
����������
�������

Citation: Albors, C.; Lluch, E.;

Gomez, F.J.; Cedilnik, N.;

Mountris, K.A.; Mansi, T.;

Khamzin, S; Dokuchaev, A.;

Solovyova, O.; Pueyo, E.; et al.

Meshless Electrophysiological

Modeling of Cardiac

Resynchronization Therapy—

Benchmark Analysis with

Finite-Element Methods in

Experimental Data. Appl. Sci. 2022,

12, 6438. https://doi.org/10.3390/

app12136438

Academic Editors: Mihaela Pop and

Cristian A. Linte

Received: 30 April 2022

Accepted: 21 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Meshless Electrophysiological Modeling of Cardiac
Resynchronization Therapy—Benchmark Analysis with
Finite-Element Methods in Experimental Data

Carlos Albors 1,* , Èric Lluch 2, Juan Francisco Gomez 3 , Nicolas Cedilnik 4, Konstantinos A. Mountris 5,6 ,
Tommaso Mansi 7, Svyatoslav Khamzin 8, Arsenii Dokuchaev 8, Olga Solovyova 8, Esther Pueyo 5,6 ,
Maxime Sermesant 4 , Rafael Sebastian 9 , Hernán G. Morales 10 and Oscar Camara 1,*

1 Sensing in Physiology and Biomedicine (PhySense), Department of Information and Communication
Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain

2 Digital Technology and Innovation, Siemens Healthineers, 91052 Erlangen, Germany; eric.lluch@gmail.com
3 Valencian International University, 46002 Valencia, Spain; juanfrancisco.gomez@campusviu.es
4 INRIA, Université Côte d’Azur, Epione Team, 06902 Sophia Antipolis, France; nicoco@nicoco.fr (N.C.);

maxime.sermesant@inria.fr (M.S.)
5 Aragón Institute of Engineering Research, IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain;

konstantinos.mountris@gmail.com (K.A.M.); epueyo@unizar.es (E.P.)
6 CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
7 Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ 08540, USA; tmansi@its.jnj.com
8 Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS),

620049 Yekaterinburg, Russia; svyatoslav.khamzin@gmail.com (S.K.); zodelheim@gmail.com (A.D.);
o.solovyova@iip.uran.ru (O.S.)

9 Computational Multiscale Simulation Lab (CoMMLab), Universitat de València, 46100 Burjassot, Spain;
rafael.sebastian@uv.es

10 Dassault Systèmes, 78140 Vélizy-Villacoublay, France; hmorales81@gmail.com
* Correspondence: carlos.albors@upf.edu (C.A.); oscar.camara@upf.edu (O.C.)

Abstract: Computational models of cardiac electrophysiology are promising tools for reducing the
rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing
electrode placement. The majority of computational models in the literature are mesh-based, pri-
marily using the finite element method (FEM). The generation of patient-specific cardiac meshes
has traditionally been a tedious task requiring manual intervention and hindering the modeling
of a large number of cases. Meshless models can be a valid alternative due to their mesh quality
independence. The organization of challenges such as the CRT-EPiggy19, providing unique ex-
perimental data as open access, enables benchmarking analysis of different cardiac computational
modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based
method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based
on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize
the most relevant parameters of the electrophysiological simulations and identify the optimal CRT
lead configuration. The simulation results obtained with the meshless model were equivalent to
FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization
strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT
lead distribution).

Keywords: electrophysiology; parameter optimisation; smoothed particle hydrodynamics; meshless
model; cardiac resynchronization therapy; CRT-EPiggy19 challenge

1. Introduction

Cardiovascular diseases (CVDs) are one among the leading causes of death world-
wide, accounting for 32% of all global deaths [1,2]. The high prevalence of CVD leads to
substantial health and economic expenses, as it is one of the most critical challenges in
healthcare. Heart failure (HF) is a cardiac pathology that causes CVDs; a non-negligible
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number of HF patients have left ventricle (LV) heart’s dyssynchrony [3] induced by a left
bundle branch block (LBBB) [4,5]. LBBB patients exhibit an abnormal His–Purkinje system,
which produces a delay of activation between the interventricular septum and LV-free
wall [6].

Cardiac resynchronization therapy (CRT) has demonstrated in randomized clinical
trials to be an effective treatment for patients having (i) symptomatic HF; (ii) depressed
left ventricular ejection fraction (EF < 35%); (iii) evidence of ventricular dyssynchrony
by a prolonged QRS complex (>120 ms). CRT enhances cardiac structure and function
through reverse remodeling [4,7,8]. The most consolidated methodology to deliver CRT,
biventricular pacing (BiV-CRT), creates an artificial pacemaker in both ventricles and right
atrium to resynchronize the electrical activation and, thus, the mechanical contraction
between the LV septal and lateral walls at every cardiac beat [9,10]. Nevertheless, more
than 30% of patients fulfilling the criteria for CRT implantation do not respond to the
therapy (non-responders, NR), although ratios differ according to the applied definition
and criteria [11,12]. One of the main reasons for the high rate of CRT non-responders is the
use of too simple indices for patient selection (e.g., EF, QRS, New York Heart Association
class). Beyond optimization of patient selection, the correct electrode placement is a key
factor to reduce the number of CRT-negative responses. Potential therapeutic alternatives to
traditional BiV-CRT are emerging based on optimization of lead placement and number [13]
or on new physiological stimulation modalities [14].

Computational electrophysiological models can be valuable tools for a better un-
derstanding of pacing-based therapies such as CRT, providing additional information to
physicians and device manufacturers to improve therapy efficacy. The interested reader is
referred to Niederer et al. [15] and Lee et al. [16] for comprehensive reviews on computa-
tional models in cardiology and specific to LBBB and CRT, respectively. More recently, some
studies have focused on CRT response optimization through electromechanical models
including coronary perfusion [17], or myocardial strains with a complete cardiovascular
system, adding both atria as well as systemic and pulmonary circulations [18]. Other stud-
ies particularly investigate lead placement. For instance, Albatat et al. [19] analyzed the
benefits of multi-site pacing in CRT patients with myocardial infarction. Carpio et al. [20]
explored RV lead optimization in a complete simulated torso, while Oomen et al. [21] used
fast electro-mechanical simulations to study the role of post-infarction ischemia in reverse
LV remodelling following CRT.

Patient-specific personalization plays an important role to make computational models
more realistic. However, detailed electrical and mechanical information of the heart is
needed, often only available from invasive techniques [16]. Due to the difficulties of
obtaining the required in vivo data in humans at different stages of the disease (e.g., from
healthy to LBBB and with a CRT device), the validation of CRT computational models
is challenging.

Cardiac computational modeling can be improved by translating pre-clinical data
into patient-specific models, linking animal and clinical research. For example, as a result
of the participation in the Cardiac Electrophysiological Simulation Challenge (CESC’10)
MICCAI-STACOM workshop (https://stacom.github.io (accessed on 26 April 2022)), sev-
eral research groups [22] developed a pipeline integrating different modeling approaches to
predict depolarization isochrones from optical mapping data of a perfused ex vivo porcine
heart with different pacing conditions [23], acquired at the Sunnybrook Health Sciences
Centre, Toronto, Canada. However, experimental data were available for two cases.

Some years later, Rigol et al. [24] developed a swine model of LBBB to study the
link between electrical and mechanical dyssynchrony, and their correction with CRT. The
authors generated a unique dataset with signal, multi-modal images and electro-anatomical
maps at different stages of the disease in tens of infarcted and non-infarcted animals. Soto
Iglesias et al. [25] proposed advanced visualization techniques and metrics to quantify the
differences in electrical activation patterns at baseline, LBBB and CRT stages. A subset of the
database was the foundation for the organization of the CRT-EPiggy19 challenge (https://
crt-epiggy19.surge.sh/ (accessed on 15 April 2022)) at the MICCAI-STACOM19 workshop,
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which is available open access in a public repository (https://zenodo.org/record/3249511
(accessed on 18 April 2022)). More recently, Ramirez et al. [26] also developed a swine
model of the heart that was coupled with electrophysiological models to study advanced
biomaterial injection therapies for ischemic heart failure.

Participants at the CRT-EPiggy19 challenge adopted different modeling approaches
to predict the electrical activation after CRT. Khamzin et al. [27] and Cedilnik and Ser-
mesant [28] developed personalization strategies based on genetic algorithms to estimate
regional conduction velocities with simple but fast phenomenological Eikonal-based mod-
els. Meanwhile, Gomez and Sebastian [29] used a more detailed Ten Tusscher–Panfilov [30]
for cellular electrophysiology, considering transmural heterogeneity and electrical prop-
agation by a monodomain model. After the challenge, other researchers have used the
provided data to better understand cardiac physiology and pacing-based therapies [31].

All the aforementioned approaches are based on solving the electrophysiological
model equations with the finite-element method (FEM) as a numerical technique based
on a mesh discretization of the biventricular heart geometry, as it is the common choice in
cardiac modeling [32]. In FEM, the computational domain is divided into discrete subsets
of interconnected nodes as elements. However, the explicit connectivity required in the
domain leads to great difficulty in generating the irregular patient-specific cardiac meshes,
which then becomes a tedious, manual, highly interactive, and time-consuming process.
Moreover, the reliability of the simulation results is highly dependent on the quality of
the built geometrical mesh [33]. Additionally, mesh distortion that can occur during large
cardiac deformations enforces the use of remeshing algorithms to restore mesh shape and
numerical accuracy, thereby increasing the computational cost and efforts [34]. Meshless
methods are an interesting alternative to avoid meshing difficulties, since the spatial domain
is composed of an unstructured particle cloud without connectivity. Therefore, the meshless
domain construction procedure can be used for any type of complex geometry. In addition,
large deformations or the linking of meshes with different spatial resolution, often necessary
in cardiac electromechanics, can be better handled with meshless methods than with FEM,
as FEM-based connectivity does not need to be satisfied. For instance, authors in [35] have
shown the potential of meshless methods for fluid–structure interaction (FSI) applications,
which are extremely time-consuming for mesh-based methods.

Meshless approaches have already been applied to cardiac modeling. For example,
Wong et al. [36] used an element-free Galerkin meshless method for modeling cardiac
mechanics. On the other hand, Lluch et al. [37] developed meshless methods based
on smoothed particle hydrodynamics (SPH) meshless technique for modeling cardiac
mechanics. The same authors later [38] employed genetic algorithms to calibrate a SPH-
based fully coupled electro-mechanical model of the heart with high-resolution imaging
and invasive in vivo measurements from a healthy canine heart. Recently, Mountris
and Pueyo [39] proposed a meshfree mixed collocation method with interpolating trial
functions to solve the monodomain equations for cardiac electrophysiology and the O’Hara
ventricular cell model [40], which was applied to one of the CRT-EPiggy19 challenge dataset
under healthy and LBBB conditions.

In this manuscript, we present a benchmark analysis of a meshless SPH method with
finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a
subset of the CRT-EPiggy19 dataset, including infarcted and non-infarcted cases. A data
assimilation strategy was designed to personalize the most relevant parameters of the
electrophysiological simulations and identify the optimal CRT lead configuration.

2. Materials and Methods
2.1. CRT-EPiggy19 Data and Experiments

The experiments to create the CRT-EPiggy19 data were performed at Hospital Clínic
de Barcelona, Spain, after animal handling approval of the Institutional Review Board and
Ethics Commitee of the hospital. In the animals, radiofrequency ablations were carried
out to induce LBBB, where half of them presented a myocardial infarction located at the
septal wall with different levels of transmurality. Then, a CRT device was implanted to
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later study the effects of the therapy. More details of the experimental protocol can be
found in Rigol et al. [24].

A subset of the CRT-EPiggy19 data was used in our study, including three cases for
training and testing, respectively (two non-infarcted and one infarcted dataset in each
group). In the dataset provided by the challenge organizers, image segmentation and biven-
tricular finite-element mesh reconstruction were performed using an in-house Siemens
algorithm applied on cine sequences of Magnetic Resonance Imaging (MRI), acquired
from the swines during the experimental studies. The scar was manually segmented and
quantified from delay-enhancement MR images. In terms of electrophysiological data,
anatomical point-based reconstructions from CARTO XP of epicardial and endocardial
layers were obtained at baseline, LBBB and CRT phases. The electro-anatomical map (EAM)
clouds of points were then interpolated onto the MRI biventricular FEM meshes through
a quasi-conformal mapping method [25]. Finally, a rule-based method [41] was used for
the generation of the cardiomyocyte orientation in each mesh. In addition, regional labels
(AHA regions, ventricle definition, endo- and epi-cardial wall distinction) and scarred
AHA segments were also included in the models. In the training set, each porcine model
was reported in two distinct pathologic stages: with a block in the left bundle branch of the
purkinje system and after CRT. For the testing dataset, only the LBBB stage was provided
to personalize the electrophysiological models and used them to predict CRT electrical
patterns. The RV endocardium was not acquired in the EAM data; therefore, the analysis
was centered on the endocardial LV layer and biventricular epicardial layer.

2.2. Meshless Model Based on Smoothed Particle Hydrodynamics

The total Lagrangian meshless method (TL-SPH) developed by Lluch et al. [38] was
used in our experiments. As a meshless model, SPH is easy to parallelize, and memory
efficient. Additionally, it is mathematically rigorous since it satisfies the Kronecker’s delta
property. Figure 1 illustrates the developed meshless SPH-based modeling pipeline to
predict CRT electrical patterns in the experimental data. The first step of the pipeline
consisted on discretizing the continuous domain provided by the biventricular meshes of
the porcine hearts with a cloud of particles without connectivity, where each particle had
the following individual properties: three-dimensional position, cardiomyocyte orientation,
tissue type, initial impulse, conduction velocity, area and volume.

Figure 1. Scheme of the developed meshless modeling pipeline to predict the electrical patterns in
experimental data after cardiac resynchronization therapy. LBBB: left bundle branch block. RMSE:
root mean square error. LAT: local activation time.

To determine the particle properties a Gaussian Kernel function was enforced, defining
the number of neighboring particles around each particle of interest that is then employed
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to estimate the area and volume indices. Parameters such as the kernel size (i.e., smoothness
length of the Gaussian kernel) and the geometry discretization according to the number
of particles were key factors to determine when setting up the simulation. To define the
optimal values of the Gaussian kernel function, sensitivity analyses of particle resolution
and kernel size were performed. Several simulations were carried out fixing the kernel
size and increasing the particle numbers; configurations with 15 ×103 (2 h simulation),
20 ×103, 80 ×103 and 100 ×103 (11 h simulation) particles were studied in one of the
analyzed geometries. The kernel size was inversely proportional to the number of particles
to avoid excessive computational cost; kernels from 3.5 to 9 mm were tested in intervals of
0.5 mm. A kernel size of 6.5–8.5 mm was finally defined, as a function of the swine model
morphology and required conduction velocities (i.e., larger kernels for higher conduc-
tion velocities and morphologies with higher curvature), in combination with geometries
of 15 ×103 particles. As shown in [42], configurations with higher number of particles
(e.g., 50 ×103) and smaller kernel sizes (e.g., 3 mm), computational costs exponentially
increases without a substantial accuracy gain, which will hamper the parameter optimiza-
tion process. Furthermore, we also analyzed the effect of the time-step, testing values of
10−3, 10−4, and 10−5 in one of the studied cases for LBBB simulations. The computational
cost associated with each time-step value was of >42 min, around 20 min and around
7 min, providing RMSE of 6.2 ms, 6.8 ms, and 7.9 ms, respectively. A time-step value of
10−4 was finally chosen as a trade-off between computational cost and result accuracy. The
total simulated time was of 0.15 s, based on the total activation times of the available EAM
dataset (i.e., most cases with TAT < 0.1 s).

2.3. Electrophysiological Model

The simplified reaction–diffusion Mitchell–Schaeffer (MS) electrophysiological
model [43], together with a diffusion term [42], was used at the cellular level. The MS
method allowed us to simulate the electrical activation sequence of the swine hearts with
an ionic model of the ventricular action potential duration (APD) composed of only two
currents: one inward and one outward. The computation of the voltage and depolarization
phase over time is performed with the following partial differential equations:

∂v
∂t

= div(D∇v) +
wv(1− v)

τin
− v

τout
+ Iapp

∂w
∂t

=


1− w
τopen

ifvs. < vgate

−w
τclose

ifvs. > vgate

,
(1)

where Ia pp ∈ R describes the initial stimulus of the transmembrane potential v ∈ R,
w ∈ R controls the depolarization phase, and vgate ∈ R determines where the APD starts.
Furthermore, τopen, τclose, τin, and τout ∈ R govern the duration of the four stages of the
APD (i.e., initiation, plateau, decay, and recovery). The diffusion term, div(D∇v), includes
cardiomyocyte orientation, with the diffusion tensor, D ∈ R3×3, defined as in [44]:

D = ( f ⊗ f (1 − ar) + I · ar) · d (2)

There are three main parameters in Equation (2) to take into account: the cardiomy-
ocyte orientation vector, f ∈ R3; the diffusion coefficient, d ∈ R, which controls the action
potential propagation speed; and the anisotropic ratio, ar ∈ R, which determines the rela-
tion between conduction velocities and cardiomyocyte orientation (e.g., ar = 1 will define
an isotropic behavior). We tested different values for ar (from 0.01 to 0.5), finally fixing to
0.01 (i.e., giving more weight to cardiomyocyte orientation) for all cases. The cardiomy-
ocyte orientation was provided in all studied biventricular meshes by the CRT-Epiggy19
organizers from the rule-based model proposed by Doste et al. [41], which is adapted to
replicate histological data of both left and right ventricles. Finally, I ∈ R3×3 defines the
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identity matrix and ⊗ the tensor product. Overall, only six parameters are necessary in the
MS model, which is convenient for model personalization.

2.4. Left Bundle Branch Block Simulation with Personalized Parameters

An initial stimulus was set in the atrio-ventricular (AV) node, with an average of
60 particles, being identified from the earliest activated points in the EAM data of each case,
to initiate the simulated electrical pattern over the two ventricles. The Purkinje (PK) system,
which has fast conduction velocities, needs to be incorporated in the model for simulating
a LBBB and disrupt the normal electrical propagation in the LV branch. Therefore, particles
located in the lower (i.e., closer to the apex) half of the endocardial RV (around 500 particles)
and the lower third of the LV (around 300 particles), if no scar was present, were labeled
as Purkinje (see Figure 2), following the distribution of PK–myocardial junctions found in
PK-based simulation studies [45].

Figure 2. Biventricular geometries with particles labelled as regular myocardial tissue (in blue)
and Purkinje system (in red), used for the meshless solver. Top: point cloud representation. Bot-
tom: mesh-based triangulation from applying the Delaunay algorithm to the cloud of points, for
visualization purposes.

Including PK particles in the LV, could seem contradictory for simulating LBBB electri-
cal patterns. However, it was necessary to consider the LV retrograde activation due to the
transmurality of the PK system in pigs [46], leading to latest activation points being located
at the basal LV in several cases.

As other participants at the CRT-EPiggy19 challenge [28,29], we also added a second
impulse in the electrophysiological simulations to replicate an early activation of the
RV epicardium observed in the EAM data (see RVepi initial activation point in Figure 3).
Besides the expected activation induced by the AV node, the septomarginal trabecula may
have a role in the fast activation of the RV that needs to be incorporated to replicate the
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electrophysiological measurements. The dynamics of the electrical pattern in LBBB cases
are displayed in Figure 3, starting from the two stimulus (1 in the Figure 3), followed by
the propagation to the biventricular apex (2 in the Figure 3), and the propagation from the
LV apex to the base (3 in the Figure 3), with fast activation in the endocardium and slow in
the epicardium.

Figure 3. Electroanatomical maps of an infarcted and a non-infarcted training case in left bundle
branch block condition. In (a,b), both initial activation points (1) in the RV epicardial layer (red circle)
and LV endocardial one (yellow circle) are shown. At (c,d), the numbering sequences describe the
followed electrical pattern to fully activate the biventricular geometries: starting from the initial
stimulus (1), following to the biventricular apex (2), and propagating to the left ventricular base (3).
The colourscale represents the local activation times, from earliest to the latest activation points, in
blue and red, respectively. RVepi: right ventricle epicardium. LVendo: left ventricle endocardium.

The local conduction velocity (CV) values defined in each geometry, guiding the wave
propagation speed in the direction established by the modeled cardiomyocyte orientation,
was one of the main parameters affecting the simulated electrical pattern. However, it is
not simple to set up the number of heterogeneous conductivity regions: different values
at each voxel would both be impractical (too many parameters to optimise) and does not
make sense in relation with the sparsity of the available electroanatomical data; too few
regions would not consider the existing CV heterogeneity (e.g., faster CV in PK system,
complex electrical propagation in the septum due to discontinuities in cardiomyocyte
orientation [41], presence of scar, etc.). Consequently, we performed a sensitivity analysis
to determine the optimal number of different regions with local conductivities to optimize,
from only a single region considering the whole biventricular geometry, to 21 regions
including the 17 AHA segments. In total, the following seven regional CV configurations
were tested:

• 1 region (whole biventricular geometry).
• 2 regions (RV − LV).
• 3 regions (RV − Purkinje system− LV).
• 4 regions (RVepi − RVendo − LVepi − LVendo).
• 5 regions (RVepi − RVendo − Purkinje system− LVepi − LVendo).
• 6 regions (RVepi − RVendo − Purkinje system− Septum− LVepi − LVendo).
• 21 regions (RVepi − RVendo − Purkinje system− 17 LVAHAsegments − LVendo).

The optimization of the CV distribution in each analyzed case was performed with the
constrained non-linear Sequential Least Squares Programming algorithm. The cost function
was based on minimizing the root mean square error of each particle activation time
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between simulation results and the EAM-based electrical patterns. An iterative method
was used for parameter optimization, updating the five regional CVs until the best possible
fit was obtained. The choice of a constrained algorithm was made so that: (1) conductivity
values always were positive; (2) a purkinje system always being the fastest regional layer;
(3) the lowest conductivity value always was in the necrotic/scar zone for infarcted cases.
In the end, an average of 70 simulations were performed for each analyzed case, mainly for
the optimization of the CV configuration.

2.5. Simulation of Cardiac Resynchronization Therapy

Once model parameters were personalized with the SLSQP optimization algorithm to
better replicate the electrical pattern of the LBBB data, the next step was to simulate CRT
using the same personalized parameters (see Figure 1). Additional initial stimulus were
incorporated in the model, simulating the LV and RV leads of CRT. The position of the CRT
leads in the training cases was determined by identifying the earliest activated points in
the provided electroanatomical maps. In the testing cases, as EAM data were not available,
several lead configurations were evaluated to find the one furnishing better evaluation
metrics, as described below.

2.6. Evaluation Metrics and Experiments

As mentioned above, the root mean square error difference between the local activa-
tion time (e.g., time when each particle activates, with the initial stimulus as reference)
given by the simulations and the EAM measurements, integrated over each particle of the
biventricular geometries, was used in the parameter optimization in the training cases. As
for testing, global and regional metrics were used to evaluate the prediction accuracy of
different modeling strategies in each analyzed case.

First, the total activation time (TAT) required to activate the whole biventricular
geometry from the initial impulses, was employed as a general metric. Additionally,
as proposed by Soto Iglesias et al. [25], we computed some activation delays to better
characterize regional patterns, specifically, the inter-ventricular delay (IVD), which is time
difference between earliest activation points of both ventricles (LV and RV) in the epicardial
layer; and the left ventricular transmural delay (LV-TD), defined as time difference between
LV layers (epi- and endocardium) first activated points. Finally, we also estimated the
recovery as follows:

Recovery =
TATbaseline − TATLBBB

TATLBBB − TATCRT
∗ 100, (3)

which indicates the percentage of how close the TAT is to the baseline after applying
CRT. Finally, we created histograms of the percentage of activated tissue over time for the
right and left epicardial regions, which provides an intuitive visualization of the different
intra- and inter-ventricular delay differences between LBBB and CRT conditions (including
distinct lead configurations).

After the sensitivity analyses of different modeling choices of the SPH-based solution
(e.g., number of particles, kernel size, time step), as explained in Section 2.2, the initial
experiments in our study consisted on personalizing model parameters (e.g., regional
conduction velocities) with the EAM data in the three studied training cases in LBBB
condition. Subsequently, the resulting regional conduction velocity distribution was used
for modeling CRT, using the lead position provided by the challenge organizers in the
training dataset. The initial stimulus characteristics (e.g., location, depolarization times)
were maintained in all models).

The meshless simulation results were qualitatively and quantitatively compared with
the ones provided by an FEM-based method [29] presented in the CRT-EPiggy19 challenge,
since it was the only participant processing the three analyzed training cases. Additionally,
metric comparisons are already made with the mesh-based methodology presented by
another challenge participant [27], which reduced the biventricular geometry mesh res-
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olution to 12 ×103 elements to facilitate the exploration of a larger range of parameters
(>30 different conduction velocity regions) in an optimization process using the L-BFGS
optimization algorithm.

In the CRT-EPiggy19 challenge, EAM data of testing cases after CRT were not provided,
thus lead location was unknown. For this reason, we tested four different lead locations
(Figure 4) in each testing geometry to determine the one providing the best recovery: (1) RV
apex and LV basal region (RVapx − LVbas); (2) RV and LV Apex (RV− LVapx); (3) earliest and
latest point activation from the LBBB cases in the EAM (Early− LateL AT); (4) RV Outflow
track (RVOT) septal and LV basal region (RVOTsep − LVbas). If recovery was similar in
different lead configurations, TAT and delay values were analyzed to choose the final
lead configuration.

Figure 4. Different configuration of cardiac resynchronization leads analysed in the testing cases.
LV/RV: left and right ventricle, respectively. Earliest/Latest act: Earliest/Latest activation. RVOT:
right ventricular outflow tract.

For comparison purposes, colourmaps representing the electrical activation patterns of
the figures have been adjusted by setting the initial depolarization of the RV of each model
(local activation values) as the initial times and dividing them into several isochrones. For
visualization, the Open Source Paraview (ParaView, v.5.8) (https://www.paraview.org
(accessed on 1 April 2022)) software tool was used. Computational resources for the
meshless electrophysiological models consisted of a Nvidia RTX 2080 Ti GPU and an
i9-9900k CPU executed in Code::Blocks software (Code::Blocks IDE, v.16.01).

3. Results
3.1. Training Data

The sensitivity analysis to determine the best regional distribution of conduction
velocities in the LBBB condition resulted in best fittings of simulations with EAM data when
increasing the number of regions, with a RMSE of 6.4 ms and 5.3 ms in the non-ischemic
and ischemic models, respectively, for 21 regions (vs. 6.7 ms and 5.8 ms in the non-ischemic
and ischemic models, respectively, for 5 regions). However, when applied to CRT data,
electrophysiological simulations with 6 and 21 regions produced larger errors than with
5: 10.2 ms and 9.8 ms in the non-ischemic and ischemic cases, respectively, for 21 regions,
and 9.3 ms and 7.7 ms in the non-ischemic and ischemic cases, respectively, for 5 regions.
Therefore, five regions were finally chosen for the conduction velocity distribution in the
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remaining simulations. The optimization process took between 10 and 25 h to converge
(15–25 min per simulation), depending on the studied case.

3.1.1. Left Bundle Branch Block Simulations

Table 1 summarizes the accuracy obtained with the meshless SPH-based in the training
dataset, as quantified by the metrics detailed above. Equivalent results were obtained for
both LBBB and CRT conditions. Figure 5 shows the local activation time maps for a
non-infarcted and an infarcted case of the training database at LBBB and CRT conditions,
provided by the EAM, and from FEM- and SPH-based simulations.

Table 1. Metrics characterizing the electrical activation maps in training cases from measurements and
meshless simulations. EAM: electroanatomical maps. SPH-Sim: Simulation with smoothed particle
hydrodynamics meshless method. LBBB: left bundle branch block. CRT: cardiac resynchronization
therapy. TAT: total activation time. LAT-RMSE: local activation time root mean square error. IVD:
inter-ventricular delay. LV-TD: left ventricle transmural delay. (*) indicates an infarcted pig.

Pig 1 Pig 2 Pig 3 (*)
EAM SPH-Sim EAM SPH-Sim EAM SPH-Sim

LBBB CRT LBBB CRT LBBB CRT LBBB CRT LBBB CRT LBBB CRT

TAT (ms) 72.0 70.0 70.0 66.0 66.0 45.0 78.0 39.0 59.0 35.0 49.7 46.0

LAT RMSE (ms) 6.8 7.9 9.4 7.7 5.1 6.6

17 IVD (ms) 18.0 7.3 18.6 11.4 19.8 −3.3 14.3 0.0 17.7 −12.5 16.9 −4.8

LV-TD (ms) 7.2 0.0 9.0 2.0 9.9 −6.6 13.0 0.4 11.8 −5.2 18.4 0.6

Recovery (%) −2.6 −8.0 47.7 69.6 342.9 185.0

The initial impulses set for the non-ischemic case shown in Figure 5 (Pig 1) were estab-
lished with a difference of 12 ms between them. The first, located in the RV endocardium,
was set at 2 ms, and the second, the septal one, at 14 ms. Table A1 and Figure 5 revealed
similar activation patterns in the biventricular epicardium with an average regional LAT
RMSE of 5.7 ms compared to the EAM data. However, larger differences were observed in
the LV endocardial layer, increasing the regional error to 9.1 ms (Table A1). The remain-
ing metrics (e.g., TAT, IVD and LV-TD) were similar between meshless simulations and
measurements, with a difference <3 ms, while the overall error was 6.8 ms, as reported in
Table 1.

For the infarcted case shown in Figure 5 (Pig 3), the initial stimulus was placed as in
Pig 1, but at 2.5 ms in the RV endocardial layer, and in the septal area at 12 ms to better
match the EAM data. Figure A3 in the Appendix shows simulation results obtained with
only one stimulus. The scar in Pig 3, which had a transmurality of 86%, was located in the
septo-apical and antero-septal LV regions. In the scar region, a 75% conduction velocity
reduction with respect to the Purkinje system was established from the best simulation
result. Although the electrical activation pattern provided by the SPH simulations was very
close to the EAM measurements (5.1 ms average LAT error), differences in conductivity
were appreciated between both ventricles. The posterior basal region of the RV epicardial
layer had a slower activation than the ground-truth data, whereas LV layers (endo- and
epicardium) had a higher conductivity. The metrics in Table 1 show differences greater
than 6 ms for LV-TD, 9 ms for TAT, and less than 1 ms for IVD.
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Figure 5. Local activation time maps for a non-infarcted and an infarcted (top and bottom panels cor-
responding to Pig 1 and Pig 3, respectively) case of the training database in left bundle branch block
(LBBB) and cardiac resynchronization therapy (CRT) conditions, provided by the electroanatomical
measurements (EAM) and electrophysiological simulations performed with a finite-element method
(FEM) and a meshless (SPH) model. (a1,a2) and (b1,b2) correspond to anterior and posterior biven-
tricular epicardial visualizations. (c1,c2) show endocardial view of the left ventricle (LV) lateral wall.
RV: right ventricle.

Table 2 shows the conduction velocity values estimated by the SPH-based model in the
five selected regions for an ischemic and a non-ischemic cases of the LBBB training dataset.
Additionally, the corresponding parameters obtained with the FEM-based approach of
Gomez and Sebastian [29] on the same cases are also included for comparison purposes.
The reader can be referred to Figure A2 for a visual representation.
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Table 2. Conduction velocity values (m/s) estimated by the SPH- and FEM-based solvers [29] for an
ischemic and non-ischemic training cases at LBBB scenario. SPH: Smoothed particle hydrodynamics
meshless method. FEM: Finite element method. RV epi: Right ventricle epicardium. RV endo: Right
ventricle endocardium. LV: Left ventricle. PK: Purkinje system.

SPH-Based FEM-Based

RV endo RV epi LV endo LV epi Scar Average heart tissue PK Average heart tissue PK

Ischemic 1.53 1.40 1.36 1.62 0.49 1.30 1.69 1.78 1.30

Non-ischemic 0.83 0.65 0.63 0.51 - 0.65 2.40 0.50 2.60

3.1.2. Cardiac Resynchronization Therapy Simulations

The configuration of the CRT leads was initially positioned close to the apical regions
of both ventricles in the non-infarcted training case shown in Figure 5, following the
information provided by the organizers of the CRT-EPiggy19. In the EAM data, the mid-
apical lead location on the lateral wall of the RV endocardial layer resulted in fast epicardial
conduction, specifically in the posterior part. In contrast, LV lead apicality with weak access
to the PK system implied slower activation of its endocardial layer than of the epicardial one,
with the former presenting the last activation point. The SPH-based simulation produced
the largest differences (9.7 ms of LAT error in Table A1) in the RV. As for the LV, an 8.5 ms
LAT error was found, since it was not possible to fully capture the conduction velocity
change between the endocardium and epicardium. The metrics summarized in Table 1
present differences between simulations and observations of 2 ms for LV-TD, 4 ms in TAT,
and 4.1 ms in IVD with an error of 9.2 ms in the overall LAT.

For the infarcted testing case shown in Figure 5 (pig 3), non-physiological conduction
velocities above 2 m/s, specifically in the ischemic zone, were required to match the fast
electrical patterns observed in the EAM data (35 ms), with both CRT leads located in the
LV epicardial layer (anterior and posterior regions). The parameter optimization process
in SPH-based simulations did not capture these high conduction velocities due to the
physiological constrains, providing slower values and exhibiting large differences with
EAM in the apex, reflected in the 11 ms of TAT and in delay metrics over 6–7 ms. However,
the overall LAT error was not large (6.6 ms).

3.2. Testing Data
3.2.1. Left Bundle Branch Block Simulations

Table 3 summarizes the accuracy obtained with the meshless SPH-based in the testing
dataset. The initial impulses were fixed at 0 ms in the endocardial RV layer and at 9 ms in
the septal area for Pig 4, one of the non-infarcted testing cases. The SPH-based simulation
correctly replicated the conduction velocities of the LBBB EAM at different layers showing
a low error of 5.1 ms, and specifically the RV epicardium with a 4 ms regional error
(Table A2). Nevertheless, the anterior part of the LV endocardium showed a greater
number of variations, corroborated by a regional error above the mean (6.4 ms in Table A2).
The LV epicardial sequence was also similar (5.5 ms regional LAT RMSE in Table A2) in
measurements and simulations, with the same latest activation point.
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Table 3. Metrics characterizing the electrical activation maps in testing cases from measurements
and meshless simulations, including the best lead configuration in the cardiac resynchronization
therapy scenario. EAM: electroanatomical maps. SPH-Sim: Simulation with smoothed particle
hydrodynamics meshless method. LBBB: left bundle branch block. CRT: cardiac resynchronization
therapy. TAT: total activation time. LAT-RMSE: local activation time root mean square error. IVD:
inter-ventricular delay. LV-TD: left ventricle transmural delay. RVapx − LVbas: CRT leads in the right
ventricular apex and basal left ventricle. (*) indicates an infarcted pig.

Pig 4 Pig 5 Pig 6 (*)
EAM SPH-Sim EAM SPH-Sim EAM SPH-Sim

LBBB CRT LBBB CRT (RVapx − LVbas) LBBB CRT LBBB CRT (RVapx − LVbas) LBBB CRT LBBB CRT (RVapx − LVbas)

TAT (ms) 61 59 56 36.8 92 70 76 55 67 49 73.7 47

LAT RMSE (ms) 5.1 13.2 8.2 14.6 5.9 10.7

IVD (ms) 19.61 −9.04 14.7 0.5 25.58 7.83 21.5 1.2 12.75 2.63 18.3 0.8

LV-TD (ms) 16.55 −12.95 5.8 −0.7 32.68 −8.45 9.8 -0.3 14.22 −1.97 6.8 0.6

Recovery (%) 17.95 100.84 46.09 68.2 637 666

The EAM of the infarcted testing case (Pig 6) had an initial impulse at the RV endo-
cardium lateral wall, inducing a rapid RV activation, while the LV one was much more
gradual. The scar in Pig 6 was located in over the whole septum, with 57% of transmurality.
In the SPH-based simulations, the initial stimulus were placed at similar regions of the
non-infarcted case but at 2.6 ms and 14 ms for the RV endocardial layer and septal area,
respectively. To faithfully represent the ischemic region in the simulations, a reduction of
over 87% in the conduction velocity with respect to the PK system was determined by the
SLSQP optimization algorithm. The epicardial layer depicted the highest LAT regional
error (see Table A2), specifically in the posterior part for the RV and in the LV anterior part.
With a LAT-RMSE of 5.9 ms for Pig 6 (Table 3), the LV endocardial layer showed the best
fitting (5.7 ms regional LAT-RMSE) for a delayed basal activation of the LV (Table A2).

3.2.2. Cardiac Resynchronization Therapy Simulations

In the three analyzed testing cases, the optimal configuration consisted in leads located
in the RV apex and the basal LV (RVapx − LVbas configuration), providing the best recovery
metric values and overall cardiac resynchronization. The CRT leads were activated at
practically the same time in the three testing cases, with a time interval under 0.5 ms
between them. The RV was typically triggered prior to the LV (see histograms in Figure 6
for the infarcted testing case), where it was always located the last activation point.

Figure 6 shows the local activation time maps for a an infarcted case (Pig 6) of the
testing database in CRT condition, provided by the EAM, and for different simulated
lead configurations. Furthermore, histograms of the percentage of electrically activated
heart tissue for the right and left epicardial layers are displayed to better represent inter-
ventricular delays with different lead configurations. It can be easily appreciated the better
inter-ventricular synchronization provided by the RVapx − LVbas lead configuration when
analyzing the histograms, which was also confirmed by a low TAT and recovery discrepancy
between the SPH-based simulation and EAM data, as shown in Table 3. We can also see
in Figure 6 the impact of changing the LV lead from the basal (or latest activated point) to
the apex, increasing the inter-ventricular delay compared to the remaining configurations.
Additionally, placing the RV lead in the RVOT was better than in the earliest activated point
(i.e., lateral wall), as can be seen in Figure 6 (fourth and fifth row, respectively), the former
having less IVD.



Appl. Sci. 2022, 12, 6438 14 of 27

Figure 6. Local activation time maps ((a–c) showing anterior/posterior of biventricular epicardium
and LV lateral wall epicardium, respectively) after cardiac resynchronization therapy (CRT) from
the electro-anatomical (EAM) data and meshless simulations in the infarcted testing case, Pig 6.
Histograms of the percentage of electrically activated heart tissue for the right and left epicardial
layers are in the right column (d). From the second to the fifth row, different simulation results
obtained with different CRT lead locations are displayed. RVapx − LVbas: leads on right ventricle
(RV) apex and basal left ventricle (LV). RV − LVapx: both leads are located in the biventricular
apex. Early− LateL AT: leads located at the the earliest and latest EAM ventricular activated points,
respectively. RVOTsep − LVbas: leads in the septal RV outflow track and in the basal LV.

The non-infarcted cases of the testing database (Pig 4 and Pig 5) had an identical
overall behavior with respect to optimal lead configuration. However, they presented large
TAT errors between SPH-based simulations and EAM data (22.2 ms and 15 ms for Pig 4 and
Pig 5, respectively), with CRT simulations providing lower TAT values and, consequently,
larger recovery than EAM data (see Table 3). The difference between optimal SPH-based
simulations and EAM measurements was due to a different lead location. Figure 7 shows
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the histograms of the percentage of electrically activated heart tissue for both ventricles
under LBBB and CRT conditions for the three analyzed testing cases, showing the large
synchronization recovery achieved for all cases.

Figure 7. Percentage of electrically activated heart epicardium with a left bundle branch block
(LBBB) and with the best cardiac resynchronization (CRT) lead configuration in the three testing
cases. RVapx − LVbas: RV apex and LV basal stimulation regions. Epi: epicardium. act: Activation.
(*) indicates an infarcted pig.

4. Discussion

Computational models of the heart can provide useful insight on the pathophysio-
logical mechanisms and device options in CRT, contributing to reduce the high rate of
non-responders. However, computational models need to be personalized and validated
(after verification) with data coming from different sources, following standards such as
the V&V40, to build the required credibility to be part of the device design and regu-
latory evaluation pipelines in silico trials [47]. Regrettably, it is not straightforward to
acquire rich in vivo human data in clinical applications such as CRT. However, researchers
(e.g., Rigol et al. [24,26]) have developed realistic experimental models, generating animal
data that can be used to test and personalized the developed computational models of
the heart.

The CRT-EPiggy19 challenge provided as open access multi-modal data of swine
models under healthy, LBBB and CRT conditions, for model benchmark purposes. Three
research teams [27–29] participated in the challenge, running different FEM-based elec-
trophysiological models in patient-specific biventricular meshes that were provided by
the organizers. In practice, mesh generation from patient-specific data of complex organs
such as the heart often involves tedious manual interactions that hinder the application of
computational models to large patient databases. Meshless models are an interesting alter-
native that have already been applied in cardiac electromechanics [33,36,38,39], but they
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have not been benchmarked with FEM-based approaches in LBBB and CRT experimental
data. Meshless methods are obviously independent of the generation of patient-specific
cardiac meshes, thus solving one of the main bottleneck steps of mesh-based alternatives
for translating computational models into clinical environment.

In this manuscript we present a meshless modeling pipeline, based on the SPH-based
approach developed by Lluch et al. [38], where the most relevant parameters have been
optimized to fit a subset of the CRT-EPiggy19 dataset. Basically, training data of three
cases with LBBB were used to estimate the model parameters minimizing the differences
between local activation times provided by meshless simulation results and EAM mea-
surements, consequently predicting CRT electrical activation patterns with known lead
location. Several metrics, proposed by Soto Iglesias et al. [25], were used, beyond the
common global TAT parameter, to better quantify the local electrical heterogeneity in the
ventricles. Although computational times could be further reduced, the meshless method
could provide CRT predictions and lead configuration optimal strategies in around 20 min,
once the LBBB pattern has been assimilated. Timings which are compatible with the clinical
routine workflow. Moreover, meshless methods make the potential coupling with other
physical models very easy, compared with FEM alternatives, with electromechanical mod-
els allowing large deformations without the risk of convergence issues due to mesh element
quality degeneration.

The most relevant parameters related to the SPH-based model were the number of
particles and the kernel size, which were set up to different values (15×103 and 6.5–8.5 mm,
respectively) than the original SPH formulation in [42] (51 ×103 and 3 mm, respectively).
The main reason was to decrease the computational cost for each simulation, without
compromising result accuracy, so that the meshless method could be embedded into an
parameter optimization framework. On the other hand, Mountris and Pueyo [39] employed
a higher number of particles (240 ×103) and a fixed neighbourhood size (150 particles) in
their meshless model applied to CRT-EPiggy19 data, which would be prohibitive in our
application due to the exponential growth in computational cost of the SPH-based solution.

4.1. Benchmark Analysis of Meshless and Finite-Element Method Solutions on Training Data

Despite the complex pipeline to process EAM data and the variability of the analyzed
cases, the SPH-based model provided low LAT errors in LBBB (6.75± 1.59 ms) and CRT
(10.38± 3.80 ms) cases. The meshless simulation results were generally similar to FEM-
based ones from CRT-EPiggy19 participants (see Table 1 and Figure 5), when qualitatively
analyzing the electrical activation patterns, and with the quantitative metrics (e.g., TAT, LAT,
delays). However, some methodological differences were found that could explain small
variations in the obtained results. For instance, the approach by Gomez and Sebastian [29],
using a biophysical Ten Tusscher–Panfilov model, with a larger number of parameters and
a more personalized Purkinje system differentiating between RV and LV, will certainly be
more appropriate than simplified phenomenological Eikonal models in some cases. On
the other hand, the low computational cost of Eikonal-based solutions allow running a
lot of simulations and a larger exploration of the parameter space to match EAM data.
Computational times for both meshless and FEM-based methods depend on the domain
resolution (i.e., number of points/elements), the complexity of the electrophysiological
model, and the number of parameters to estimate in the optimization procedure. Moreover,
there is also a variety of IT resources involved. Independently of these factors, the main
advantage of the meshless methods is the time saved to prepare the simulation domain
compared to FEM alternative, which can be a matter of hours for complex geometries.

The key parameters related to the electrophysiological modeling for better fitting the
EAM data were (1) the initial stimuli (number and position) of the electrical activation,
(2) the modeling of the PK system, (3) and the regional conduction velocity distribution,
which was optimized for each analyzed case. For instance, most participants [27,29] and
ourselves adapted their modeling solutions to consider a possible retrograde activation
of the PK system, via an extra-stimulus, to replicate the rapid activation from the apex to
the LV base observed in the EAM data. Figure A3 in the Appendix shows how using only
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one stimulus provided simulation results farther from the EAM data (error of 15.3 ms vs.
5.1 ms for two stimuli), demonstrating the dependence of the simulated activation patterns
on the stimulation protocol. Potential causes for the PK retrograde activation might be
the more transmural PK system in pigs compared to humans, which lead to incomplete
LBBB such as in Pig 3 (anterior PK branch being functional while posterior branch being
damaged, affecting the epicardial propagation). Modeling solutions with dedicated PK
models such as in [29,39] could explain their better performance in these cases, justifying
the use of more detailed and personalized PK system estimation algorithms [46,48].

The most important parameter to optimize in all electrophysiological modeling so-
lutions to match EAM data were the regional distribution of conduction velocities, with
computational costs directly linked to the chosen number of regions. We performed a
sensitivity analysis that resulted in the use of 5 regions (RV/LV endocardium/epicardium,
PK system), which avoided overfitting of LBBB-estimated results when applied to CRT
cases (effect seen with a larger number of regions) and reasonable computational times
(e.g., around 20 min per simulation). The CV distribution provided by the SPH-based
model (see Table 2) are physiologically meaningful (e.g., PK being the fastest region, endo-
cardial regions faster than epicardial ones, the scar having the lowest CV values), due to
the imposed constraints in the optimization step. Cedilnik and Sermesant [28] used the
same regions without PK in the only case they processed (Pig 3), however obtaining similar
qualitative results in CRT simulations to Gomez and Sebastian [29] and ourselves. The
regional strategies selected by Khamzin et al. [27] and Gomez and Sebastian [29] were the
opposite, personalizing 30 and 34 (17 AHAsegments division in both ventricles) regional pa-
rameters of conduction velocities, respectively, which gave them a lot of flexibility to match
EAM data at the expense of risk of overfitting, as could be the reason of non-physiological
CV distribution in some cases, compared with the SPH-based results (see ischemic case in
Table 2, with conduction velocity slower in PK than in heart tissue).

Aiming at a perfect matching of simulation results to EAM data is not a simple task
due to the variability of electrical patterns and the data uncertainty coming from the
nature of EAM acquisitions and the post-processing (e.g., interpolation) required to create
the biventricular meshes with local activation time maps. For instance, the sequential
way (point-to-point) for acquiring the EAM data made the measurements dependent
on the heart’s anatomy and the number of EAM points, which was relatively low since
an old system (CARTO XP) was used. Unexpected electrical activation patterns in the
EAM of some cases could be explained by EAM interpolation effects. For instance, Pig
2 and Pig 4 non-infarcted cases had a significantly smaller amount of anatomical point-
based acquisitions from CARTO XP in the LV anterior epicardial layer, leading to a 20 ms
slower activation in the posterior vs. the anterior epicardial LV. We could not capture
such heterogeneity in the SPH-based modeling pipeline since a single conduction velocity
parameter was used for the entire LV epicardium, leading to the highest regional error in
this area (see Tables A1 and A2 in the Appendix A).

Additionally, data uncertainty can lead to unrealistic and non-physiological parame-
ters providing a better fitting between simulations and observations. For example, similar
to Gomez and Sebastian [29], we needed high conduction velocities in areas near the scar
in the infarcted cases (Pig 3 and Pig 6) to better fit EAM data with LBBB. Additionally,
some participants included a second stimulus in the RV to better replicate the available
electrophysiological measurements, which could correspond to the influence of the RV
septomarginal trabecula but it could also be an interpolation artefact due to the sparsity of
the EAM data. In the SPH-based modeling pipeline, we chose a constrained optimization al-
gorithm to impose certain physiological requirements, at the expense of having less degrees
of freedom, unlike approaches taken by other participants [27] that help them to achieve
better fitting with EAM data (3–4.5% of LAT error in both LBBB and CRT training cases).

Another source of uncertainty is the position of the CRT leads, which justifies some
differences between simulation results from all participants and EAM data. In Pig 1 and
Pig 3 of the training dataset, the sub-optimal lead configuration was remarkable. In Pig 1,
the apicality of the leads in both ventricles reduced the benefit of biventricular pacing, thus
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being a CRT non-responder (low recovery metric) both in the meshless simulation and in
real data. A different CRT configuration with the LV lead placed at the LBBB latest activation
point improved the recovery for both meshless and FEM-based simulations. In Pig 3, the
meshless and FEM-based simulations managed to improve the recovery percentage after a
reduction of the TAT due to the estimated high conduction velocities. However, the basal
configuration of the leads also both located in the epicardial layer of the LV for the high
extension in the apical zone and transmurality of the scar, determined the ineffectiveness of
biventricular resynchronisation therapy reflected in the delay metrics such as the IVD. An
analogous behavior was found by Cedilnik and Sermesant [28] with a practically identical
CRT prediction LAT error (6.5 ms and 6.6 ms for them and us, respectively) to SPH (6.6 ms).

The simulation protocol designed by CRT-EPiggy19 organizers asked to personalize
model parameters with the LBBB data and use them to predict CRT measurements. How-
ever, some participants [27,29] applied correction strategies to better fit EAM data after
CRT. Gomez and Sebastian [29] recalculated the conduction velocities for Pig 3, allowing
a better match in the LV apical part than with the SPH-based model without corrections.
Khamzin et al. [27] estimated a weight to adapt LBBB regional conduction velocities to
CRT using Montecarlo random sampling and simulating 1000 different electrical activation
patterns for each sample due to the low computational cost of their Eikonal-based model.
Additionally, we did not use warming-up cardiac cycles to establish robust initial boundary
conditions in the SPH-based model, while Gomez and Sebastian [29] had 10 cardiac cycles
for stabilization purposes (taking 36 h), following the pipeline they previously optimized
for arrhythmia simulation [49]. Although initial boundary conditions should not have a
large influence for predicting activation maps, a rigorous study should be performed to
confirm this assumption.

4.2. Validation of Meshless Method Results on Testing Data

Three testing cases of the CRT-EPiggy19 challenge were also processed with the SPH-
based modeling pipeline. Lamentably, FEM-based simulation results were not available for
benchmarking. As the CRT lead location was not provided in the testing cases, four differ-
ent lead configurations based on literature [11,50–52] were evaluated. In the three analyzed
testing cases, the optimal configuration was with a RV apical lead and the LV one placed
at the epicardial lateral wall (RVapx − LVbas in Figures 6, A4 and A5). The RVapx − LVbas
lead configuration not only provided better recovery percentages, but also had a smaller
LAT error with CRT EAM data (see Table A2 in the Appendix A). This is in agree-
ment with multiple clinical studies and guidelines [11,53], although different alternatives
(e.g., different RV location [20]) are still being proposed. For instance, some studies suggest
that RVOT pacing may be more beneficial than standard one, specifically in cases with
a decreased left ventricular ejection fraction [11,50]. In our study, RVOT pacing was the
second best lead configuration, but still with slightly worse overall efficiency compared to
RVapx − LVbas. The worst scenario was when both leads were in apical locations, as in the
case of Pig 1, where the benefits of bi-ventricular pacing are reduced to only one lead due
to an overlap of the electrical breakthrough waves.

4.3. Limitations and Future Work

The presented study has several limitations at different levels. First, the available data
from the CRT-EPiggy19 challenge ertr useful to identify and better understand key aspects
of different CRT models. However, several factors associated with EAM acquisition and
processing induced a non-negligible data uncertainty that can limit the conclusions from the
study. As well, hemodynamic descriptors, e.g., based on Doppler-derived measurements,
were not available from the experimental study in Rigol et al. [24], preventing the optimiza-
tion of important CRT parameters such as the AV delay, which has been found a potential
non-responder factor [54]. Moreover, even in the case of better animal experiments, models
should also be tested on in vivo human data to investigate its added value in the CRT
clinical pipeline. Furthermore, the processing and modeling of each case, including a large
number of simulations for parameter optimization, is very time consuming. The conse-
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quence is that only a few cases could be processed in our study and by the CRT-EPiggy19
participants, limiting the impact and generalizability of the benchmark analysis. A more
comprehensive comparison with other FEM-based and meshless models in common data
would be beneficial.

The proposed SPH-based modeling pipeline provided simulation results comparable
to the state-of-the-art alternatives, but several improvements could be incorporated. Firstly,
the inclusion of the anisotropic ratio and the myocardial layer for each ventricle in the
optimization pipeline could give more degrees of freedom to match EAM data. Additionally,
the parameter optimization schemes used by all participants of the CRT-Epiggy19 challenge
were not taking advantage of recent technological advances such as the use of deep learning
algorithms [55,56], variational approaches [57], reduced-order models [58,59] or GPU-
based architectures [60], which allows for the exploration of a larger space of parameter
solutions at reduced computational times. Moreover, cardiac multi-physical models should
provide more realistic simulations, allowing for the inclusion of hemodynamic factors
and improving the adjustment of CRT configuration through flow ratios [61], perfusion
models [17], lumped models of the whole cardiovascular circulation [18] or with a complete
torso [20].

5. Conclusions

A meshless modeling pipeline to simulate cardiac electrical patterns in CRT was com-
pared to FEM-based alternatives, providing equivalent results on fitting experimental data
available from the CRT-EPiggy19 challenge. The main advantage of the meshless model is
the independence from the usually arduous patient-specific meshing process, one of the
most important bottlenecks of translating computational models into a clinical environment.
However, the most relevant aspect for accurate CRT predictions was the chosen parame-
ter personalization strategy rather than the geometrical discretization. In particular, the
regional conduction velocity distribution was key, requiring at least five different regions
and ideally including a PK label. A larger number of regions was associated with better
data fitting but higher computational costs and more risk of overfitting. Additionally, the
optimal CRT configuration was found with apical RV and basal LV leads, as reported in
the literature. Despite the uniqueness of the CRT-EPiggy19 challenge dataset, data uncer-
tainty was high in some cases due to challenging EAM acquisition and processing, which
could lead to the estimation of non-physiological parameters and the requirement of prior
constraints in the optimization algorithm. Nevertheless, having several teams of modeling
researchers working on the same data have been beneficial for each challenge participant,
jointly improving the different modeling solutions.
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Appendix A

Figure A1. Local activation time maps for a non-infarcted case, Pig 2, of the training database in
left bundle branch block (LBBB) and cardiac resynchronization therapy (CRT) conditions, provided
by the electroanatomical measurements (EAM) and a meshless (SPH) model. (a,b) correspond to
anterior and posterior biventricular epicardial visualizations. (c,d) show epicardial and endocardial
view of the left ventricle (LV) lateral wall, respectively. RV: right ventricle.
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Figure A2. Conduction velocity map for one of the ischemic cases analyzed in our study.

Figure A3. Local activation time maps for the infarcted case, Pig 3, of the training database in left
bundle branch block (LBBB) and cardiac resynchronization therapy (CRT) conditions, provided by
the (a) electroanatomical measurements (EAM) and the (b,c) meshless (SPH) model. From top to
bottom in each condition, the anterior and posterior biventricular epicardial visualizations are shown,
respectively. The electrical activation patterns acquired by maintaining the strategy of two initial
stimuli (Right Ventricle (RV) and septal) are represented in (b) and disregarding only the initial RV
stimulus in (c). LV: left ventricle.
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Figure A4. Local activation time maps ((a–c) showing anterior/posterior of biventricular epicardium
and LV lateral wall epicardium, respectively) after cardiac resynchronization therapy (CRT) from
the electro-anatomical (EAM) data and meshless simulations in the non-infarcted testing case, Pig 4.
Histograms of the percentage of electrically activated heart tissue for the right and left epicardial
layers are in the right column (d). From the second to the fifth row, different simulation results
obtained with different CRT lead locations are displayed. RVapx − LVbas: leads on right ventricle
(RV) apex and basal left ventricle (LV). RV − LVapx: both leads are located in the biventricular
apex. Early− LateL AT: leads located at the the earliest and latest EAM ventricular activated points,
respectively. RVOTsep − LVbas: leads in the septal RV outflow track and in the basal LV.
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Figure A5. Local activation time maps ((a–c) showing anterior/posterior of biventricular epicardium
and LV lateral wall epicardium, respectively) after cardiac resynchronization therapy (CRT) from
the electro-anatomical (EAM) data and meshless simulations in the non-infarcted testing case, Pig 5.
Histograms of the percentage of electrically activated heart tissue for the right and left epicardial
layers are in the right column (d). From the second to the fifth row, different simulation results
obtained with different CRT lead locations are displayed. RVapx − LVbas: leads on right ventricle
(RV) apex and basal left ventricle (LV). RV − LVapx: both leads are located in the biventricular
apex. Early− LateL AT: leads located at the the earliest and latest EAM ventricular activated points,
respectively. RVOTsep − LVbas: leads in the septal RV outflow track and in the basal LV.
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Table A1. Quantitative measures characterising the regional local activation time error in the electrical
activation maps for the training cases from meshless simulations. LBBB: left bundle branch block.
CRT: cardiac resynchronization therapy. RMSE: root mean square error. LV: left ventricle. RV: right
ventricle. Epi: epicardium. Endo:endocardium. (*) indicates an infarcted pig.

RMSE (ms) Pig 1 Pig 2 Pig 3 (*)

LBBB CRT LBBB CRT LBBB CRT
RV Epi

5.6 8.73 7.95 7.04 5.6 4.3

LV Epi 5.9 7.37 10.17 8.53 4 6.2

LV Endo 9.1 7.45 9.76 7.48 6.4 9.7

Table A2. Quantitative measures characterising the regional local activation time error in the elec-
trical activation maps for the testing cases from meshless simulations. LBBB: left bundle branch
block. CRT: cardiac resynchronization therapy. RMSE: root mean square error. Epi: epicardium.
Endo:endocardium. RVapx − LVbas: right ventricle apex and basal region of the left ventricle.
RV − LVapx: RV apex and LV apex. Early − LateL AT: earliest and latest EAM activation points.
RVOTsep − LVbas: RV outflow track septal and LV basal region. (*) indicates an infarcted pig.

RMSE (ms) RV Epi LV Epi LV Endo

Pig 4

LBBB 3.9 5.47 6.42
CRT (RVapx − LVbas) 17.14 11.6 10.71
CRT (RV − LVapx) 17.23 14.56 13.16

CRT (Early− LateL AT) 20.67 13.4 11.86
CRT (RVOTsep − LVbas) 15.46 13.17 12.33

Pig 5

LBBB 4.92 7.68 13.4
CRT (RVapx − LVbas) 10.98 16.26 17.85
CRT (RV − LVapx) 10.98 14.74 19.27

CRT (Early− LateL AT) 20.87 10.82 14.73
CRT (RVOTsep − LVbas) 19.82 21.88 20.8

Pig 6 (*)

LBBB 5.97 6.11 5.7
CRT (RVapx − LVbas) 11.94 12.21 7.98
CRT (RV − LVapx) 12.03 18.95 14.01

CRT (Early− LateL AT) 5.91 14.48 12.7
CRT (RVOTsep − LVbas) 13.78 12.85 11.93

References
1. Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.;

et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [CrossRef] [PubMed]
2. World Health Organization. Cardiovascular Diseases (CVDs). June 2021. Available online: https://www.who.int/news-room/

fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 11 May 2022).
3. Zhang, F.; Wang, Y. Left ventricular mechanical dyssynchrony in patients with heart failure: What is the next step? J. Nucl. Cardiol.

2021. [CrossRef] [PubMed]
4. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel,
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