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Examination of activation maps using multi-electrode array (MEA) sensors can help to understand 
the mechanisms underlying atrial fibrillation (AF). Classically, creation of activation maps starts with 
detection of local activation times (LAT) based on recorded unipolar electrograms. LAT detection has a 
limited robustness and accuracy, and generally requires manual edition. In general, LAT detection ignores 
spatiotemporal information of activation embedded in the relation between electrode signals on the 
MEA mapping sensor. In this work, a unified approach to construct activation maps by simultaneous 
analysis of activation patterns from overlapping clusters of MEA electrodes is proposed. An activation 
model fits on the measured data by iterative optimization of the model parameters based on a cost 
function. The accuracy of the estimated activation maps was evaluated by comparison with audited 
maps created by expert electrophysiologists during sinus rhythm (SR) and AF. During SR recordings, 25 
activation maps (3100 LATs) were automatically determined resulting in an average LAT estimation error 
of −0.66 ±2.00 ms and a correlation of ρs = 0.98 compared to the expert reference. During AF recordings 
(235 maps, 28226 LATs), the estimation error was −0.83 ± 6.02 ms with only a slightly lower correlation 
(ρs = 0.93). In conclusion, complex spatial activation patterns can be decomposed into local activation 
patterns derived from fitting an activation model, allowing the creation of smooth and comprehensive 
high-density activation maps.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Atrial fibrillation (AF) is one of the most common arrhythmias, 
responsible for one third of all hospitalizations at cardiac arrhyth-
mia units [1], with an increasing prevalence due to aging of the 
population [2,3]. Moe et al. [4] first proposed the wavelet hypothe-
sis underlying the initiation and perpetuation of AF, describing the 
presence of multiple propagating wavelets sustaining the fibrilla-
tion process, validated later by Allessie et al. [5,6]. Other proposed 
mechanisms include driving foci, mainly located at the pulmonary 
veins [7], re-entrant circuits, rotors [8,9] and trans-mural conduc-
tion of fibrillation waves between epicardial and endocardial atrial 
layers [10,11]. However, mechanisms underlying the initiation and 
perpetuation of AF are not yet fully understood [8], limiting the 
optimal treatment of patients.
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Activation mapping is the most commonly used method for 
visualization and study of cardiac arrhythmias [12]. During hemo-
dynamically stable and regular tachycardia, activation maps can be 
created after sequential recording of electrograms (EGM) and de-
tected local activation times (LAT) can be referred against a fiducial 
point in a simultaneously recorded surface or intracardiac signal 
[13]. However, during irregular tachycardia like AF, simultaneous 
mapping is needed due to the non-repetitive nature and complex-
ity of the arrhythmia [8]. Multi-electrode mapping catheters such 
as PentaRay and Lasso (Biosense Webster, Inc. Diamond Bar, CA, USA) 
or the Constellation full contact basket catheter (Boston Scientific, 
Inc. Natick, MA, USA) lack spatial resolution during more complex 
activation of the atrium due to electrode sparsity and bad wall 
contact [14]. For high-density mapping of more complex AF, a 
high-density multi-electrode array (MEA) mapping sensor will be 
needed [8].

In this study, unipolar electrograms (u-EGM) were recorded us-
ing a MEA mapping sensor in direct contact to the epicardial wall 
of the atrium during open chest surgery. The recorded signals are 
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displayed in a matrix related to the location of the electrodes 
on the MEA sensor. This will allow constructing activation maps 
which show the propagation of cardiac activation [6,8].

The construction of activation maps involves several process-
ing steps including denoising, baseline correction, far field R-wave 
cancellation and detection of activation times followed by an er-
ror rejection process. Detection of LATs is related to the u-EGM 
steepest negative slope (dV /dt) as a result of an activation wave 
under-passing the recording electrode [15,16]. Activation maps are 
constructed by combining LATs detected from each of the elec-
trodes on the mapping array. However, this procedure ignores the 
information embedded in the morphology of the u-EGM signal, 
hence not used for the creation of high-density activation maps.

Detailed cardiac electrophysiological modeling provides insight 
in the physiology underlying cardiac arrhythmias and serves as 
a tool for a better diagnosis and interpretation of experimental 
data [17]. Those models describe the ion currents flowing through 
the myocardial cell membrane (e.g. [18,19]) embedded in realistic 
structures and geometries of the human heart [17]. Less detailed 
models of cardiac propagation provide a less time-consuming alter-
native to represent the cardiac activation propagation. Equivalent 
source model uses current sources and densities to calculate the 
potentials, hence describing the activation propagation as a uni-
form double layer (UDL) model [20].

In this paper, a unified spatiotemporal approach for estimation 
and construction of high-density activation maps is presented. The 
proposed method fits an activation pattern model to acquired car-
diac activity in order to reconstruct the complete activation map 
as the combination of contributions from different isotropic focal 
activation sources. The contribution of each of the sources was de-
termined by an iterative optimization process modifying the UDL 
propagation model after comparing the modeled signals against 
u-EGM signals acquired during epicardial atrial mapping in sinus 
rhythm (SR) and AF. Finally, the complete activation map was re-
constructed by combining individual solutions. Preliminary analysis 
of this approach has been reported in [21].

2. Materials and methods

2.1. High-density atrial epicardium recordings

The clinical data used in this study was obtained from a 61 
years-old male patient with coronary artery disease, without a his-
tory of AF which echocardiographic examination revealed a normal 
left ventricular ejection fraction and normal atrial dimensions. The 
patient was admitted for open chest surgery at Erasmus Medical 
Center Rotterdam (Rotterdam, The Netherlands) in whom an in-
traoperative electrophysiological study was performed. The patient 
was informed and signed the consent form. During the interven-
tion, a custom made high-density MEA mapping sensor (Applied 
Biomedical Systems B.V., Maastricht, The Netherlands) was positioned 
on the epicardial wall of the left and right atrium following a se-
quence of epicardial locations, as illustrated in Fig. 1(a). Datasets 
of high-density u-EGMs signals were acquired during SR and AF.

The custom MEA sensor measures 3.0 ×1.4 cm, is composed by 
128 circular gold plated electrodes (2 mm inter-electrode distance, 
1 mm diameter) organized in an 8 × 16 rectangular grid. Elec-
trode channels corresponding to each corner of the mapping array 
were not available for mapping and were reserved for storing sur-
face ECG, reference and calibration signals, resulting in 124 u-EGM
signals available for analysis (Fig. 1(b)). The acquired u-EGM sig-
nals were band-pass filtered (1–500 Hz) sampled and digitized at 
1 kHz. The recording length during SR episodes was 5 s and 10 s 
during AF episodes.

Automatic LAT detection was performed off-line after the pro-
cedure using a wavelet-based algorithm [22] and subsequently 
Fig. 1. Schematic of the mapping procedure in posterior view: (a) Anatomical lo-
cation of the MEA sensor in the atrium and (b) MEA sensor used for mapping 
procedure. CS: Coronary Sinus, CT: Crista Terminalis, IVC: Inferior Vena Cava, LA: 
Left Appendage, LBB: Left Bachmann Bundle, LPV: Left Pulmonary Vein, RA: Right 
Appendage, RBB: Right Bachmann Bundle, RPV: Right Pulmonary Vein, SVC: Supe-
rior Vena Cava.

audited by an expert electrophysiologist blind to the detection out-
come of this work. Therefore, the resulting LATs were considered 
as “ground truth” for performance evaluation of the proposed algo-
rithm.

2.2. Algorithm overview and notation

Before algorithm starts, a 100 ms signal excerpt that includes 
a complete activation across the MEA sensor is selected and the 
mapping array is segmented in 44 overlapped groups of 5 ×5 elec-
trodes (area 64 mm2), being this the size of the analyzing mask 
in this work. A comprehensive flow of the processing steps is de-
scribed below:

L1: For each 5× 5 group of electrodes:
1. Estimate conduction velocity and initial 

focus location, which is considered the
source for this estimation.

2. Generate activation pattern and modelled 
u-EGMs.

3. Compare measured against modelled u-EGMs.
L2: While the similarity is below a given

threshold or the maximum number of iter-
ations is not reached:
a) Compute new focus location for next

iteration.
b) Generate new activation pattern and

modelled u-EGMs.
c) Compare measured against modelled

u-EGM signals.
End of loop L2.

End of loop L1. Go to step 1 unless all 5× 5
groups have been already analysed.
4. Activation map reconstruction.

For notation, si[n] stands for the recorded u-EGM signal corre-
sponding to the ith electrode, i = 1 . . . 25, from the 5 × 5 group 
under analysis and ŝi[n] denotes the modeled u-EGM signal cor-
responding to the same electrode located in the cardiac tissue 
model.

2.3. Activation pattern and tissue model

The basic activation pattern can be generalized as a single focal 
point generating an activation wavefront concentrically spreading 
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Fig. 2. Schematic in: (a) perspective view and (b) lateral view, of the solid angle 
�ei [n] obtained at electrode position ei from a circular activation pattern wf,v [n, θ]
subtended within a UDL shown as a closed gray strip.

with a uniform conduction velocity. In a 2-dimensional plane, the 
wavefront coordinates wf,v [n, θ] = [wx[n, θ], w y[n, θ]]T created by 
a circular activation pattern with center focus location f = [ fx, f y]T

at a time instant n; can be described by the parametric form:

wf,v [n, θ] =
[

wx[n, θ]
w y[n, θ]

]
=

[
fx

f y

]
+ v · n ·

[
cos(θ)

sin(θ)

]
, (1)

where θ = [0, 2π) and v stands for the conduction velocity of the 
medium. Note that wf,v [n, θ] is the expression of a circumference 
of radius v · n centered at f. Hence, (1) defines a circular activation 
pattern from a single focus, becoming a planar wave when the 
focus is located far away from the observer scope.

The activation pattern was introduced into a UDL model us-
ing the boundary element method [20]. The UDL models a square 
planar slice of atrial tissue of 12 × 12 mm and 2 mm thick con-
form to the average thickness of the human atria [23]. Since no 
EGMs from the endocardial wall were recorded, epicardial and en-
docardial conduction velocity was assumed to be equal [24]. Con-
sequently, the modeled activation propagates in parallel and at the 
same velocity in both endocardial and epicardial side of the UDL 
model.

2.4. EGM signal modeling

A virtual MEA sensor (v-MEA) with 5 ×5, 2 mm spaced, circular 
electrodes was placed on the epicardial side of the UDL enabling 
calculation of electrical activity during activation. Each ith virtual 
electrode of the v-MEA has a spatial location ei = [xi, yi]T. The in-
finite medium potential generated by a UDL at time instant n and 
position ei is given by [20]:

ŝi[n] = − Vd

4π
�ei [n], (2)

where Vd stand for a constant value called double layer strength
of the UDL [20] and �ei [n] stands for the solid angle of the sur-
face created by the activation wavefront wf,v [n, θ] and subtended 
within the UDL at ei , as illustrated in Fig. 2. This solid angle �ei [n]
can be computed numerically by dividing the wavefront surface 
into triangular elements and summing the solid angles subtended 
by each surface element, using the plane triangle formula [25].

Equation (2) describes the electrophysiological behavior of local 
u-EGMs recorded from the myocardium. The potential ŝi[n] in-
creases when the activation wavefront approaches the recording 
electrode, shows a fast downward slope when the wave under-
passes the electrode and goes back to baseline when the wave 
passes away [13,15,20]. The amplitude of this fast downwards 
slope is proportional to the double layer strength Vd [20], hence it 
can be estimated from the measured u-EGM signals as the mean 
value of all amplitude difference between the positive and negative 
deflection (i.e., the R-wave and S-wave, respectively). This constant 
value does not affect the spatiotemporal features of ŝi [n] (i.e., the 
LAT and wave morphology) hence having been set arbitrarily in 
this work to Vd = 1.

2.5. Estimation of tissue conduction velocity

To use the propagation model (1), the conduction velocity of 
the cardiac tissue v needs to be estimated from recorded u-EGMs. 
Estimation of conduction velocity from invasive data is an already 
addressed problem (e.g. in [6,26–28]), although difficult due to the 
spatiotemporal changes of cardiac tissue properties, especially dur-
ing irregular tachycardias [26].

Estimation of conduction velocity based on LATs can be sensi-
tive to detection errors. Therefore, an alternative approach is used 
in this work inspired in that presented by Fitzgerald et al. [27]. The 
time delay δi between each u-EGM si[n] and the central electrode 
of the 5 × 5 group being analyzed sr[n] is obtained by maximizing 
the normalized cross-covariance function:

δi = argmax
m

{
Ci,r[m]}, (3)

Ci,r[m] =
∑

n(si[n] − s̄i)(sr[n − m] − s̄r)√∑
n(si[n] − s̄i)

2
∑

n(sr[n] − s̄r)2
, (4)

where s̄i and s̄r stand for the mean value si[n] and sr[n], respec-
tively; and m represents the time lag between signals.

The next step involves the estimation of the conduction velocity 
for the 5 × 5 electrode analyzing mask while avoiding the possible 
effect of electrode bad contact, noise or conduction blocks. A bi-
quadratic model is fitted to the delays measured from each 3 × 3
sub-group of electrodes at k = 1 . . . 4 corners of the complete 5 × 5
group following [26]:

Dk(x, y) = a1 + a2x + a3 y + a4xy + a5x2 + a6 y2, (5)

where a1 . . .a6 are the coefficients of the biquadratic model ob-
tained in the least square sense [26]. Only those fitted models 
with RMSE ≤ 1.5 ms were considered valid [24]. Then, the velocity 
vector field can be obtained by partial differentiation of Dk(x, y)

following [26]:

v̂k(x, y) =
[ dx

dDk

dy
dDk

]
=

⎡
⎢⎣

Ḋk
x

(Ḋk
x)

2+(Ḋk
y)2

Ḋk
y

(Ḋk
x)

2+(Ḋk
y)2

⎤
⎥⎦ , (6)

where Ḋk
x = ∂ Dk(x, y)/∂x and Ḋk

y = ∂ Dk(x, y)/∂ y. The estimated 
velocity vectors v̂k

i were obtained by evaluating (6) at each elec-
trode location [xi, yi]T. Then, for each kth 3 × 3 sub-group of elec-
trodes, an estimated conduction velocity is obtained for all i ∈ kth 
corner as:

v̂k = median
{∥∥v̂k

i

∥∥}
. (7)

Finally, the conduction velocity v̂ for the complete 5 × 5 group 
of electrodes is estimated by averaging v̂k from each of the K ≤ 4
corners with valid model fitting:

v̂ = 1

K

K∑
k=1

v̂k. (8)

2.6. Initial focus location

The focus location f in (1) will be estimated by the iterative 
algorithm introduced in section 2.2. The initialization process of f
(step 1) is explained in this section.
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The relation between the amplitude of the positive deflection 
(R-wave) and negative deflection (S-wave) of the u-EGMs is in-
fluenced by wavefront curvature and distance to the source of 
activation [13,24]. A QS morphology (i.e., absence of R-wave) indi-
cates that the electrode is locatemd at the origin of the activation 
whereas RS morphology (i.e., equal R-wave and S-wave ampli-
tudes) indicates activation by a planar wave as illustrated in Fig. 3
[13]. In order to take into account this phenomenon, for each ith 
electrode signal si[n], the R–S relation has been quantified as the 
difference between R-wave and S-wave amplitude normalized by 
the peak-to-peak amplitude of the u-EGM signal [24]:

Ri
R S = |Ri| − |Si|

|Ri| + |Si| , (9)

Fig. 3. R–S relation evolution with distance to the activation focus: The u-EGM ac-
tivation measured at point (a) has nearly QS morphology (Ri

R S = −0.9) that turns 
into a RS morphology as points (b) and (c) are distal from the source of activation 
(star). The gray dashed line indicates the zero level. Curved lines show the evolution 
of the activation wavefront with time in 5 ms steps.
were Ri and Si stand for the R-wave and S-wave amplitudes of 
si[n]. Ri

R S ranges from −1 to 1, where negative values show pre-
dominance of S-wave over R-wave and vice versa [24]. Therefore, 
the initial focus f0 is set to the location of the electrode imin, which 
is activated earliest and has the most negative R–S relation, being 
estimated with a combined criterion:

imin = argmin
i

{
δi + Ri

R S

}
. (10)

2.7. Model optimization algorithm

An iterative algorithm modifies f optimizing the fitting of the 
u-EGM signals derived from the propagation model (1) to the 
recorded data, while the conduction velocity v̂ estimated in sec-
tion 2.5 is unmodified.

The focus location is initialized at f0 and updated in each iter-
ation l following

fl+1 = fl + � · ul · �t, (11)

where � represents the update step, �t the signal time resolu-
tion and ul is the unit update vector towards the direction that 
improves the synchronization between the modeled and recorded 
u-EGMs. The update step is set up as � = v̂ therefore, in each 
iteration, f changes according to the distance that the activation 
wavefront travels in �t ms. A schematic of this model optimiza-
tion is shown in Fig. 4.

Synchronization between recorded and modeled u-EGMs is 
measured by the delay τi obtained by maximizing the normalized 
cross-covariance function:

τi = argmax
m

{
Ci[m]}, (12)

Ci[m] =
∑

n(si[n] − s̄i)(ŝi[n − m] − ˆ̄si)√∑
(si[n] − s̄i)

2
∑

(ŝi[n] − ˆ̄si)
2
, (13)
n n
Fig. 4. Schematic of the model optimization algorithm: signals are derived from the modeled propagation pattern in test and compared against the measured u-EGM signals. 
The algorithm decides a new focus location and the new pattern is tested. Direction vectors rd , d = 1 . . .4, connect the center of each 2 × 2 corner group of electrodes Gd

(indicated by dashed squares) to the activation focus fl . Vector ul+1 stands for the update vector for the next iteration. The signal amplitudes were scaled for visualization 
purposes as indicated in method section 2.4. Note: Characters with arrows appear boldface in text.
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where s̄i and ˆ̄si stand for the mean value si[n] and ŝi[n], respec-
tively; and m represents the time lag between signals.

Then, each 2 × 2 sub-group of electrodes Gd , d = 1 . . . 4, located 
at the corners of the complete 5 × 5 group of electrodes under 
analysis (indicated within dashed squares in Fig. 4) has a “median 
sub-group delay” defined as:

τ̃d = median
i∈Gd

{τi}. (14)

On the other hand, the director vector from each sub-group Gd
to the focus fl is:

rd = fl − gd

‖fl − gd‖ , (15)

where gd stands for the center coordinates of Gd .
Finally, the unit update vector ul for the next iteration is deter-

mined by:

ul =
4∑

d=1

(
τ̃d∑
d |τ̃d| rd

)
, (16)

ul = ul

‖ul‖ , (17)

whose direction depends of the sign of τ̃d .
This process is repeated until a cost function Q exceeds a 

threshold or the maximum number of iterations is reached. The 
cost function Q is defined as:

Q = mean
i

{
Ci[0]}, (18)

where Ci[0] stands for the normalized cross-covariance value be-
tween the ith recorded and modeled u-EGM signals at zero de-
lay, i.e., a measure of morphology similarity and synchronization. 
Therefore, Q can be interpreted as the average resemblance level 
between recorded and modeled signals given by the activation pat-
tern in test.

When Q ≥ 0.85, the algorithm is terminated. In case the algo-
rithm meets the maximum number of iterations without reaching 
the threshold for Q , the solution is given by the location fl with 
maximum Q . The algorithm embeds protection against solution 
oscillations to avoid local maxima solution by means of inertia 
movements (increasing � by 10% during a maximum of 5 itera-
tions while Q value is not increasing using the last valid update 
vector ul−1) and random transition vectors (random movements of 
fl in perpendicular directions to ul when inertia vectors do not re-
duce Q after 5 iterations) which replace the update term � · ul
in (11).

Then, for each 5 × 5 group of electrodes, the outcomes of the 
algorithm are the estimated conduction velocity v̂ , the final focus 
location fl and the resulting value of Q which evaluates the solu-
tion fitting. Additionally, “loci maps” are built by representing the 
focus location fl for each 5 × 5 group of electrodes in the MEA.

2.8. Activation map reconstruction

After analyzing all the 44 5 ×5 groups of electrodes in the com-
plete 8 × 16 MEA sensor, the activation sequence is obtained as 
follows.

Each jth electrode, j = 1 . . . 124, of the MEA sensor lies in 
h = 1 . . .h j different 5 × 5 groups of electrodes, and therefore has 
h j ≤ 20 different LAT estimates n j(1) . . .n j(h j) and cost function 
values Q j(1) . . . Q j(h j). Each n j was identified by the maximum 
negative slope of the modeled signal ŝ j,h[n] from the jth electrode 
contained in the hth 5 × 5 group. Where each ŝ j,h[n] is obtained 
following (2) after the substitution of v̂h and fl,h in (1). The final 
LAT estimate n̂ j for each jth electrode is obtained as the nearest 
integer of the weighted averaging of the individual LAT estimates 
using Q j as weights:

n̂ j =
∑h j

h=1 Q j(h) · n j(h)∑h j

h=1 Q j(h)
. (19)

For robust LAT estimation during AF recordings, the number of 
solutions taking part of the map reconstruction in (19) was limited 
using a threshold ξ obtained as: ξ = min{μQ − 2σQ , 0.55}, where 
μQ and σQ stand for the mean and standard deviation (SD) of 
the Q values for all the 44 5 × 5 electrode groups. Therefore, if 
Q j(h) ≤ ξ , the activation time is not considered in the computa-
tion of (19). The value 0.55 is set empirically as a minimum value 
of Q to consider a reliable LAT solution.

2.9. Evaluation protocol

The evaluation of the proposed algorithm is performed by a 
comparison of the estimated LATs with those audited by an ex-
pert electrophysiologist showing this comparison error as mean ±
SD.

Activation maps were studied in function of the activation pat-
tern complexity and classified into one of the following 7 degrees, 
illustrated in Fig. 5:

1. Normal sinus rhythm (NSR): Normal propagation of a single 
wavefront within the mapping catheter during SR.

2. Abnormal SR (ASR): Abnormal propagation of one or more 
wavefronts within the mapping catheter during SR.

3. Single atrial fibrillation wavefront (SAFW): Single AF wavefront 
propagating within the mapping catheter whose origin is lo-
cated outside the mapping array.

4. Breakthrough (BT): Concentric AF propagation wavefront
whose focus is located within the mapping array [11].

5. Atrial fibrillation wave fusion (AFWF): Two separated wave-
fronts collide and fuse into a single wavefront.

6. Line of Block (LB): A line of block is present in the propagation 
pattern of the mapping catheter creating longitudinal disso-
ciation of wavefronts traveling at different velocities and/or 
directions [10].

7. Complex AF (CAF): Chaotic activation with wave interruption 
and multiple lines of block.

Since LATs have an ordered nature (i.e., from earliest activated 
to latest activated electrode), Spearman’s rank correlation ρs has 
been computed for assessing the performance of the proposed 
method. Additionally, Lin’s concordance correlation factor ρc [29]
and Bland–Altman analysis were used to assess agreement be-
tween the measurements. A p-value ≤ 0.05 was required for con-
sidering statistical significance. Sensitivity Se and positive predic-
tive value P+ of the detection have been computed as:

Se = TP

TP + FN
, (20)

P+ = TP

TP + FP
, (21)

where TP stands for the number of true detections, FN stands for 
the number of missed detections and FP stands for the number of 
false detections. A tolerance of ±5 ms respect to the expert refer-
ence LATs was used to consider a true detection.
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Fig. 5. Representative examples of the atrial activity complexity classification proposed in this paper. Reference against estimated activation maps were shown in: (a) Normal 
sinus rhythm (NSR) activity (error: −0.31 ± 0.93 ms, area: 100%), (b) abnormal sinus rhythm (ASR) activity (error: −0.23 ± 3.5 ms, area: 100%), (c) single atrial fibrillation 
wavefront (SAFW) activity (error: −0.03 ± 2.96 ms, area: 100%), (d) breakthrough (BT) activity (error: −0.27 ± 2.59 ms, area: 100%), (e) atrial fibrillation wave fusion (AFWF) 
activity (error: −0.12 ± 1.73 ms, area: 100%), (f) dissociated atrial activity due to a line of block (LB) (error: 0 ± 13.52 ms, area: 95.97%) and (g) complex atrial fibrillation 
(CAF) activity (error: −5.3 ± 10.55 ms, area: 80.17%). LATs are color-coded from red (earliest) to pink (latest) in 10 ms isochrones. In case of no LAT could be identified at 
one electrode location, a cross is used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Detection error (mean ± SD), sensitivity and positive predictive value of comparing estimated LATs with the manual reference in SR recordings. N/A stands for Not Applicable.

Loc. Maps 
(#)

LATs 
(#)

Area 
(%)

Error 
(ms)

NSR 
(#)

ASR 
(#)

ρs ρc Se
(%)

P+
(%)

RA1 6 744 100 −0.82 ± 1.41 6 N/A 0.99* 0.99* 100 98.66
RA2 6 744 100 −0.78 ± 0.92 6 N/A ∼1* 0.99* 100 100
RA3 6 744 100 −0.44 ± 0.76 6 N/A ∼1* ∼1* 100 100
RA4 7 868 100 −0.62 ± 3.36 N/A 7 0.97* 0.97* 100 93.43
Total 25 3100 100 −0.66 ± 2.00 18 7 0.98* 0.98* 100 97.84

* Indicates a p-value < 0.01.
3. Results

3.1. Analysis of SR recordings

Table 1 summarizes the results obtained during SR. Note that 
in contrast to recordings at RA1 to RA3, recording at RA4 shows 
abnormal SR activity suggesting a stable functional re-entrant cir-
cuit (illustrated in Fig. 5(b)) which is present during the complete 
recording time.

The global error obtained with the proposed method is −0.66 ±
2.00 ms across 3100 LAT measurements, thus covering the 100% 
of the sensor area. A high level of agreement is confirmed by 
high Spearman’s correlation (ρs = 0.98, p < 0.01) and high Lin’s 
concordance correlation factor (ρc = 0.98, p < 0.01) as shown in 
Fig. 6. Bland–Altman analysis shows (Fig. 6(b)) no trend in LAT 
estimation (Pearson’s ρ = −0.01, p = 0.73). Moreover, the detec-
tion performance is also high with Se = 100% and P+ = 97.84%. 
Those observations confirm the high agreement between mea-
surements during SR as illustrated by activation maps shown in 
Fig. 5(a)–(b).

3.2. Analysis of AF recordings

Table 2 summarizes the results obtained using the proposed 
method during AF. Note that LB and CAF complexity levels were 
only present at recording RA1. The global error obtained by evalu-
ating a total of 28226 different LATs is −0.83 ± 6.02 ms covering 
almost the complete MEA sensor area (97.99 ± 7.66%) having high 
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Table 2
Detection error (mean ± SD), sensitivity and positive predictive value of comparing estimated LATs with the manual reference per AF recording at different levels of AF 
complexity. N/A stands for Not Applicable.

Loc. Type Maps 
(#)

LATs 
(#)

Error 
(ms)

Area 
(%)

ρs ρc Se
(%)

P+
(%)

RA1 SAFW 27 3141 −1.05±4.33 95.59 ± 13.98 0.95* 0.92* 95.42 92.87
BT 3 350 −0.58±4.74 97.62 ± 4.12 0.88* 0.80* 97.43 86.57
AFWF 3 359 −1.91±7.39 98.62 ± 1.71 0.90* 0.83* 98.26 78.55
LB 7 789 −2.39±15.25 91.70 ± 8.84 0.74* 0.67* 87.11 60.84
CAF 10 903 −7.60 ±20.26 83.36 ± 23.09 0.46* 0.38* 62.23 35.21
Total 50 5542 −2.33±11.01 92.91 ± 15.43 0.79* 0.68* 91.16 77.59

RA2 SAFW 44 5419 −1.09±3.41 99.50 ± 1.81 0.96* 0.95* 99.47 93.17
BT 2 238 −3.01±3.61 100 0.95* 0.93* 100 81.51
AFWF 15 1823 −1.09±4.15 99.11 ± 1.66 0.95* 0.95* 99.04 90.78
LB N/A N/A N/A N/A N/A N/A N/A N/A
CAF N/A N/A N/A N/A N/A N/A N/A N/A
Total 61 7480 −1.15±3.63 99.42 ± 1.74 0.96* 0.95* 99.38 92.22

RA3 SAFW 15 1883 −0.12±2.94 98.55 ± 2.00 0.97* 0.96* 98.48 95.64
BT 43 5298 −0.11±3.47 99.46 ± 0.96 0.95* 0.95* 99.41 92.26
AFWF 2 242 0.22±3.24 97.58 ± 3.42 0.92* 0.90* 97.38 92.15
LB N/A N/A N/A N/A N/A N/A N/A N/A
CAF N/A N/A N/A N/A N/A N/A N/A N/A
Total 60 7373 −0.10±3.33 99.17 ± 1.43 0.96* 0.96* 99.10 93.10

RA4 SAFW 53 6478 −0.16±4.21 99.42 ± 1.41 0.96* 0.96* 99.35 87.90
BT 4 488 0.92±6.70 99.57 ± 0.48 0.84* 0.81* 99.51 83.20
AFWF 7 865 −0.67±3.95 99.88 ± 0.31 0.96* 0.94* 99.87 90.06
LB N/A N/A N/A N/A N/A N/A N/A N/A
CAF N/A N/A N/A N/A N/A N/A N/A N/A
Total 64 7831 −0.14±4.39 99.48 ± 1.30 0.96* 0.95* 99.42 87.84

all SAFW 139 16871 −0.62±3.90 98.61 ± 6.43 0.96* 0.96* 98.52 91.36
BT 52 6374 −0.17±3.94 99.38 ± 1.28 0.94* 0.94* 99.33 90.85
AFWF 27 3289 −0.97±4.54 99.14 ± 1.59 0.95* 0.93* 99.06 89.36
LB 7 789 −2.39±15.25 91.70 ± 8.84 0.74* 0.67* 87.11 60.84
CAF 10 903 −7.60 ±20.26 83.36 ± 23.09 0.46* 0.38* 62.23 35.22
Total 235 28226 −0.83±6.02 97.99 ± 7.66 0.93* 0.90* 97.80 88.36

* Indicates a p-value < 0.01.
Fig. 6. Agreement evaluation between reference and estimated LATs during SR: (a) 
Reference vs. estimated LATs plot for Lin’s concordance correlation factor ρc where 
pink line indicates the unit slope and (b) Bland–Altman plot where red solid line 
indicates mean error and red dashed lines show mean ± 2SD of the error. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

agreement with manual annotations indicated by Spearman’s ρs =
0.93 and Lin’s concordance correlation factor ρc = 0.90 (p < 0.01
both). On the other hand, the detection performance is also high 
with Se = 97.80% and P+ = 88.36%. The Bland–Altman analysis 
(Fig. 7(f)) illustrates this agreement and shows a slight trend of 
the proposed method towards over-estimation of early LATs and 
sub-estimation of late LATs (Pearson’s ρ = 0.21, p < 0.01). Repre-
sentative examples of activation map reconstruction during AF are 
shown in Fig. 5(c)–(g).

Fig. 7(a)–(e) shows individual LATs agreement analysis for each 
AF complexity level proposed in this paper. A high level of agree-
ment is found for SAFW, BT and AFWF. However, LB and CAF show 
lower level of agreement (Fig. 7(d)–(e)).

3.3. The “loci maps”

Aside from the activation map reconstruction, an interesting re-
sult of the proposed method is the estimation of the activation 
pattern origin f for a given 5 × 5 group of electrodes of the MEA 
sensor. Therefore, construction of “loci maps” is possible by plot-
ting all estimated focus location f across the MEA sensor. Fig. 8
shows examples of these loci maps from different activation pat-
terns merged with the activation map. Note that loci maps spatially 
follow the potential activation wavefront evolution, providing extra 
information to complement the activation map.

Moreover, these loci maps can show different wavefront behav-
ior and properties, e.g., the number of wavefronts coming through 
the catheter and their different directions (Fig. 8(e)–(f)), the curved 
wavefronts due to potential re-entrant circuits (Fig. 8(b)) and even 
tissue anisotropy explained by small groups of clusters coming 
from the same place but moving into different directions, presum-
ably following the cardiac fibers orientation (Fig. 8(a)).

4. Discussion

Assessing LATs for activation mapping during AF is a common 
task to study and understand its underlying mechanisms [12]. Au-
tomatic LAT detection during AF relies in the detector accuracy 
and often requires manual checking. Moreover, LAT detection re-
duces the activation information to just a binary signal which takes 
values whether an activation is found, rejecting the remaining spa-
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Fig. 7. Agreement evaluation between reference and estimated LATs during AF at different complexity levels including (a) SAFW, (b) BT, (c) AFWF, (d) LB (e) CAF and (f) all 
LATs studied in this work. In each pair of panels, left shows reference vs. estimated LAT plot for Lin’s concordance correlation factor ρc (pink line indicates the unit slope) 
and the right panel shows Bland–Altman plot (red solid line indicates mean error and red dashed lines show mean ± 2SD of the error). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
tiotemporal information embedded in the morphology and time 
relation with adjacent electrodes.

In this paper, an integrated activation detection scheme is pro-
posed, which takes benefit of the relation between u-EGMs, hence 
providing a spatiotemporal detection of activation maps in high-
density recordings using MEA sensors. The rationale behind this 
technique is that it is possible to decompose a complete (and com-
plex) activation pattern into a combination of simpler activation 
patterns fitted to small areas of the MEA sensor. The simplest ac-
tivation pattern is concentric and isotropic, hence only depends on 
the location of the activation origin and the tissue conduction ve-
locity.

The process introduces the parameters of the activation pattern 
into a UDL model of the tissue, deriving the corresponding u-EGM 
signals. Model pattern parameters were modified iteratively by 
comparing the resulting u-EGM signals against the recorded ones 
in order to reach a maximum of a cost function that takes into ac-
count the signal shape similarities and synchronization. Finally, the 
complete activation map is reconstructed by the weighted average 
of all solutions obtained by running this iterative process over the 
complete MEA sensor.

Mapping performance has been evaluated by comparing the 
estimated LATs with those obtained manually by an expert elec-
trophysiologist in recordings during SR and AF. Additionally, ac-
tivation maps were studied and classified based in a complexity 
scale, hence providing a more complete view of the method’s be-
havior and usefulness. Moreover, the complexity classification used 
in this work is similar to those activation modes recently iden-
tified by Kuklik and co-workers in an hypertensive sheep cardiac 
model [30].

During SR recordings, the agreement between manual and es-
timated LATs was proved to be very high. The error was −0.66 ±
2.00 ms with very high Spearman’s correlation and Lin’s concor-
dance correlation factor (ρs = 0.98 and ρc = 0.98, p < 0.01 both). 
An exceptional situation was found in those recordings during SR. 
The cranial location of the MEA sensor over the right atrium (RA4
recording) shows full abnormal atrial activity during SR. This ac-
tivity suggests the presence of a re-entrant circuit, described by 
the proposed method, as illustrated in Fig. 5(b). Moreover, the 
novel proposed loci maps show potential trajectory of the activation 
wavefront evolution, suggesting the presence of a curved wave-
front due to a functional re-entry present during SR (see Fig. 8(b)).

During AF recordings, the LAT estimation error was of −0.83 ±
6.02 ms with high agreement with manual annotations (ρs = 0.93
and ρc = 0.90, p < 0.01 both). This agreement is even higher con-
sidering the SAFW, BT and AFWF maps solely, which correspond to 
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Fig. 8. Examples of loci maps merged with its estimated activation map: (a) NSR, (b) ASR, (c) SAFW, (d) BT, (e) AFWF and (f) LB. LATs are color-coded from red (earliest) 
to pink (latest) in 10 ms isochrones. Electrodes are shown as empty circles and each focus solution f is shown in black dots connected with the center electrode of its 
corresponding 5 × 5 group. Spatial reference is shown with a cross. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
the 93% of the studied maps. However, much lesser agreement was 
found in higher complexity maps (LB and CAF). Nevertheless, in 
this study those types of patterns were poorly represented in the 
available data (only at recording location RA1), limiting the conclu-
sions that can be obtained from those classes.

Comparing the mean error in LAT estimation with the standard 
error of the mean, for each atrial rhythm and atrial location, it is 
shown that the proposed method presents a statistically significant 
bias. However, in 80% of SR maps and 66% of AF maps, this bias is 
below one sampling interval and in 100% of SR maps and 89% of AF 
maps this bias is below two sampling intervals. Moreover, it must 
be noted that having a systematic bias is not crucial in activation 
mapping, where stability between the measurements at different 
sites is pursued. This is quantified by the error standard deviation 
and the correlation with the reference annotations.

The proposed algorithm provides smoother and more compre-
hensive activation maps than those obtained manually as illus-
trated by Fig. 5. This fact is in concordance with the smoothing 
nature of the weighted average process for reconstructing the final 
activation maps. Additionally, the modeled activation pattern used 
for LAT estimation also contributes to this smoothness. As an addi-
tional outcome of the iterative process, the loci maps appear to be 
an interesting tool for assessing the activation behavior and track 
the wavefront evolution in the activation map under analysis. The 
presented algorithm for activation map and loci map estimation 
was possible due to the iterative process and the small compu-
tation times of the solid angle and UDL approaches, in contrast 
to the high computation times of more classic and detailed tissue 
simulation approaches [17]. However, the proposed method needs 
manual assistance to select the time interval to analyze the acti-
vation map; therefore, the presented method is a semi-automatic 
approach.

The isotropic concentric activation model used in this work as-
sumes the presence of a single wavefront at the time of mapping 
within each 5 × 5 sensors analysis mask. This assumption is not 
always accomplished and may be the reason behind the lower per-
formance observed in the more complex AF activity levels. Small 
lines of block or high frequency (short wavelength) atrial activity 
may yield in poor estimation of the tissue conduction velocity or 
small values of the cost function due to the impossibility of the ac-
tivation pattern to model the underlying activation behavior. One 
possible solution is to select a smaller group of electrodes. Reduc-
ing the analysis mask size may allow to better estimate activations 
under those situations but also turns into a limitation because esti-
mation of tissue conduction velocity could be less accurate and/or 
less robust to data acquisition errors (i.e., non-contact of elec-
trodes) and noise.

Another limitation is related to the studied database. Only one 
set of locations coming from the same patient have been stud-
ied. It must be noted the singularity of the data used in this 
work, as epicardial high-density mapping is not performed dur-
ing routine clinical interventions. Additionally, it must be noted 
also the fact that manual annotations and/or checking during AF of 
124 channels is a high time-consuming task. Therefore, these con-
strain the database size for this study. However, more than 30000 
LATs combining SR and AF recordings with very different prop-
agation patterns were studied in this work, thus making a high 
amount of measurements for evaluating the proposed methodol-
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ogy. Nevertheless, extension of this work to more patients and 
more atrial locations is needed before clinical usage, especially in-
cluding those left atrial locations where more complex activity can 
be expected.

5. Conclusion

This paper presents an integrated spatiotemporal detection ap-
proach that allows to obtain smooth and comprehensive high-
density activation maps and to track the underlying wavefront evo-
lution. Simplified, but explicative enough, activation pattern and 
tissue models are used in order to generate u-EGM signals that 
resemble the measured activation map using an iterative process. 
Results indicate high accuracy of the proposed method compared 
against audited annotations during SR and AF. Therefore, although 
this work uses invasive data, it opens the possibility of studying 
high-density activations maps with robust outcomes and the de-
velopment of minimally invasive epicardial high-density mapping.
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