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Abstract: The spatial QRS-T angle is a promising health indicator for risk stratification of sudden
cardiac death (SCD). Thus far, the angle is estimated solely from 12-lead electrocardiogram (ECG)
systems uncomfortable for ambulatory monitoring. Methods to estimate QRS-T angles from reduced-
lead ECGs registered with consumer healthcare devices would, therefore, facilitate ambulatory
monitoring. (1) Objective: Develop a method to estimate spatial QRS-T angles from reduced-lead
ECGs. (2) Approach: We designed a deep learning model to locate the QRS and T wave vectors
necessary for computing the QRS-T angle. We implemented an original loss function to guide the
model in the 3D space to search for each vector’s coordinates. A gradual reduction of ECG leads from
the largest publicly available dataset of clinical 12-lead ECG recordings (PTB-XL) is used for training
and validation. (3) Results: The spatial QRS-T angle can be estimated from leads {I, II, aVF, V2} with
sufficient accuracy (absolute mean and median errors of 11.4° and 7.3°) for detecting abnormal angles
without sacrificing patient comfortability. (4) Significance: Our model could enable ambulatory
monitoring of spatial QRS-T angles using patch- or textile-based ECG devices. Populations at risk of
SCD, like chronic cardiac and kidney disease patients, might benefit from this technology.

Keywords: wearable devices; consumer healthcare devices; cardiovascular heath assessment; unobtrusive
monitoring; machine learning; regression; composite loss function

1. Introduction

Despite recent advances in treating cardiovascular diseases, sudden cardiac death
(SCD) remains the leading cause of mortality, accounting for approximately 20% of all
deaths in western societies [1,2]. Dangerous arrhythmias precipitated by abnormalities
in ventricular repolarization often precede SCD [3–5]. Various markers of abnormal repo-
larization in the electrocardiogram (ECG) have been proposed to stratify the risk of SCD,
including changes in ST-segment [6] and QT interval lengthening [7]. However, those
that evaluate the similarity between the direction of depolarization and repolarization,
such as the spatial QRS-T angle, are deemed the most promising [8–10]. Unfortunately,
the estimation of QRS-T angle is mainly restricted to clinical settings. The conventional
approach for the spatial QRS-T angle estimation [8,11] is uncomfortable for patients as it
requires a standard 12-lead ECG, hindering the possibility of harnessing the diagnostic
value of the QRS-T angle for out-of-hospital early detection of dangerous cardiac events.
Methods to estimate the spatial QRS-T angle from a set of reduced-lead ECGs would,
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therefore, be of clinical importance for ambulatory monitoring. Such methods could be
deployed in consumer healthcare devices and facilitate out-of-hospital monitoring of the
QRS-T angle in populations at risk of life-threatening cardiac events.

Thus far, the spatial QRS-T angle is estimated exclusively from orthogonal signals,
either the vectorcardiogram (VCG) [8] or orthogonalized 12-lead ECGs [11], that depict
the electrical activity of the heart in the XYZ plane. The spatial QRS-T angle denotes the
angle between the QRS- and T-wave vectors in the 3D space. In the absence of Frank’s lead
system, the VCG is regularly reconstructed from the standard 12-lead ECG by applying one
of the various mathematical transformations that convert 12-lead ECGs into a set of three
orthogonal leads [12–14]. Registration of a 12-lead ECG, or even Frank’s VCG, requires the
patient to use eight or ten electrodes [13], causing considerable discomfort. Configuring
eight-to-ten electrodes as specified in clinical Holter monitors is usually an intricate task for
the ordinary patient, making it unfeasible even to request patients to set up such devices
for intermittent monitoring of the QRS-T angle. Conversely, consumer healthcare devices,
designed to ameliorate patient discomfort, are compact, practical, and easy to configure.
However, the number of ECG leads registered by consumer healthcare devices is limited
to a few frontal with one-to-two precordial leads. These sets of leads are insufficient to
reconstruct the VCG, thus precluding the employment of any of the existing methods for
spatial QRS-T angle estimation.

Deep neural networks have demonstrated tremendous capabilities to extract key data
insights from sets of reduced-lead ECGs instead of the standard 12-leads [15]. For instance,
1D convolutional neural networks (CNNs) have been shown to detect arrhythmias in
clinical [16] and ambulatory [17,18] single-lead ECGs, and even sleep apnea [19,20] with
up to 97.1% accuracy [20]. CNNs have also reconstructed the standard 12-lead ECG from a
few measured leads [21,22]. The ostensible potential of CNNs motivated us to investigate
whether it is possible to estimate the spatial QRS-T angle using a set of reduced-lead
ECGs. We hypothesize that, by using 12-lead ECGs, a model can be trained to predict the
VCG-derived QRS and T vectors from a specific subset of ECG leads.

We present a 1D convolutional neural network (CNN1D) to estimate the spatial QRS-T
angle from signal-averaged heartbeats of reduced-lead ECGs. Since the spatial location
of QRS and T vectors is largely dependent on the cardiac conduction axis, the model is
designed to return the coordinates of both vectors as output. Our study introduces an
original composite loss function that uses the QRS-T angle and the Euclidean distance
between the vectors to guide the model throughout the 3D space. The model is developed
and validated on the PTB-XL [23] dataset, the current largest publicly available database
of clinical 12-lead ECG recordings. We investigate the performance of our model in sets
of ECG leads that can conveniently be recorded with patch-based consumer healthcare
devices. Lastly, we explore the feasibility of measuring the spatial QRS-T angle from solely
frontal leads, aiming to understand the future challenges of deep-learning-based QRS-T
angle estimation for ambulatory monitoring. To our knowledge, this is the first study to
examine the feasibility of estimating the QRS-T angle from reduced-lead ECGs.

This article is organized as follows. Sections 2 and 3 describe the conventional and
the proposed deep-learning-based approaches for the spatial QRS-T angle estimation.
Section 4 discloses information about the training and validation datasets, including the
data preparation and labeling procedures. Section 5 defines the investigative methodology
and performance evaluation. Finally, Section 6 presents the results, followed by a discussion
and conclusions in Sections 7 and 8.

2. Conventional Approach for QRS-T Angle Estimation

The spatial QRS-T angle is estimated from a set of three orthogonal leads, obtained
either by applying orthogonalization methods to 12-lead ECGs [11,24] or, conventionally,
the VCG. The VCG, composed of leads XYZ, reflects the electrical activity of the heart in
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the orthogonal planes [25]: frontal (XY), transverse (XZ), and sagittal (YZ). In essence, the
VCG depicts heartbeats as a trajectory of leads XYZ over time,

#»v (t) = [x(t), y(t), z(t)], (1)

in which the depolarization (QRS) and repolarization (T) phases of a heartbeat are repre-
sented as two loops:

#»v QRS(t) =
#»v (t)− #»v 0, with t ∈ {tQRSo , . . . , tQRSe}, (2)

#»v T(t) =
#»v (t)− #»v 0, with t ∈ {tTo , . . . , tTe}, (3)

where tQRSo , tTo , tQRSe , and tTe are the onset and offset of QRS and T loops respectively.
Following the guidelines in [26], the origin of both loops #»v 0 is estimated as:

#»v 0 = median
t

(
#»v (t)

)
, where t ∈ {tQRSo − τ0, . . . , tQRSo} and τ0 = 25 ms. (4)

Since inaccuracies in heartbeat delineation can generate significant errors in the estimation
of QRS-T angle, the onsets tQRSo , tTo , and offsets tQRSe , tTe are adjusted as instructed in [26].

The spatial QRS-T angle measures the dissimilarity between the orientation of the
QRS and T loops in the XYZ space and is calculated as:

α = arctan
(∥∥ #»u QRS × #»u t

∥∥
#»u QRS · #»u T

)
, (5)

where #»u QRS and #»u T are vectors that depict the dominant orientation of QRS and T loops
respectively. The loop orientation is most commonly defined in the time instance t = tmax
where the maximum magnitude [8] of #»v QRS(t) or #»v T(t) is verified:

#»u QRS = #»v QRS(tQRSmax ), where tQRSmax = arg max
t

(∥∥ #»v QRS(t)
∥∥), (6)

#»u T = #»v T(tTmax ), where tTmax = arg max
t

(‖ #»v T(t)‖). (7)

Although intuitive, defining the loop spatial orientation as the vector having the
maximal magnitude at a single-time instance is an oversimplification, as it assumes that
the morphology of the QRS and T loops is unambiguous enough to have a well-defined
spatial orientation. In abnormal ECGs, the spatial orientation of the loops, in particular
the QRS loop, is too complex to be represented by a vector in a single instance in time. In
fact, estimation of the QRS-T angle using #»v QRS(tQRSmax ) and #»v T(tTmax ) has been associated
with higher errors and poorer reproducibility [27], namely in unhealthy ECGs.

One strategy to tackle the problem of defining the underlying spatial orientation of
the QRS loop is the total cosine R-to-T (TCRT) [11] method. TCRT defines the QRS-T angle
as the average cosine of all angles between #»v T(tTmax ) and every vector within the QRS
loop that exceed 70% of the maximum vector magnitude #»v QRS(tQRSmax ) [28]. However,
computation of an averaged angle can become problematic in sets of reduced-lead ECGs
that do not carry the same amount of spatial information as the VCG (see Section 3.2).
Consequently, we adopt a strategy similar to TCRT, but instead of deriving the average
cosine, we define #»u QRS and #»u T as the average of all vectors exceeding 70% of the maximum
vector magnitude within the corresponding loops:

#»u QRS = mean
t

(
#»v QRS(t)

)
, where t ∈

{
t
∣∣ ∥∥ #»v QRS(t)

∥∥ ≥ 0.7
∥∥ #»v QRS(tQRSmax )

∥∥}, (8)

#»u T = mean
t

( #»v T(t)), where t ∈
{

t
∣∣ ‖ #»v T(t)‖ ≥ 0.7 ‖ #»v T(tTmax )‖

}
. (9)
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The spatial QRS-T angle is then calculated as the angle between #»u QRS and #»u T defined by
Equations (8) and (9).

3. Deep-Learning-Based Approach for QRS-T Angle Estimation

We propose a deep learning model to estimate the spatial QRS-T angle using a set of
reduced-lead ECG. The model takes the signal-averaged beats from a set of leads as an input,
and produces the three coordinates of #»u QRS and #»u T , i.e., #»u QRS =

(
xQRS, yQRS, zQRS

)
and

#»u T =
(

xT , yT , zT
)
, as the output. The set of input leads varies in different experiments, as

discussed in Section 5.1.
Using 12-lead ECGs, we can compute the reference (target) VCG vectors #»u QRS and

#»u T using the conventional approach described in Section 2, and train the model to produce
the estimates #̂»u QRS and #̂»u T of the targets from specific subsets of ECG leads. The estimated
QRS-T angle can then be calculated as the angle between the estimated vectors, #̂»u QRS and
#̂»u T , using Equation (5). The model is purposely designed to produce the vectors instead of
the angle directly to harness the available spatial information when training the model (see
Section 3.2). Figure 1 presents an overview of our deep-learning-based approach.

From this point onwards, the circumflex symbol denotes variables estimated by the
model: #̂»u QRS, #̂»u T , and the QRS-T angle α̂ between them; whereas #»u QRS and #»u T are the
VCG target vectors and α is the angle between them.

Figure 1. Overview of the proposed deep learning model for estimation of QRS-T angle using
reduced-lead ECGs. The model is composed of two parts: feature extraction and regression. The
target vectors #»u QRS and #»u T and spatial QRS-T angle α are computed from VCGs.

3.1. Deep Learning Model Architecture

A 1D convolutional neural network (CNN1D) with a regression output is the baseline
architecture for our proposed deep learning model. The model is trained end-to-end using
error backpropagation and gradient descent. It can conceptually be divided into two main
parts: the feature extraction and the regression networks.

Since distinct subsets of ECG leads may entail different configurations, we first describe
the baseline architecture of our model, and then detail hyperparameter tuning.

3.1.1. Feature Extraction Network

The feature extraction network is composed of D blocks of layers connected sequen-
tially. Each block consists of two “layer structures”, except the first block, which only
includes one. Each layer structure is a sequence of: a full 1D convolutional layer with k
feature kernels of size 3× 1 and a stride of 1, followed by a layer normalization and an
activation function (Figure 2b). The layer normalization balances the intermediate features
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to have a mean close to 0.0 and a standard deviation close to 1.0 using scale and shift
parameters that are trainable for each feature map. Leaky Rectified Linear Unit (Leaky
ReLU) with the negative slope coefficient of 0.1 is the chosen activation function.

In the first block, a depthwise convolutional layer is employed instead of a full convo-
lution (Figure 2a). A depthwise convolution allows the model to learn lead-specific features
separately, as each lead can carry relevant information on the position of each coordinate
of #»u QRS and #»u T . Because depthwise convolution layers generate feature maps for each
individual lead, the initial number of kernels k is distributed across all leads, giving k

j−1
each, where j is the number of input leads. This avoids having a larger feature map in the
first layer than in the second.
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Figure 2. Detailed representation of the three types of blocks employed in the feature extraction
network: (a) first block, (b) the last block, and (c) blocks with residual connections.

Residual connections (Figure 2c) are introduced from the second block d = 2 to the
block number d = D− 1 to maintain data flow throughout the network and avoid gradient
degradation during training. Prior to addition, 1× 1 convolution is used on the residual
connection to equalize the number of feature maps between the layers. The number of
filters increases by a factor of 2 in every subsequent residual block. Abstraction of the
most significant features is performed with max pooling at the end of blocks d = [2 : D−1],
whereas global average pooling is implemented to finalize the last block d = D of the
feature extraction network. To avoid overfitting, dropout with a probability of 0.25 is applied
after feature extraction.

3.1.2. Regression Network

The resultant feature map is connected to the fully-connected layers (regression),
which learns to associate the abstracted features with the six neurons in its output: one
for each of the three coordinates of #̂»u QRS =

(
x̂QRS, ŷQRS, ẑQRS

)
and #̂»u T =

(
x̂T , ŷT , ẑT

)
.

The regression network consists of three dense layers, the first two followed by layer
normalization and Leaky ReLU activation function. The output layer consisting of six
neurons is followed by linear activation. Since ECGs can exhibit sex- and age-related
dissimilarities in morphology [29] that can affect the QRS-T angle [30,31], metadata about
sex (0 for males, or 1 for females) and age (scaled from 0.0 to 1.0) are concatenated to the
first layer in the regressive model part. Providing the hints to the model about a possible
association between ECGs and the metadata may be valuable when the available spatial
information in the input leads is reduced.

3.2. Loss Function

Since the end goal is to determine the QRS-T angle, the most straightforward approach
would be to train the model to estimate the VCG-derived α directly instead of #»u QRS and
#»u T , optimizing it with the mean absolute error loss between the α and the estimated α̂:

Lα

(
α, α̂
)
=

1
n

n

∑
i=1

(
|αi − α̂i|

)
, (10)
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where 0° ≤ Lα ≤ 180° and n is the batch size.
Direct estimation of the QRS-T angle, albeit intuitive and straightforward, overlooks

crucial information about the spatial orientation and position of the QRS and T loops,
trivializing the problem of QRS-T angle estimation as explained in Section 2. In sets of
reduced-lead ECGs that only carry fragments of all spatial information contained in the
VCG, this approach can produce errors in ECGs with visible differences in morphology but
similar QRS-T angles. Morphologically different ECGs with QRS-T angles of equivalent
range can occur in patients in which the electrical activity of the heart is not conducted
in the same direction, that is, the cardiac conduction axis is nonidentical. In two patients
with distinct cardiac conduction axes but similar QRS-T angles, the corresponding vectors
#»u QRS and #»u T of each patient are located in different planes (octants) in the 3D space, but
the angle between them is still alike (Figure 3a).

Figure 3. Case scenarios of: (a) similar QRS-T angles α of two #»u QRS and #»u T located in two different
planes; (b) correct location of one vector ( #»u T) but not the other ( #»u QRS), yielding large errors in the
estimated QRS-T angle α̂; (c) compromise between minor errors in the location of both #»u QRS and #»u T

to achieve a more accurate QRS-T angle estimation.

To address these scenarios, we devise the model to locate the coordinates of #»u QRS and
#»u T instead of α directly, allowing the model to harness any spatial information available in
the input leads. The model is guided throughout the 3D space using the Euclidean distance
as the parameter to be minimized in the backpropagation algorithm. The 3D Euclidean
distance (d) between the coordinates of #»u and #̂»u is computed as:

Ld
(

#»u , #̂»u
)
=

1
n

n

∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2, (11)

where, 0 ≤ Ld ≤ 2 if #»u and #̂»u have a magnitude of 1 (i.e., unit vectors). Two unit vectors
#»a and

#»

b with opposite directions are circumscribed by an angle of 180°, thus translating
into an Euclidean distance equal to the sum of their magnitudes: ‖ #»a ‖+ ‖ #»

b ‖ = 1 + 1 = 2.
In order for α̂ to be equal to α, only the direction, but not the magnitude, of the

estimated #̂»u has to match the target #»u . Given that the Euclidean distance between two
vectors also accounts for differences in magnitude, which is undesirable in this case, we
transform #»u and #̂»u to unit vectors prior to calculating Ld. Calculating the Euclidean
distance between unit vectors avoids wrongfully calculating a high loss in cases of two
vectors with the same direction but discrepant magnitudes, which should be zero in this
application. The principle is similar to the cosine similarity. However, the Euclidean distance
is preferable for this case scenario as it permits to navigate throughout each axis in XYZ
plane, whereas the cosine similarity only discerns one axis (in the 2D space, the cosine can
distinguish quadrant I from II, or IV from III, but not I from IV nor II from III).

Another problem left to address during the training process is cases in which one of the
vectors is less complicated to determine than the other (Figure 3b), i.e., the model properly
locates one vector but not the other (e.g., Ld

(
#»u T , #̂»u T

)
u 0 and Ld

(
#»u QRS, #̂»u QRS

)
u 1.2).

Significant errors in estimating one vector will inherently affect the accuracy of the QRS-T
angle. Since the angle between #̂»u QRS and #̂»u T needs to be equivalent to α, we mitigate such
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cases by confining the model’s search grid to preserve the angle α̂ between #̂»u QRS and #̂»u T
as close as possible to α. Thus, we define the overall loss as a composite function of (10)
and (11):

L = w1

(
Ld
(

#»u QRS, #̂»u QRS
)
+ Ld

(
#»u T , #̂»u T

))
+ w2 Lα

(
α, α̂
)
, (12)

where w1 and w2 are hyperparameters that weigh the penalization factor of Ld and Lα.
The proposed composite loss function safeguards the overall accuracy of the model by
avoiding that Ld of one vector is substantially higher than Ld of the other, with the tradeoff
of allowing minor errors in the location of both vectors (i.e., Ld u 0.1 instead of Ld u 0), as
long as the angle α̂ between them is close to α (see Figure 3c). To equalize the scales of Ld
and Lα, Lα

(
α, α̂
)

is estimated in radians rather than degrees.

3.3. Tuning of Hyperparameters

Several experiments are conducted to find the best architecture for each of the tested
subsets of leads according to the hyperparameters w1 and w2, depth D, and the initial
number of kernels k. The hyperparameters are chosen among the following options:
D = {2, 3, 4, 5}, k = {8, 16}, w1 = {0.5, 0.8, 1.0, 1.2, 1.5} ∧ w2 = |1−w1|, and w2 = {0.8, 1.0, 1.2, 1.5}
∧ w1 = |1− w2|. The hyperparameters D and k are constrained to the above values due to
the following. First, complex CNNs employed for image-based applications are likely an
overengineered solution for our problem. Second, smaller CNN architectures enhanced
with residual connections and case-specific loss functions can outperform architectures
based on regular convolutional blocks [32,33]. Third, lightweight and low-complexity mod-
els are preferable for deployment in devices with hardware and computational constraints,
such as consumer healthcare devices. Training is performed with a batch size of n = 8 at
an initial learning rate of 0.001 for 100 epochs. After every 20 epochs, the learning rate is
reduced by half.

4. Data

The deep learning model is developed and validated on the Physionet [34] PTB-XL
dataset [23], the current largest publicly available dataset of 12-lead ECG recordings. The
PTB-XL comprises 21,837 clinical recordings of 10 s long ECGs, upsampled to 500 Hz, from
18,885 patients (48% females) with ages ranging from 0 to 95 years. Information on the
diagnosis, form, rhythm, and signal quality is provided for all recordings. As to diagnosis,
the ECGs are categorized into five different superclasses: Normal (NORM), Myocardial
Infarction (MI), Conduction Disturbance (CD), ST/T change (STTC), and Hypertrophy (HYP).
The superclasses are branched into several subclasses, apart from NORM.

4.1. Data Preparation and Labeling

Leads X, Y, and Z (VCG) are derived from raw ECGs by applying the Kors regression
matrix [12], the mathematical transformation that more accurately reconstructs Frank’s
VCG from an ECG [13]. The generated 15-lead signals undergo preprocessing comprised
of filtering, signal quality assessment, and beat averaging. The target vectors #»u QRS and #»u T
are finally computed from the generated signal-averaged VCG leads to label the data. The
code implementation for data labeling together with information regarding the training
and validation sets can be found in our GitHub repository in [35]. Figure 4 illustrates the
data preparation process.
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Figure 4. Data preparation and labeling. Signals undergo preprocessing to generate the input
signal-averaged beats.

4.1.1. Signal Preprocessing

Filtering. High-frequency noise and baseline wandering are filtered with zero-phase
low- and high-pass Butterworth filters with cut-off frequencies of 45 Hz and 0.5 Hz.

Signal quality assessment. The signal quality index (SQI) criteria proposed in [36] is
applied to each lead individually to eliminate beats of dissimilar morphology, such as
ectopic beats or those corrupted by noise. Recordings with at least one lead that contains
more than 50% poor-quality beats within the 10 s ECG are considered unanalyzable and
hence discarded. ECGs with discernible rhythm disturbances, such as atrial or ventricular
flutter or fibrillation, are also excluded from the analysis given their greater predisposition
to PQRST delineation errors that can affect the reliability of #»u QRS and #»u T [26]. Annotations
regarding rhythm are provided in the PTB-XL dataset. In case of rhythm disturbances like
bradycardia, tachycardia or sinus arrhythmia, PQRST delineation can be less problematic
when signals are of high-quality; thus, such ECGs are still considered for analysis if 70% of
all beats satisfy the SQI criteria.

Beat averaging. High-quality beats are aligned using the R-peak as the reference point
and averaged, resulting in a signal-averaged heartbeat representative of each chosen lead.

4.1.2. Data Labeling

Our training labels, i.e., the target VCG vectors #»u QRS and #»u T are computed from the
three averaged beats of leads XYZ using the conventional approach described in Section 2.
The QRS and T loops onset and offset, tQRSo , tTo , tQRSe , and tTe , and R-peaks are identified
with the multilead PQRST delineation algorithm available in the ECGDeli [37] toolbox. The
onset and offset of the loops are adjusted as instructed in [26]. Note that robust PQRST
delineation algorithms are critical to compute reliable training labels for developing the
model, but are not necessary in future applications in which only averaged heartbeats and
metadata are required as input.

Lastly, the averaged beats are downsampled to 250 Hz and zero-padded to 550 samples
to equalize their length, as deep learning models require inputs of identical size. Since the
standard clinical ECG bandwidth is 0.05 Hz to 100 Hz [38], downsampling the average beats
to 250 Hz reduces the computational complexity of the model and the necessary resources
(e.g., RAM) for training without compromising crucial signal information. Patient metadata
is also added to the training labels: information about sex is specified as 0 for males and 1
for females, and age is scaled from 0.0 (0 years) to 1.0 (100 years).
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Of 21,837 clinical recordings, 18,618 are eligible for labeling and analysis. In addition
to poor-quality ECGs or with complicated rhythm disturbances, we exclude recordings in
which the assigned subclass is underrepresented in the dataset, having less than 100 record-
ings that meet the described SQI criteria. ECGs of rare subclasses have such unusual
morphologies that errors can be introduced into the model due to the scarcity of recordings.

4.2. Exploratory Data Analysis

Exploratory data analysis is performed on the labeled recordings before splitting the
data between the training and validation sets. The goal is to eliminate any statistical bias
by ensuring that both sets preserve the same distribution of sex, morphological classes, and
the spatial QRS-T angle in the ranges of α = [0:5:180]◦, as in the original dataset. We center
our exploratory data analysis and subsequent splitting around these three attributes due to
the following:

• Sex-related morphological differences in the ECG may influence the decision of the
regression network (see Section 3.1.2); thus, the training set must be proportioned in
terms of sex.

• Each of the morphological classes is characterized by distinctive morphological traits.
Since contrastive ECG morphologies can still exhibit QRS-T angles of comparable
range, the training set must include a diversity of morphologies to prevent the model
from associating a specific range of QRS-T angles with just one subset of particular
morphological traits.

• Randomly splitting the data without considering the uneven distribution of α within
specific ranges could result in a disproportionate depiction of specific ranges in the
training set, leading to higher errors in other ranges.

Recordings are divided into six morphological classes: the same five diagnostic super-
classes stipulated in the PTB-XL dataset, NORM, MI, CD, STTC, HYP, and low magnitude T
waves (LOWM). A recording is deemed LOWM if the ratio between ‖ #»u T‖ and

∥∥ #»u QRS
∥∥< 0.1.

Although signals with low magnitude T waves seem to have a higher propensity to QRS-T
angle errors [26] and are often discarded [26,39], we consider to be reasonable to incorporate
such signals into this study, given that low magnitude T waves are found routinely in
clinical practice.

Figure 5 shows the distribution of α across the ranges of α = [0:5:180]◦, according to sex
and morphological class. The dataset has a median of 52.9° (interquartile range of 63.3°).
The distribution of α, albeit balanced between males and females, varies considerably
for each morphological class. Although spatial QRS-T angles 15°≤ α ≤ 90° comprise the
vast majority of the eligible recordings, all other ranges of α are represented by at least
100 recordings, which may be sufficient for deep-learning-based estimation of QRS-T angle
with an acceptable error.

Figure 5. Distribution of spatial QRS-T angles α of across the ranges of α = [0:5:180]◦ according to sex
(overlapped) for all eligible recordings in the dataset (left) and for each morphological class (right). α

is the angle between the VCG vectors #»u QRS and #»u T . The dashed line is the median α for each class.
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4.3. Training and Validation Sets

The data is split separately for females and males in each morphological class to
ensure an appropriate data allocation between the training and validation sets. The split is
performed as follows. For any given morphological class, 80% female ECGs and 80% of
male ECGs with α = [i:i + 5[, for every i = [0:5:175]◦, are randomly assigned to the training
set. Given the propensity of LOWM signals to display larger errors of α, the 50:50 partition
ratio is used for this class instead of 80:20. A smaller partition of the LOWM class still enables
the class to be adequately represented in the training set without excessively misleading
the deep learning model. Figure 6 shows that both the training and validation sets preserve
the original distribution of α.

Figure 6. Distribution of spatial QRS-T angle α across the ranges of α = [0:5:180]◦ according to sex
(overlapped) for all recordings suitable for analysis (left) and for each morphological class (right) in
the (a) training and (b) validation sets. The dashed line is the median α for each class.

5. Experiments and Performance Evaluation

The model is written in Python (v3.8.10) using the Keras abstraction layer on Tensor-
flow 2.8.0 backend. Training and validation are performed on a desktop computer under
Windows 10 environment composed of: Intel® Core® i7-8700k 3.70 GHz CPU with six cores
(12-threads), 32 GB of RAM, and NVIDIA® GeForce® GTX 1080Ti.

5.1. Selection of Subsets of ECG Leads

We investigate the performance of our model to estimate the spatial QRS-T angle from
various subsets of ECGs leads. The goal is to identify how many leads suffice to estimate
the QRS-T angle with acceptable accuracy without sacrificing patient comfortability. We
start by configuring the baseline architecture of our model using the leads that contain all
the 3D spatial information, XYZ, from which the target #»u QRS and #»u T are derived. Next,
we progressively trim the number of precordial leads that carry insights about the spatial
position of #»u QRS and #»u T in each of the X, Y, and Z axes. The baseline model architecture is
optimized for sets of reduced-lead ECGs that incorporate a minimum of one lead shown to
reflect each orthogonal axis: X⊆ {I, V5, V6}; Y⊆ {II, III, aVF}; and Z⊆ {V1, V2, V3} [14].
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Since this research ultimately aims to develop a method to facilitate QRS-T angle
monitoring in free-living conditions, we only test sets of reduced-lead ECGs that can be
acquired from commercialized consumer healthcare devices. Registration of frontal leads is
straightforward: all six frontal leads ({I, II, III, aVL, aVR, aVF}) can be derived from any de-
vice with two-frontal channels. However, most consumer healthcare devices equipped for
frontal and precordial lead registration offer no more than two precordial leads: V2 and V6.
Thus, we limit our experiments to the subsets of leads S⊆ {I, II, III, aVL, aVR, aVF, V2, V6}.

While a decline in performance is anticipated as the number of precordial leads
decreases, we also explore as a proof-of-concept the ability of our model to estimate the
spatial QRS-T angle from subsets of exclusively frontal leads.

In this article, we only present the results of the best subset of leads: first X, Y, and Z,
then few-frontal-and-two-precordial leads, few-frontal-and-one-precordial leads, and lastly,
exclusively frontal leads.

5.2. Performance Metrics

We evaluate the accuracy of the proposed model in estimating the spatial QRS-T angle
with four performance metrics: the absolute mean (ε) and median (ε̃) estimation errors,
the root-mean-squared-error (RMSE), and the Spearman’s rank correlation coefficient ρ
between the target α and the estimated α̂ angles. The absolute estimation error between an
observation i is quantified as: εi = |α̂i − αi|, whereas ε, ε̃, and RMSE as:

ε =
1
r

r

∑
i=1

εi ; ε̃ = median(ε1, . . . , εr); RMSE =

√√√√1
r

r

∑
i=1

(
α̂i − αi

)2, (13)

and r is the total recordings (3873) in the validation dataset. Since the Kolmogorov-Smirnov
test shows that the distribution of ε is non-normal, ε and ε̃ are computed with the non-
parametric bootstrap method [40] with a resampling of 5000 times. Other metrics shown
in the diagrams of Section 6, are also approximated with bootstrap: the 95% confidence
intervals of ε estimated with the bias-corrected percentile method [41]; and the bias and
interquartile ranges (iqr) to define the limits-of-agreement in the Bland-Altman plots. The
limits-of-agreement are stipulated as 1.45 iqr. All the results presented in this article are
obtained from the validation dataset.

6. Results

Results showing the influence of various hyperparameters on the performance of our
proposed model are presented in Section 6.1, whereas Section 6.2 discloses the performance
evaluation of the best configuration for each set of ECGs. The presented subset of leads are
the subsets with the lowest error ε̃. The recordings in the validation dataset are divided as
healthy (class NORM) and cardiac disease (classes MI, CD, STTC, HYP, and LOWM).

6.1. Influence of Hyperparameter Tuning on the Model Performance

Figure 7 displays the performance of the proposed deep learning model to estimate α
from leads XYZ when trained with various combinations of w1 and w2. An initial number
of kernels k = 8 suffices to obtain a satisfactory accuracy from leads XYZ. Only the depth at
which the lowest median error ε̃ was obtained for each combination of w1 and w2 is shown.
Although the lowest ε̃ was reached with {w1 = 1.2, w2 = 0.2} at D = 3 (ε̃ = 3.1°), the model
trained with {w1 = 0.8, w2 = 0.2} at D = 4 (ε̃ = 3.3°) achieved the narrowest interquartile
range (4.6° vs. 5.1°) and the best overall results throughout all ranges of α. In particular, this
configuration outperformed the others for α ≥ 90°, showing lower absolute mean errors ε
(Figure 7b) despite the smaller number of recordings (samples) in the training dataset for
such ranges.
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Figure 7. Performance of various model configurations tuned with different combinations of hyper-
parameters w1 and w2 in estimating the spatial QRS-T angle from leads XYZ in the validation dataset.
(a) Boxplot of the obtained absolute error ε (outliers not shown) for every combination of w1 and w2.
w1 increases to the left side, wheres w2 to the right. The other hyperparameter value is obtained as
|1− w| on each side. (b) Mean absolute error ε and the respective 95% confidence interval across the
ranges of α = [0:5:180]◦ for increasing w1 (top row) and w2 (bottom row). The last column displays
the number of training samples for each range of α.

As hypothesized, prioritizing the Euclidean distance (w1 Ld) over the QRS-T angle
(w2 Lα) as the predominant penalization factor, that is, w1 > w2, results in smaller errors.
Combining the Euclidean distance and the angle in the loss function yields better results
than using each metric alone ({w1 = 1.0, w2 = 0.0} and vice versa).

The model trained with the same hyperparameters {w1 = 0.8, w2 = 0.2} achieved the
lowest ε̃ at a smaller depth (D = 3) for all investigated sets of reduced-lead ECGs, but
required more initial kernels (k = 16).

Concatenating metadata (sex and age) resulted in lower ε̃, especially for subsets of
reduced-lead ECGs; yet, the improvement in performance was not significant (≤1.5°).

6.2. Performance of the Best Configurations on Estimating the Spatial QRS-T Angle

Figures 8–10 show in detail the validation performance of the best model configuration
in estimating the spatial QRS-T angle using leads XYZ and various sets of reduced-lead
ECGs: two precodial leads {I, aVF, V2, V6}, one precordial lead {I, II, aVF, V2}, and solely
frontal leads {I, II, aVL, aVR}. Table 1 discloses the obtained performance evaluation metrics
(RMSE, ε̃, and ε) for each investigated set of leads in the validation dataset.

Table 1. Performance deep-learning-based estimation of the spatial QRS-T angle α from various sets
of leads in whole the validation dataset, and in ECGs with healthy and diseased cardiac function.

Subset of Leads

XYZ {I, aVF, V2, V6} {I, II, aVF, V2} {I, II, aVL, aVR}

Recordings Ranges of α RMSE ε ε̃ RMSE ε ε̃ RMSE ε ε̃ RMSE ε ε̃

All val. dataset 0° ≤ α ≤ 180° 12.2° 5.8° 3.3° 17.2° 10.3° 6.4° 18.4° 11.4° 7.3° 25.4° 17.9° 12.7°

5° ≤ α < 115° 1 9.2° 4.7° 2.9° 15.4° 9.8° 6.3° 16.0° 10.5° 7.1° 22.8° 16.6° 12.2°

NORM 0° ≤ α ≤ 180° 6.1° 3.4° 2.5° 13.5° 8.3° 5.5° 14.1° 9.0° 6.1° 21.0° 14.9° 11.1°

5° ≤ α < 70° 1 4.6° 3.0° 2.4° 11.0° 7.2° 5.1° 11.1° 7.6° 5.7° 15.2° 11.7° 9.8°

Cardiac disease 0° ≤ α ≤ 180° 16.8° 8.7° 4.9° 20.5° 12.2° 7.3° 21.8° 13.7° 8.7° 29.1° 20.7° 14.3°

15° ≤ α < 115° 1 12.8° 7.2° 4.2° 18.4° 12.1° 8.1° 19.6° 13.3° 9.5° 27.7° 20.6° 15.0°

1 Ranges of α adequately represented in the training dataset (>200 samples).
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Figure 8. Scatter plot diagrams of the deep-learning-estimated α̂ vs. target α from various sets
of leads for (top row) all recordings, and ECGs with normal (middle row) NORM and (bottom
row) cardiac disease in the validation dataset. The estimation error ε of every α̂ in the first row is
color-grouped based on the absolute median (ε̃), mean (ε), and standard deviation (σε) error.

Figure 9. Variation of the mean absolute error ε and the respective the 95% confidence interval across
the ranges of α = [0:5:180]◦ for ECGs with normal (NORM) and diseased cardiac function. The right
axis indicates the number of training samples in each range of α. Since the number of NORM subjects
with α > 120° is almost negligible, ε is not shown for these ranges of α.
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Figure 8 shows the agreement between the estimated α̂ and target α. Even though
the estimation errors naturally increase with the reduction of spatial information available
in the input leads, the results indicate that reduced-lead estimation of the QRS-T angle is
achievable. In the whole validation dataset, the correlation between α̂ and α, albeit strong,
decreased from ρ = 0.96 for leads XYZ that contain all spatial information, to ρ = 0.91 for
leads {I, aVF, V2, V6} (two precordial), ρ = 0.9 for {I, II, aVF, V2} (one precordial), and ρ = 0.77
for {I, II, aVL, aVR} (solely frontal).

Despite RMSE, ε, and ε̃ always being higher in ECGs with cardiac disease than the
healthy ones, regardless of the subset of leads, α̂ and α are more strongly correlated in all
morphological classes with cardiac disease than NORM for sets of reduced-lead ECGs. The
agreement between α̂ and α decreases from ρ = 0.86 (NORM) vs. ρ = 0.91 (cardiac disease)
for {I, aVF, V2, V6}; to ρ = 0.85 (NORM) vs. ρ = 0.9 (cardiac disease) for {I, II, aVF, V2}; and
even smaller for {I, II, aVL, aVF} with ρ = 0.55 (NORM) vs. ρ = 0.81 (cardiac disease). Since ε
is much lower in the ranges of 5° ≤ α < 70° that are substantially more represented in the
training dataset (Figure 9), this correlation decline may be ascribed to higher errors in the
underrepresented ranges of α. In leads XYZ, ρ = 0.98 for NORM recordings, and ρ = 0.95 for
cardiac disease.

Figure 10. Bland-Altman diagrams of deep-learning-based estimation of α̂ from various sets of leads
of ECGs with (top) normal (NORM) and (bottom) diseased cardiac function.

Figure 9 displays the variation of ε in the various sets of leads. The model exhibited
markedly higher estimation errors in ranges of α underrepresented in the training dataset
(< 200 recordings): α < 5° and α ≥ 70° for healthy (NORM) ECGs; and α < 15° and α ≥ 115°
for ECGs with cardiac disease. The downsizing of input precordial leads exacerbated
the drop in accuracy, with the set {I, II, aVL, aVR} showing the highest susceptibility to
estimation errors in the underrepresented ranges of α. The error ε is significantly lower
in the ranges of α containing more than 200 samples in the training dataset (see Table 1).
Nevertheless, ε rises as anticipated with the reduction of the spatial information available
in the input leads.

Interestingly, in ECGS with cardiac disease, leads XYZ, as opposed to any subset of
reduced-lead ECGs, displayed the highest estimation errors in ranges of α > 115°. Loss
of crucial diagnostic information in pathological ECGs caused by the VCG reconstruction
method might explain such an unexpected result.

Bland-Altman diagrams in Figure 10 corroborate the abovementioned results. The
limits of agreement between α̂− α and α are narrower in leads XYZ and start to broaden
as the number of precordial leads decreases, with recordings of class NORM having less
variability from the median bias than those with cardiac disease. In {I, II, aVL, aVF}, however,
the model reveals an inversely proportional, yet homoscedastic bias, i.e., the variance across
different ranges of α is similar. Homoscedasticity is characteristic of models with a variable
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that has not been fully enclosed. In this case, the sagittal and transverse components
that the z-axis supplies. Nevertheless, the inversely proportional bias is not a favorable
outcome for cardiovascular health assessment. The model would underestimate the ranges
of α > 110° associated with an increased risk of dangerous cardiac events.

Figure 11 displays the distribution of the Euclidean distance Ld
(

#»u , #̂»u
)

between #»u QRS

and #̂»u QRS, and #»u T and #̂»u T in each plane: XY (frontal), XZ (transverse), and YZ (sagittal).
The distance is calculated as the projection of #»u and #̂»u in the respective plane. Ld

(
#»u , #̂»u

)
gradually lengthens in every plane from leads XYZ to {I, aVF, V2, V6} and {I, II, aVF, V2} but
becomes discernibly higher in the XZ and YZ planes in frontal leads {I, II, aVL, aVF}, which
only carry information in the XY plane. Larger Ld

(
#»u , #̂»u

)
suggests the model encountered

extra obstacles to locate the vector’s coordinates within the specified plane.

Figure 11. Distribution of the Euclidean distance Ld
(

#»u , #̂»u
)

between #»u QRS and #̂»u QRS, and #»u T and
#̂»u T in each of the three planes: XY (frontal), XZ (transverse), and YZ (sagittal).

7. Discussion
7.1. Summary and Significance

Monitoring the spatial QRS-T angle, evidenced as one of the most propitious markers
for risk assessment of SCD [8,9], was presumed to be impracticable in out-of-hospital
settings thus far. Our research introduces a deep-learning-based method to measure the
spatial QRS-T angle using a set of reduced-lead ECGs that can conveniently be recorded
with consumer healthcare devices. Our proposed model, albeit prototypal, sparks scientific
interest in engineering methods for ambulatory monitoring of the spatial QRS-T angle,
which can lead to substantial contributions toward harnessing the diagnostic value of
QRS-T angle for cardiovascular health assessment in free-living conditions. To the best of
our knowledge, this is the first study to examine whether it is conceivable to estimate the
spatial QRS-T angle from reduced-lead ECGs.

7.2. Considerations on the Model Architecture

The baseline architecture of our model is engineered to be accurate yet simple enough
to be lightweight and have the low computational power to be integrated into consumer
healthcare devices. Compared to other CNN1Ds for ECG analysis, often comprised of 8-to-
34 [16,18,20,42] blocks of layers, our baseline architecture of three-to-four blocks (D = {3, 4})
and k = 16 suffices to get satisfactory results. Our proposed model contains only 105,578
trainable parameters, nearly 12 times less than the CNN1D developed for the classification
of single-lead ambulatory ECGs [18]. While popular due to their high accuracy, deeper
neural networks also entail larger training datasets and computational resources that can
hamper the deployment of the network in devices with hardware and computational
constraints such as wearables. Furthermore, adopting deeper neural networks does not
necessarily translate into significant improvements in accuracy to justify the tradeoffs in
resources if the goal application is for out-of-hospital monitoring of the QRS-T angle.

Smaller networks like ours, or as in the one applied for automatic diagnosis of 12-
lead ECGs [42], outperform their convolutional-blocks-only counterparts when enhanced
with custom blocks such as residual connections, squeeze-and-excitation, atrous spatial
pooling, or case-specific loss functions [32,33]. Our strategy involved residual blocks with
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a predominant focus on an original loss function. Our proposed loss function combines
two metrics, each with their penalization weight, to train the model: the Euclidean distance
(w1) and the QRS-T angle (w2). Prioritizing the Euclidean distance over the QRS-T angle
(i.e., w1 > w2) as the main penalization factor results in smaller errors, namely in sets of
reduced-leads ECGs. Optimization with the Euclidean distance combined with the QRS-T
angle instead of the QRS-T angle alone allows the model to recognize that ECGs with visible
differences in morphology can still have similar QRS-T angles, minimizing the chances of
the model associating a specific morphology to a particular range of α. Morphologically
different ECGs with similar QRS-T angles are often the case in patients with distinctive
cardiac conduction axes in which the direction of the overall electrical activity of the heart
is not the same. In a 3D space, this means that the vectors #»u QRS and #»u T of each patient
are located in different planes (octants), but the angle between them does not necessarily
differ. Searching for the coordinates of both target vectors helps the model leverage any
available information to boost accuracy. Thus, adopting metrics that guide the model in
the 3D space is a favorable choice.

7.3. Considerations on the Attained Results

The model demonstrated a propensity to higher estimation errors in ranges of QRS-
T angle represented by less than 200 recordings (samples) per morphological class in
the training data. This propensity is amplified as the number of input precordial leads
decreases. Although an increase in estimation errors is anticipated with the reduction
of spatial information available in the input leads, the interconnection between higher
errors and fewer training samples suggests that additional recordings may promote a more
accurate QRS-T angle estimation from reduced-lead ECGs. When the complete spatial
information is accessible in leads XYZ, the model can straightforwardly identify relevant
data features from fewer recordings. Conversely, the relevant data features may be less
conspicuous and more challenging to detect in reduced-lead ECGs with limited spatial
information. Thus, the model may necessitate more training samples to identify relevant
data features.

Surprisingly, leads XYZ, but not subsets of reduced-lead ECGs, showed the highest
estimation errors in ECGs with cardiac disease in the underrepresented ranges of α ≥ 115°.
Such an unexpected result may be attributed to possible signal distortions caused dur-
ing the VCG reconstruction process. In certain cardiac pathologies, the mathematical
transformations to derive the VCG can camouflage (or even eliminate) distinctive data
features [14,43], hindering the model’s ability to recognize any feature patterns that point
to the location of #»u QRS and #»u T . In contrast, these distinctive data features are preserved in
ECGs of cardiac pathology, even in frontal leads, hence impelling the model to locate the
target vectors more correctly.

An analogous argument can also explain the accuracy drop in the estimated α̂ from
any subset of reduced-lead ECGs of class NORM, in which the estimation errors were
substantially higher in the underrepresented ranges of α ≥ 70°. Since wider QRS-T angles
are generally associated with severe cardiac diseases [9,44], such a surprising result raises
the question of whether large values of α can occur in healthy ECGs or are ascribed to label
noise. However, label noise could only justify such a result if leads XYZ displayed the
same discrepancy in estimation errors in the ranges of α observed in reduced-lead ECGs. A
plausible explanation lies in the sagittal (YZ) plane, which may contain the most indicative
data features of wider QRS-T angles in the absence of cardiac disease. With only fragments
of sagittal information given in reduced-lead ECGs, the model struggles to identify data
features characteristic of wide QRS-T angles in seemingly healthy ECGs if fewer training
samples are provided.

Correctly estimating the location of #»u QRS and #»u T in any plane incorporating the
orthogonal lead Z (sagittal and transverse) is challenging in reduced-lead ECGs regardless
of the morphological class. Reducing the amount of spatial information in the input ECG-
leads encumbers the search for the coordinates of #»u QRS and #»u T , namely through the z-axis,



Sensors 2022, 22, 5414 17 of 22

as verified by an increase of the Euclidean distance between the target and estimated vectors.
In parallel with additional recordings, decomposing the Euclidean distance loss into each
of the three planes could be a potential solution to enhance the location accuracy of the
z-coordinate. Isolating the planes in the loss function enables tailoring of the penalization
factor to each plane, which may promote better estimation results.

7.4. Suitability for ECG Consumer Healthcare Devices

While our investigation consisted only of non-ambulatory ECGs collected with clinical
devices, the suitability of the proposed model for consumer healthcare devices is plausible
and merits further discussion. Conceptually, ambulatory estimation of the spatial QRS-
T angle can be performed similarly to KardiaMobile® [45] for arrhythmia detection or
the prototype technology developed to monitor electrolyte fluctuations in hemodialysis
patients at home [46]. Pre-processing, heartbeat averaging and subsequent QRS-T angle
computation are feasible offline with some delay for short intermittent ECG recordings
(15-to-60 s) or through cloud processing for longer recordings. Cloud processing would
also support the transmission of estimated QRS-T angles to health professionals for remote
verification of potentially dangerous cardiac events.

An attractive attribute of the proposed deep learning model is its simplicity. When
looking at the computational demands of the whole algorithm, the QRS-T angle can be
estimated swiftly, with the preprocessing stage exercising more computational time and
resources than the deep learning model itself. In recordings scenarios that assure that 10-to-
15 s long ECGs are registered with sufficient quality to warrant low-complexity filtering in
the preprocessing stage, the spatial QRS-T angle can be calculated in a few seconds with
the advantage of not needing PQRST delineation, which is often problematic in ambulatory
recordings due to noise.

Our model measured the spatial QRS-T angle with reasonable accuracy from a set
of three frontal-and-one precordial leads ({I, II, aVF, V2}) that can be registered with three
electrodes instead of the eight required to derive the QRS-T angle using the conventional
approach. Requiring one precordial lead evidently restricts the type of consumer healthcare
devices suitable for deploying our deep learning model in future applications, precluding
the use of devices that maximize comfort, such as wrist-worn wearables [47], which only
register frontal-lead ECGs. Nevertheless, the market already offers a handful of practical
devices that acquire frontal-and-one precordial lead ECGs with an acceptable degree
of comfortableness [48], namely those patch-based (e.g., Bittium OmegaSnap™ [49]) or
contact-based textile (e.g., Viscero ECG vest [50]) ECG electrodes. A downsize of eight
to three electrodes is still a substantive improvement. Even if the comfort level of three
electrodes is lower than that of other wearables, the existing patch- or textile-based ECG
devices are durable, easy to configure, and may be adequate for intermittent monitoring of
the QRS-T angle in out-of-hospital settings. Recent advancements in the reconstruction of
the standard 12-lead ECG from sets of reduced-lead ECGs have, however, demonstrated
to be possible to derive lead V2 from lead II [51] in healthy subjects. The encouraging
preliminary results indicate an appealing solution for estimating the spatial QRS-T angle
with comfortable wearable devices in the future.

Most commercialized ECG consumer healthcare devices have technical specifications
analogous to the clinical recordings used in our research: (i) a minimum 16-bit precision at a
resolution of 1 µV/LSB, (ii) ECG bandwidth of 0.05 Hz to at least 100 Hz, and (iii) sampling
rates starting at 200 Hz. However, since the estimation of the spatial QRS-T angles has been
performed exclusively from clinical devices with higher signal resolution and sampling
rates to date, the minimal technical specifications of ECG consumer healthcare devices
suitable for ambulatory measurement remain undefined. While our model estimated
QRS-T angles from heartbeats downsampled to 250 Hz with satisfactory accuracy, we did
not investigate the influence of different technical specifications on the estimation of the
QRS-T angle, nor we are aware of studies that examined this question. Although higher
ECG bandwidths and sampling rates ≥ 500 Hz are pertinent for detecting arrhythmias [38]
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and pediatric ECGs [52] and are often recommended for clinical ECGs [38], deep learning
models can detect arrhythmias from ECGs with sampling rates of 300 Hz [17], 200 Hz [18],
and even 100 Hz [19]. Thus, a minimum sampling rate of 200 Hz seems a reasonable
compromise between adequate deep-learning-based analysis of ambulatory ECGs without
increasing hardware and computational complexity or draining the battery life of consumer
healthcare devices [53].

7.5. Limitations and Future Directions

When considering the ultimate application goal of our research, which is to facilitate
ambulatory monitoring of the spatial QRS-T angle for cardiovascular health assessment,
one must pose two central questions: (i) What is the maximum acceptable estimation error;
and most importantly, (ii) What is the clinical value of an 1° increase. All medical research
regarding the prognostic value of the QRS-T angle focuses on observational studies [8,9]
with follow-up periods of 2-to-30 years that categorize the angle into subranges, most
commonly as normal (<110°) or dangerous (≥110°) [9,54]. While the optimal cut-off
threshold for assessing the dangerousness level of the spatial QRS-T angle depends on
sex [30], age [31], medical history [8], and even the methods to derive the #»u QRS and
#»u T [27,43], no studies investigated if day-to-day fluctuations of the QRS-T angle offer any
clinical value. Populations susceptible to abnormalities in cardiac repolarization, such
as chronic kidney disease patients, could benefit from daily monitoring of QRS-T angle
fluctuations, in which the angle variation would be more auspicious than the absolute
value itself. Higher estimation errors may be acceptable for such application scenarios,
providing that the bias is constant. Oppositely, scenarios aiming to classify subranges of
spatial QRS-T angles per clinical importance may require smaller estimation errors within
the predefined cut-off ranges.

Unfortunately, the answer to the posed questions remains open and falls beyond the
scope of our research. Nevertheless, considering that intra-subject inaccuracies up to 10°
are to be expected [27] and that a 20° increase in the spatial QRS-T angle is associated
with a 4% aggravated risk of mortality [55], the estimation errors obtained from the subset
{I, II, aVF, V2} may suffice for detecting abnormal QRS-T angles without compromising
patient comfortability. Furthermore, measuring the spatial QRS-T angle from subsets of
solely frontal leads looks plausible in the future with further refinements of our deep
learning prototype model.

A viable solution for boosting the estimation of spatial QRS-T angle from reduced-lead
ECGs could be the adoption of ensemble methods in hierarchical order. Ensemble methods
could first classify ECGs into various subranges (classes) of QRS-T angles and subsequently
assign different regression networks to each separate class. The designated classes could
categorize ranges of spatial QRS-T angles by clinical significance: narrow (0° ≤ α < 30°),
healthy (30° ≤ α < 70°), borderline healthy (70° ≤ α < 110°), dangerous (110° ≤ α < 135°),
life-threatening (135° ≤ α ≤ 180°). This strategy would narrow the scope of the angle to be
measured, enabling the selection of regression networks (or loss functions) better fitted to
handle specific challenges within each subrange of QRS-T angles. For instance, if the model
struggles to locate the z-coordinate only in ranges of α ≥ 70°, a higher penalization factor of
the Euclidean distance or a deeper regression network could be appropriate options to train
the model for such ranges of the QRS-T angle. Alternatively, other subranges of QRS-T
angles could benefit from different regression algorithms such as ElasticNet. Cascading the
estimation of the QRS-T angle from reduced-lead ECGS is also a compelling solution to
mitigate the shortage of training data in given ranges of QRS-T angle. In particular, in small
(α < 15°) or wide (α > 135°) QRS-T angles. Accurate measurement of the actual value of the
QRS-T angle from reduced-lead ECGS for such ranges may be unattainable if the number of
recordings for training the model is low, but grouping the recordings into different classes
may yield satisfactory classification results. Considering that spatial QRS-T angles starting
from α = [110:135]◦ are associated with an elevated risk of SCD [9], correctly categorizing
the ECG as a life-threatening QRS-T angle (α > 135°) would provide sufficient clinical value.
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The lack of ambulatory long-term ECG signals is a limitation of our research. The PTB-
XL database, albeit comprehensive in terms of healthy controls and cardiac pathologies,
includes only short 10 s long ECGs; therefore, it is unclear how will noisy real-life ECG
signals impact the performance of the deep-learning-based method for spatial QRS-T angle
estimation. The frontal QRS-T angle is also useful in predicting mortality [9] and ventricular
arrhythmias [56]. Future studies should also investigate monitoring of the frontal, along
with the spatial, QRS-T angle from a reduced ECG lead system.

Future research should also consider supplementing their training data with additional
recordings, namely of the underrepresented ranges of α < 15° and α ≥ 115°, either by data
augmentation techniques or inclusion of other datasets of 12-lead ECGs likely to display
α ≥ 115° to complement the PTB-XL dataset.

8. Conclusions

Estimation of spatial QRS-T angle from reduced-lead ECGs is indeed conceivable. Our
proposed deep-learning-based method estimated the spatial QRS-T angle from few-frontal-
and-one precordial leads {I, II, aVF, V2} with sufficient accuracy for detecting abnormal
QRS-T angles without sacrificing patient comfortability. The reduced set of ECG leads can
be conveniently registered with easy-to-use patch- or textile-based consumer healthcare
devices already available in the market. In contrast to other CNN1Ds for ambulatory ECG
analysis, the architecture of our deep learning model is smaller and more lightweight,
which is preferable for deployment in consumer healthcare devices. The designed archi-
tecture incorporates custom blocks like residual connections and an original composite
loss function to boost the accuracy of the estimated QRS-T angles without increments in
computational complexity. The proposed model was trained and validated by gradually
reducing the ECG leads from a publicly available dataset of clinical 12-lead ECG recordings.
Our research can catalyze scientific interest in developing methods to estimate the QRS-T
angle from reduced-lead ECGs. Such methods, like the proposed deep learning model, are a
step toward facilitating prolonged monitoring of the spatial QRS-T angle for cardiovascular
health assessment in free-living conditions. Future research can validate the potential
clinical benefits of this technology in populations at risk of dangerous cardiac events, such
as patients with chronic cardiac or kidney disease.
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Abbreviations
The following abbreviations are used in this manuscript:

CD Conduction Disturbance
CNN Convolutional neural network
CNN1D 1D convolutional neural network
ECG Electrocardiogram
HYP Hypertrophy
LOWM Low magnitude (i.e., flat) T waves
MI Myocardial Infarction
NORM Normal
SCD Sudden Cardiac Death
STTC Change in ST-T segment
TCRT Total cosine R to T
VCG Vectocardiogram
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