of each reference
variable to the quantitative stress level scale was estimated
based on a PCA analysis. By evaluating Eq. (1) with the esti-
mated coefficients of the reference variables, the stress level
value (Sref (p,x)) of participant p at state x was calculated as
follows:

Sref p; xð Þ ¼ 0:25⋅VASS
0
p; xð Þ þ 0:25⋅STAI

0
p; xð Þ

þ 0:16⋅Cortisol
0
p; xð Þ þ 0:16⋅Prolactin

0
p; xð Þ

þ 0:16⋅Copeptin
0
p; xð Þ ð2Þ

3.3 Stress estimation from physiological features

The most relevant features from the skin temperature, ECG
and PPG signals that show variations due to the triggered
stress response, according to the experimental conditions,
were selected as stress markers from the whole set. The me-
dian and median absolute deviation (MAD) values of the fea-
tures at the different stages of the experiment are shown in
Table 2, which characterize the individuals’ states at each
stage of the experiment. It can be seen how most of the

features change from one task to another, and they have sig-
nificant changes atMTand ATwith respect to the other stages.
Those features whose median at each stage is not significantly
different from its median at RS are highlighted in Table 2. As a
result of the Friedman test, each of the features has at
least one difference per pair compared with their stage
values (p value < 0.05), and therefore, they all changed in at
least one stage of the experiment.

3.3.1 Stress biomarkers selection

At the start of each session, participants engaged a relaxation
exercise to obtain a similar baseline state. Hence, at Baseline
stages (BLR and BLS), the feature values should not have
significant differences between them. Therefore, features
showing statistically different values in both baseline stages
were not taken into consideration as stress markers in this
experiment assuming that they may instead reflect any other
difference that is not related to stress. These discarded features
from the baseline stages were ΔTfa, HRPLF, HRLF/HF and
PWrmean. Likewise, at stages RS and AT, considered basal
stress and highest stress levels, respectively, the features
should vary significantly. Accordingly, those features, whose
medians were not significantly different between stages RS
and AT (i.e. Tfi_Ptotal, HRLF/HF, PRLF/HF, PRTmean and
PWrmean), were not taken into account as stress markers in this
experiment.

So far, for each participant, two sets of reference variable
values were obtained: one at the BS (minimum stress level)
and one at the SS (showing the stress level reached after the
complete TSST). Using these values, linear Pearson correla-
tions between physiological features and stress reference var-
iables were computed. The resulting correlation coefficients
are found in Table 3.

The set of features presented in Table 3 was analysed to
discern features with linear dependences between them
throughout this experiment, because such features will give
redundant information to the stress measurement model in
these specific experimental conditions. Three groups were
found: (1) Tfi_Ptotal and Tratio; (2) HRmean, RRrMSSD, HRPVLF,
PPrMSSD and PDTmean; and (3) PPSDNN and PDTSTD. From
each group, the feature that had the highest correlation value
with stress reference level was selected. These are Tratio,
HRmean and PPSDNN.

From previously explained considerations and only includ-
ing features that correlate more than 0.4 with stress reference
Sref (r > 0.4), the features selected are as follows: Tratio,
HRmean, PRTSTD, PTTmean, PTTSTD and PWrSTD.

3.3.2 Stress estimation

A stress estimation function (Sest) was implemented assuming
a linear relation between selected features and stress level, see
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Eq. (3). A linear regression between Sref values at BS and SS
and the values of the selected feature at RS and AT were
computed and the coefficients extracted.

Sest ¼ −40:9⋅T ratio þ 0:25⋅HRmean þ 171:1⋅PRTSTD

−145:4⋅PTTmean−79:83⋅PTTSTD−94:1⋅PWrSTD þ 80:51

ð3Þ

Results of the stress level reference from reference vari-
ables against the estimated stress are presented in Fig. 3, in
which two well-defined groups for basal and stress states can
be observed. The RMS error was 9.57 (R2 0.67).

The stress estimation results show an increase of 64.13%
from basal to stress state generated, while the same results

Table 2 Inter-subject median and median absolute deviation (MAD) of stress markers

Stress markers Relax Session Stress Session

Baseline Relax Baseline Trier Social Stress Test modified

BLR RS (BS) BLS ST MT SA VD AT (SS)

Psychometric questionnaire (range)
PSS (0–40) – 21.00 (2.26) – – – – – 20.00 (2.57)
STAI-s (0–80) – 12.00 (7.42) – – – – – 28.0 (11.72)**
STAI-t (0–60) – 20.50 (7.53) – – – – – 21.00 (8.54)
VASS (0–100) – 20.00 (18.72) – – – – – 60.0 (20.95)**

Biochemical variables
Δα-Amylase (U/mL) – 30.60 (78.0) – – – – – 50.06 (97.4)
ΔCortisol (nmol/L) – − 0.08 (0.09) – – – – – 0.01 (0.15)
Copeptin (pmol/L) – 6.00 (3.17) – – – – – 7.60 (3.74)
Prolactin (ng/mL) – 6.34 (1.65) – – – – – 8.78 (4.84)

Stress reference level
Sref (au) – 27.13 (10.69) – – – – – 45.29 (12.93)

Physiology features
Temperature
ΔTfi (°C) 0.15 (0.14) − 0.03 (0.05) 0.20 (0.12) − 0.97 (0.41) − 0.86 (0.32) 0.06 (0.31) − 0.35 (0.22) − 0.36 (0.24)
Tfi_Ptotal (10

−3 °C2 s) 1.23 (0.08) 1.25 (0.10) 1.23 (0.11) 1.16 (0.09) 1.05 (0.10) 0.93 (0.15) 0.94 (0.19) 0.78 (0.19)
ΔTfa (°C) 0.01 (0.02)^ 0.01 (0.01) 0.05 (0.03) 0.02 (0.06) 0.08 (0.05) 0.01 (0.01) 0.13 (0.06) 0.07 (0.04)
Tfa_Ptotal (10

−3 °C2 s) 1.19 (0.06) 1.20 (0.07) 1.16 (0.05) 1.18 (0.04) 1.19 (0.04) 1.18 (0.04) 1.19 (0.04) 1.24 (0.04)
Tratio 1.00 (0.05) 1.02 (0.03) 1.04 (0.05) 1.00 (0.03) 0.94 (0.05) 0.89 (0.07) 0.89 (0.10) 0.80 (0.07)

Heart rate
HRmean (beat/min) 72.39 (6.1) 70.66 (6.9) 70.25 (7.0) 81.03 (8.9) 82.87 (8.6) 69.00 (7.68) 71.05 (9.0) 86.86 (11.2)
RRSDNN (s) 0.06 (0.02) 0.07 (0.02) 0.07 (0.02) 0.08 (0.02) 0.10 (0.03) 0.08 (0.02) 0.08 (0.03) 0.10 (0.03)
RRrMSSD (s) 0.83 (0.08) 0.86 (0.09) 0.86 (0.09) 0.75 (0.08) 0.75 (0.08) 0.88 (0.10) 0.85 (0.10) 0.71 (0.08)
HRPVLF (s

−2) 1.85 (0.33) 1.77 (0.32) 1.78 (0.36) 2.39 (0.48) 2.43 (0.44) 1.72 (0.34) 1.90 (0.44) 2.65 (0.64)
HRPLF (10

−3 s−2) 1.73 (0.88)^ 1.28 (0.71) 1.17 (0.62) 1.39 (0.38) 2.15 (0.71) 1.24 (0.54) 1.12 (0.45) 2.41 (0.85)
HRPHF (10

−3 s−2) 1.59 (0.77) 1.48 (0.67) 1.45 (0.67) 1.64 (0.78) 2.33 (0.96) 1.53 (0.81) 1.70 (0.66) 2.65 (1.07)
HRLF/HF (10

2) 1.24 (0.77)^ 0.93 (0.49) 0.64 (0.32) 0.94 (0.28) 1.03 (0.30) 0.93 (0.26) 0.61 (0.18) 0.88 (0.23)
Pulse rate
PRmean (beat/min) 72.34 (6.7) 71.01 (7.5) 70.80 (7.0) 81.64 (8.9) 81.46 (8.2) 68.05 (6.9) 70.76 (8.9) 85.80 (9.6)
PPSDNN (s) 0.07 (0.02) 0.09 (0.03) 0.07 (0.02) 0.10 (0.02) 0.13 (0.03) 0.10 (0.03) 0.10 (0.03) 0.12 (0.02)
PPrMSSD (s) 0.85 (0.10) 0.88 (0.09) 0.87 (0.08) 0.75 (0.09) 0.77 (0.06) 0.90 (0.09) 0.87 (0.09) 0.72 (0.07)

Pulse wave rising time
PDTmean (ms) 140.4 (7.5) 140.5 (7.8) 148.7 (11.3) 137.7 (9.3) 155.3 (30.7) 147.0 (11.0) 155.6 (22.7) 141.7 (18.0)
PDTSTD (ms) 10.9 (5.9) 12.7 (5.3) 14.9 (8.9) 28.28 (16.0) 46.4 (19.6) 45.9 (12.0) 38.3 (15.6) 46.9 (13.0)

Pulse wave decreasing time
PDTmean (ms) 697.0 (77.4) 700.6 (70.4) 703.5 (74.4) 596.5 (85.7) 577.0 (57.0) 689.9 (90.0) 677.7 (87.0) 542.4 (72.9)
PDTSTD (ms) 74.1 (17.8) 82.9 (21.9) 75.1 (18.1) 91.7 (18.8) 113.4 (22.7) 127.9 (23.8) 77.7 (20.4) 105.7 (19.1)

Pulse width until reflected wave
PWrmean (ms) 306.9 (12.2)^ 305.9 (16.8) 315.7 (13.3) 317.1 (11.7) 327.4 (25.3) 305.1 (18.3) 316.5 (24.0) 311.1 (24.1)
PWrSTD (ms) 18.6 (7.3) 17.6 (9.5) 20.7 (7.9) 35.9 (14.2) 53.4 (17.4) 59.5 (16.5) 42.5 (13.6) 52.7 (9.7)

Pulse transit time
PTTmean (ms) 201.4 (13.6) 205.1 (15.6) 203.8 (14.0) 188.2 (15.9) 175.1 (13.8) 189.4 (11.9) 181.3 (18.0) 162.6 (18.4)
PTTSTD (ms) 10.3 (4.0) 12.0 (5.2) 10.2 (3.0) 16.5 (7.2) 22.0 (10.3) 37.6 (8.2) 16.9 (7.3) 24.4 (7.9)

Inter-subject physiology features’ medians and MAD were obtained in a 3- to 5-min time range depending on the task time. In the case of ST, MT, VD
and AT, the whole time interval was taken. For BLR, BLS and SA, a 5-min range was selected (BL: from 3 to 8 min, SA: from 2.5 to 7.5 min). Features
that have significant differences between RS values and each stress stages values (p < 0.05) are in italics

^Marked features which have significant difference between both baseline stages; *p value <0.001; **p value <0.0001
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through the stress level reference values are 66.94%. So, dif-
ferences between BS and SS are in the range of 18%which, as
expected, represents a moderate but significant stress effect.
At basal state, the values have less dispersion than those of the
stress state because a stressor affects individuals differently,
while basal states tend to be similar.

Through the linear equation obtained (Eq. (3)), the stress
level state was calculated for each stage of the experiment, and
its values are shown in Fig. 4. The stress level reached in the
ST and SA task have similar median values although physio-
logical stress markers do not have similar median values, in-
dicating that similar stress level values could clearly be
assigned to different states. The paired t test between estimat-
ed stress values for each stage was also calculated. Sest at each
of the stages related to the TSSTare statistically different from
the Sest measured at relaxation stages (BLR, RS and BLS).
Table 4 shows the p values of the paired t test. Stages with a

relaxation exercise show values of approximately 29.06 au,
while those in the Stress Session rise to values ranging from
34.58 to 47.55 au.

As physiological signals were continuously recorded, all
selected features were computed over a 1 min window for
the whole session, and then a continuous stress estimation
can be performed every minute using the Eq. (3). The Sest
values from two different participants throughout both ses-
sions are seen in Fig. 5. It shows the evolution of participants
along the sessions.

Figure 6 presents the evolution of other participants along
the Stress Session. Different stress responses were selected
among the participants to show the diversity of stress responses
generated throughout the session. It can be observed that some
participants had a higher stress level than others at the begin-
ning of the session. In addition, some of them greatly reduced
their values in BLS, while others remained quite similar.

Table 3 Pearson’s correlation
between physiology parameters
and stress reference variables

Features STAI-s VASS ΔCortisol Copeptin Prolactin Sref

Temperature ΔTfi – – – − 0.34 – –

Tfi_Ptotal − 0.46* − 0.57** − 0.35 – − 0.27 − 0.59**
ΔTfa 0.34 0.40* 0.49** – 0.38 0.46**

Tfa_Ptotal 0.34 – 0.26 – – 0.25

Tratio − 0.51** − 0.60** − 0.39 – − 0.26 − 0.62**
ECG HRmean 0.43* 0.47** 0.45* – 0.45* 0.59**

RRSDNN – – – 0.28 – –

RRrMSSD − 0.39 − 0.43* − 0.32 – − 0.41* − 0.51**
HRPVLF 0.43* 0.47** 0.50** – 0.48** 0.59**

PPG PRmean 0.34 0.36 0.35 – 0.42* 0.49**

PPSDNN – – – 0.28 – 0.32

PPrMSSD − 0.38 − 0.42* − 0.29 – − 0.39 − 0.49**
PDTmean − 0.42* − 0.46* − 0.29 – − 0.37 − 0.53**
PDTSTD – – – – – 0.25

PRTSTD 0.29 0.34 – – – 0.41*

PTTmean − 0.47** − 0.51** − 0.41* – − 0.36 − 0.63**
PTTSTD 0.31 0.35 0.39 – – 0.44*

PWrSTD 0.28 0.36 – – – 0.40*

*p value < 0.001; **p value < 0.0001

Fig. 3 Results of stress
estimations. a Stress level
estimated from reference
variables against the estimation
performed through selected
features. b Black-Altman plot of
the same data as in a
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4 Discussion

The stress concept establishes that stress arises when a specific
event threatens the homeostatic stability of an individual. The
ultimate goal of this work is to find an approximate but quan-
titative measure of that homeostatic imbalance. We faced a
complex human system in which the stress response elicits
multiple physiological and cognitive reactions [35] in the in-
dividual. This is why none of the established stress markers
alone allow for reliable quantitative assessment of stress re-
sponse intensity. In this regard, we propose to use a set of
biomarkers that comprehensively assess the level of stress
response and then employ them in a multivariable method of
stress measurement. In this way, we could have a broad mea-
surement of the stress response and consider extensive aspects
triggered by the stressor (see Table 1).

Applying the proposed multimodal approach for stress
measurement, a multivariable stress reference level is pro-
posed by merging the above-mentioned stress reference vari-
ables (see Section 3.1) into a single scale. As a first approxi-
mation, a linear relation between stress level reference and
each variable was assumed. The scale of stress level reference
shows higher correlations with the physiologic features than
with either the psychometric variables or the biochemical var-
iables alone. This suggests that this multivariable approach
might improve the most commonly used methods. The same

approach is used to estimate the acute stress response through
physiological biomarkers. Moreover, in view of a possible
stress monitoring method, the biomarkers selected were lim-
ited to those that can be continuously monitored, and there-
fore, they were obtained from physiological signals that are
not only continuously, but also unobtrusively, measured.

The stress estimation method presented in this paper gives
continuous values of acute physiological stress every 1 min.
Results prove its ability not only to measure changes from a
basal state (27.86 au) to a stress state (47.55 au) but also to
measure the stress level at different stress states produced
throughout the sessions. This makes it possible to statistically
discriminate between five stress levels induced in this exper-
iment (BLR-RS-BLS; ST-SA; MT; VD; and AT). Moreover,
although a tendency to increase the stress level in the ST and
MT stages is found, in the SA and VD stages, different reac-
tions are observed since these stages may be related to social
phobia or assessment anxiety rather than stress. In the last
stage, the AT also triggers different levels of stress, according
to the participant’s capabilities to face this task.

The presented approach can establish the groundwork for
applications that aim to monitor stress and improve research in
the field of stress, because it might constitute a starting point
for future inter-individual and intra-individual valid compari-
sons of facing different stressors.

Until now, the stress response level has not been quantita-
tively assessed as it was above-presented, and only stress de-
tections and classifications have been made [12, 18–20]. To
the best of our knowledge, there is no objective, reliable, re-
peatable and easily applicable method either to compare the
values of the stress response level of an individual at different
stressful moments or to compare the stress state of two differ-
ent individuals for a fast and reliable follow-up. Indeed, cur-
rent methods cannot define thresholds and have not provided
quantitative and reliable estimations of the global stressing
effects of an alleged stressor on a population sample.

No clear correlation pattern between measured physiolog-
ical parameters and perceived levels of stress has yet been

Fig. 4 Stress measurement of a participant throughout both sessions

Table 4 p values of the paired t
test among measured stages’
stress

Relaxed states Stressed states

Stages RS BLS ST MT SA VD AT

BLR 0.125 0.114 0.006 2.19 × 10−5 0.012 8.20 × 10−5 5.04 × 10−9

RS 0.538 3.17 × 10−5 1.51 × 10−7 1.82 × 10−4 1.98 × 10−7 4.17 × 10−12

BLS 6.14 × 10−10 2.17 × 10−14 1.03 × 10−7 5.86 × 10−13 1.87 × 10−17

ST 4.54 × 10−10 0.844 1.57 × 10−4 3.50 × 10−14

MT 2.22 × 10−7 0.030 1.25 × 10−8

SA 2.57 × 10−7 5.76 × 10−17

VD 1.67 × 10−14

p values < 0.05 are highlighted in italics
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found [3, 12]. Moreover, no agreements exist among profes-
sionals or within the research community either on a standard
ground truth of stress level assessment or in a standard
stress measurement method. This is probably a conse-
quence of the variety of stimulus that induce stress and the
diversity of human reactions to each stressor [20].
Additionally, it might be also a result of the fact that the extant
literature aims to assess one or very few reactions that arise
from the stress response, rather than comprehensively de-
scribe the physiological stress response itself as we propose.

We used a reliable protocol and a well-documented stressor
such as the TSST [37]. The purpose was to induce moderate,
but significant, stress with a validated and widely documented
tool for the generation of stress [16]. Results of both physio-
logical features and stress reference values provide evidence
of the two different stress levels of induced states, BS and SS,
in agreement with previous studies [16, 37].

Features extracted from finger and face skin temperatures, as
well as electrocardiogram and pulse wave signals, were selected
to comprehensively identify the physiological stress response.

Changes related to stress that these selected signals have are
seen in Table 1 (Section 2.4). Most of the features exhibit sta-
tistically different values between the BS and the SS, and a
significant linear correlation with the reference variables, as
has been reported in others studies [16]. HR features are highly
correlated with the stress reference level, as well as PR features,
which are quite similar to results presented in [56]. A prelimi-
nary analysis of heart rate variability (HRV) as a stress marker
has also already been reported in [43]. Nevertheless, respiratory
information should be taken into account to increase the reli-
ability of HRVas a marker of stress [57] as frequency features
of HRV are influenced by respiration [58–60]. This analysis
would be an important addition to futures studies.

Meanwhile, other features, such as Tratio, PRT and PTT, are
first used as stress biomarkers in this study. In the BL and RS
stages, both finger and face temperatures show low variations
following the normal body thermoregulation (Tratio ≈ 1), but in
stages in which a stressor is applied, for instance at ST, MT,
VD and AT, face temperature increases while finger tempera-
ture decreases. Similar results are reported in [25]. PTTmean

Fig. 5 Stress measurement from
two subjects throughout both
sessions. On the left for subject 1
and on the right for subject 2

Fig. 6 Stress measurements of
different subjects throughout the
Stress Session
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has the highest Pearson correlation value with the stress refer-
ence level, and it is also highly sensitive to the different states
induced throughout the experiment. The lower PTTmean

values occurs for stressful tasks, indicating an increase in both
blood vessel resistance and blood pressure, while the highest
PTTmean values occur for relaxing tasks.

The experiment described in this paper takes a particular
sample (healthy young people) that was subjected to a partic-
ular stress stimulus, TSST. However, other physiological re-
sponses should be investigated using other groups of individ-
uals facing another stressor. Moreover, in a real-life applica-
tion, environmental conditions must be included, as well as
certain characteristics such as age, gender, IMC, physical ac-
tivity and diseases. In real-life conditions, more complex al-
gorithms than the presented estimation of stress should be
used, in which the previously mentioned conditions should
be included.

Furthermore, only six features from the whole set have
been retained, applying above explained selection criteria.
However, it is important to note that this selection was tailored
to these restricted experimental conditions, in which healthy
young participants were sitting and only under the influence of
the experimental tasks. Those restrictions were meant to elim-
inate from the equation features that, in this case, do not pro-
vide additional information or have not shown significant var-
iations. When applying this method to a population with other
characteristics and subjected to another stressor, however,
these simplifications will not be valid and others will probably
be applicable. Then, this method will provide, for example, a
quantitative assessment of how far an individual is from the
average of this population. Therefore, changes in features oth-
er than those selected in this experiment could be triggered by
either other stressors or in different conditions than the ones
used in this experiment, as well as acting in a different popu-
lation sample or when a more intensive stress response arises.

As previously mentioned, the correlation analysis between
physiological features reveals that some of them were chang-
ing in equal proportions during this experiment. Even if they
met the selection criteria, only one feature per related group
was used for the estimation performed, as their information
was redundant. However, all others could be newly included
in future studies under different conditions, such as real situ-
ations or long-term stress monitoring.

There are also some limitations to note regarding this study.
Only linear relations between the stress response and the stress
reference variables were analysed in this preliminary ap-
proach. Even though the results obtained strongly support this
approach, other approaches, including non-linear relations,
could probably yield better results. Likewise, it was assumed
that the stress function is linear in the six features selected, but
slightly different features and relations could be analysed in
future research to improve on these results. A limitation of the
protocol is that the relaxation period is restricted to only

10 min, and participants may need a longer time to physiolog-
ically accommodate to the experimental environment. The
study design has two limitations concerning biochemical
timing collection: (1) cortisol and alpha-amylase are measured
in the morning hours when intra-individual variability is at its
highest, and (2) alpha-amylase is known to peak at about 10–
15 min after stressor onset, whereas it was assessed 25 min
after the stressor onset.

Despite these limitations, this laboratory based experiment
can provide a solid foundation for daily life stress monitoring,
by first identifying the score function adapted to a particular
individual and then by applying this function to monitor daily
life stress.

5 Conclusions

A multivariable approach based on stress markers was pro-
posed to estimate stress levels in order to obtain a broad mea-
surement of the stress response, thus considering the multiple
reactions triggered by the stressor. This approach may estab-
lish the groundwork for future applications that aim tomonitor
stress. It also benefits research in the field of stress by enabling
intra-individual and inter-individual evaluations to be made
using a common index of stress level.

The performed experiment proves that the level of stress
response caused by a psychological stressor can be deter-
mined from a set of unobtrusively and continuously measured
physiological parameters, as an alternative to the currently
used stress assessment methods.

An innovative pioneering approach was proposed to esti-
mate stress using a multivariable biomarker, constituted by
features extracted from physiological signals. Results from
this approach demonstrated its ability to continuouslymeasure
stress because different stages that occur sequentially in a
short period of time can be easily distinguished.

A reliable and continuous stress measurement will be a
useful tool for mental health care and well-being. It will also
enable professionals to possess easy and precise communica-
tion methods in order to identify more suitable and personal-
ized solutions for the treatment of pathological cases.

The results of the experiment presented in this article prop-
erly motivate further experiments with different stressors and
populations in order to validate its extrapolation capabilities
and to adapt its use to other conditions. Therefore, a new and
more sensitive stress measurement method could emerge
based on the presented results, which could be utilized effec-
tively for unobtrusive stress monitoring.
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