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Abstract—Many bioelectric signals result from the electrical
response of physiological systems to an impulse that can be in-
ternal (ECG signals) or external (evoked potentials). In this pa-
per an adaptive impulse correlated filter (AICF) for event-re-
lated signals that are time-locked to a stimulus is presented.
This filter estimates the deterministic component of the signal
and removes the noise uncorrelated with the stimulus, even if
this noise is colored, as in the case of evoked potentials. The
filter needs two inputs: the signal (primary input) and an im-
pulse correlated with the deterministic component (reference
input). We use the LMS algorithm to adjust the weights in the
adaptive process. First, we show that the AICF is equivalent to
exponentially weighted averaging (EWA) when using the LMS
algorithm. A quantitative analysis of the signal-to-noise ratio
improvement, convergence, and misadjustment error is pre-
sented. A comparison of the AICF with ensemble averaging
(EA) and moving window averaging (MWA) techniques is also
presented. The adaptive filter is applied to real high-resolution
ECG signals and time-varying somatosensory evoked poten-
tials.

I. INTRODUCTION

MONG the most well-studied bioelectrical signals are
the event-related signals that are time-locked to a
stimulus. This stimulus is usually external (visual, audi-
tory, or electrical in the case of evoked potentials). In
other cases the signal is related to an internal stimulus. In
these cases a time-reference point can be defined from a
wave of the same signal, as with QRS complex when an-
alysing ECG signals.
Bioelectrical signals are often contaminated by noise
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from various sources. In general, an event-related signal
can be considered as a process which can be decomposed
into an invariant deterministic signal time-locked to a
stimulus, and an additive noise uncorrelated with the sig-
nal. The most common signal processing of this type of
bioelectric signal separates the deterministic signal from
the noise. Several techniques can be considered. Linear
filtering is not possible in general, because the spectrums
of signal and noise overlap. The classical ensemble av-
eraging (EA) technique [1] is a method for recovering the
signal hidden in the noise, but it needs a large number of
records to obtain a good estimation of the signal, and can-
not show eventual dynamic variations of the signal shape.
Such a time-varying property is very common in evoked
potentials (EP) and ECG signals.

The adaptive signal processing technique appears to be
appropriate for such time-varying situations [2]-[4].
Adaptive filters are self-designing filters based on an al-
gorithm which allows the filter to “‘learn’” the initial input
statistics and to track them if they are time-varying. These
filters estimate the deterministic signal and remove the
noise uncorrelated with the deterministic signal. The
closed-loop adaptive filtering technique has been applied
to several biomedical signals: ECG [2], [5], [6] and
evoked potentials [7], [8]. In particular, predictors [2]
were applied to detect His-Purkinje signals and ventricu-
lar late potentials [9], [10]. Predictors consider that the
signal is recurrent and the noise is random and Gaussian.
Thus, both inputs of the filter (the primary and the refer-
ence signals) are the same, but the former is a delayed
version of the latter. This filter removes the muscle noise,
but not the periodic 50/60 Hz interference. Another
adaptive approach which has been applied to bioelectric
signals is interference cancellation [2]. Here the refer-
ence signal must be a correlated version of the noise that
is present in the primary signal. This filter was used to
cancel the 50-Hz interference [2] and to detect P-waves
in the ECG by QRS-T cancellation [11].

In this paper we analyse an adaptive impulse correlated
filter (AICF) for event-related signals that we proposed
recently [11]-[13]. In particular, this filter can be applied

0018-9294/92$03.00 © 1992 IEEE



LAGUNA et al.: ADAPTIVE FILTER FOR EVENT-RELATED BIOELECTRIC SIGNALS 1033

to evoked potentials and low-amplitude potentials that are
time-locked to a high-amplitude wave of the ECG (late
potentials and His-Purkinje potentials). The AICF needs
two inputs: the signal (primary input) and another input
correlated with the deterministic component (reference in-
put). Both the implementation of the filter and its mathe-
matical expressions become especially simple when the
reference input is an impulse and the LMS algorithm is
used in the adaptation process.

A study of the signal-to-noise ratio (SNR) improvement
achieved with the AICF is presented and compared with
the classical EA and with moving window averaging
(MWA). We show that this AICF filter, when the LMS
algorithm is used in the adaptation process, is equivalent
to an exponentially weighted averager (EWA), where the
filter can be seen as an averager with a forgetting factor.

We illustrate applications of this filter to the study of
high-resolution ECG signals, and in particular to the de-
tection of ventricular late potentials. Next we apply the
filter to time-varying somatosensory evoked potentials
(SEP) recorded before and after the administration of
etomidate anesthetic. Results obtained using the AICF and
signal averaging are compared.

II. METHODS
A. The Adaptive Filter with an Impulse Reference Input

The adaptive filter has two inputs (Fig. 1). The primary
input (d,) is the cosecutive linking of the N recurrences of
the event-related signal we want to filter: Each event-re-
lated signal extends the interval of interest following the
stimulus and is considered as a record of a random pro-
cess. The primary input is defined by

dk=sk+nk

with
[ m=1, , N
Record number index
I=1,-+-,L

k=(m—DL+1 {
Record sample index

L Number of samples

\ in each record
1)

where s, is a signal formed by the subsequent linking of
the deterministic component of the event-related signal (s,
= 5;+ ). The signal n; is the additive noise not correlated
with s, and hence not correlated with the stimulus that
generates Sy.

The reference input (x,) of the adaptive filter is a unit
impulse sequence synchronized with the beginning of each
recurrence of s;. This impulse sequence x; can be gener-
ated in different ways, depending on the signal d, that we
are processing and the origin of the stimulus that triggers
the signal occurrence. A signal detector or a more precise
alignment method [14] can define the impulse from the

d, = S+ Ny

s

LMS

Fig. 1. Block diagram of the adaptive filter to estimate the deterministic
component s, of a signal dy, using a nonrecursive transversal adaptive filter.
x, is the impulse correlated with the deterministic signal s,, n, is noise
uncorrelated with s, and y, is the filter output.

high-amplitude waves in case of ECG signal processing.
If the signal is an evoked potential, the stimulus can easily
be derived from the external stimulus. Thus, the reference
input can be defined as follows:

1
X = Xm-DL+1 = {0

The output of this adaptive filter (y,) can be expressed,
according to the classical notation [2], by
L
Ye = E;l WigXg—i+1 =

I=1,Vm
. 2)
I+ 1,Vm

WX, 3)

where W, = [wy, wy -~ wy) is the weight vector and
X, =[x X1 x¢_y +1]" is the reference vector. The
error signal is ¢ and the mean-square error (MSE) be-
tween the signal under study and the estimated one, can
be expressed by

¢t = E[&] = El(se — w1 + Elni)
= E[d}] + WIRW — 2P'W
R = E[XX{l, P=E[dX] @)

where R and P are the input correlation matrix and the
cross-correlation vector, respectively. In this case x; is an
unit impulse sequence, and so we obtain a simple expres-
sion for R and P:
R=%1, P:I%[s1 s 00 o5 )
Throughout the paper we will use the notation E[ ] in
two different ways. When we are referring to a conver-
gence problem, the expectation represents the mean of all
the possible values as a function of time for one recur-
rence of the process (time average E[ ). This mean does
not depend on the chosen recurrence if ergodicity can be
assumed; this is the case in (4). On the other hand, when
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we study the performance of an adaptive algorithm at time
instant k (Section II-C), the expectation must be under-
stood as the mean of the possible recurrences of the pro-
cess at this time instant k (ensemble averaging E,[ 1). The
difference between the two expectations lies in the depen-
dence or independence of the result on the time instant k.

The optimum weight vector that minimizes the MSE
from (5) is

Wx=R"'"P=1[s 5 sl (6)
In the steady-state the optimum filter output is
L

= W*X, = ;‘ WiXe_iv1 = WE = Sk )

When the weight vector W, = W * the filter output y,

achieves the deterministic component s;. Thus, we verify

that this AICF filter estimates the component of d; which

is event-related to the stimulus; that is, the component of

interest in event-related biomedical signal processing.
From (4), the minimum MSE is

Emin = Eld}] — PPW* = E[nj]. ®
The error in the steady-state is
£ = £ + Excess MSE = £,,(1 + M), )
where M is the misadjustment that depends on the adap-
tive algorithm, which from (5), (8) and (9) can be ex-
pressed as
E[(s — y0’]

M = >
Ejlni]

(10)
B. The Adaptive Algorithm

The least-mean-square (LMS) algorithm [2] is used to
adjust the weights of the adaptive filter, in order to min-
imize the MSE and estimate the deterministic component
s, through the filter output y,. This algorithm is well
known and can be expressed by the following equation:

Weer = W, + 2ue X, (1)
The condition that assures the convergence of the al-
gorithm is [15]
1
p < m
The time constant (7,,,) for the convergence of the MSE
is [2]

0<

-1 12
=3 (12)

1 L
4pn  4p’
where A = (1/L) is the eigenvalue of the matrix R (all
the eigenvalues are identical). 7,,, is measured in number
of sampling periods.

Therefore, the gain constant p controls the stability and
the speed of convergence. Thus, the convergence of
weights can be obtained in the first record (7, < L) if
an appropriate value of p is selected. This possibility will
be very useful for tracking recurrence-to-recurrence vari-
ations in the event-related signal.

(13)

Tm.se =

The misadjustment M can be approximated following
the method in [2] as

M = ptr[R] = p, which implies £ = E[n{](1 + w).
(14)

Given the special characteristics and simplicity of this fil-
ter, we will later consider the exact expression for M and
will show that M = p is a good approximation to the
exact expression, when p << 1.

The selection of u becomes a tradeoff between the con-
vergence rate and steady-state MSE. One possibility for
resolving this tradeoff, in stationary signals, has been
studied in [16], where the optimum g value selection is
made according to the criterion of selecting the which
yields the smallest misadjustment error at the end of the
observation interval. If there are transient changes in the
deterministic component, it will be better to select a large
p value to assure the estimation of these transient changes.
If the deterministic component changes only progres-
sively, a smaller y value can be selected to reach a better
steady-state estimate.

C. Signal-to-Noise Ratio (SNR) Improvement

In order to determine the performance of this filter, the
signal-to-noise ratio (SNR) improvement in the case of a
stationary deterministic signal s, will be studied. First, we
define the SNR at the primary input signal d; as

Els}] _ _ Elsi)
Einl)  Eld — 50’1

The objective of this section is to find the relationship
between the SNR at the input signal d; and the SNR at the
output signal y,. When the algorithm has not yet con-
verged to the steady-state, the output signal y, can be con-
sidered to be composed of a signal component (s) that is
correlated with the deterministic signal s, and a noise
component (n;) uncorrelated with s;. That is

SNR; = (15)

Ye = i+ ng. (16)

Given that the process has not yet converged, the first
component s; will not be s, but rather a signal correlated
with s;. Accordingly we define the SNR at the output sig-
nal y, as

E[si]
E[n)

SNR, = a7

Note that E,[s,iz] and E,[n}?] are local time averages; these
will be considered later. To find the relation between SNR,
and SNR, it is first necessary to obtain s; and n;. We de-
fine

S = and n; =y, — Elvd =y — s, (18)

el Vi

where E,[y,] is the expected value of y; at discrete time k
when we repeat the adaptation process for different noise
sequences and the same deterministic component. In fact
we will see that s} defined in this way is the component
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of y, correlated with s, and r; is the remainder noise. In
Appendix A we will demonstrate that

(1= (-21)

This relation proves that s; = E,[y,] is related to s;. In
fact, it is proportional to s;, which is the signal we want
to recover. In the steady state (k = o) s; becomes s,
since by the convergence condition (12): u < L; thus
limy~ o (1 — 2u/L)* = 0, and lim; . 5§ = 5.

Let us now study n;. In Appendix B we prove that this
residual noise is not correlated with s;. Thus, n; is the
noise that contaminates the filter estimation.

To evaluate SNR, as a functlon of SNR, 1t is necessary
to determine the relatlon of E[s{*] and E/[n} 2} with E,[s3]
and E[n}], respectively. The dependence of s; with s, has
already been dlscussed and from (19) we define the local
time average E[sk] a-qa - 2[;1,/L])) E,[sk] In
Appcndlx B we show that if ergodicity is assumed
(E{nY) = E.n %)), the relation between E [ny?] and
E,[n}] is given by

2k
E[n] = ME[n?) <1 - <1 -2 %> ) 20)

With this expression, we can now evaluate the SNR,
defined in (17), obtaining

ky\ 2
, SNRd<1—<1—2E>>
E[s] L

R, = = @1)

N
L

where SNR, is defined in (15). From this expression we
can define the improvement of SNR (ASNR)) as

s (2]

Y —
L

This expression can be reformulated by considering k to
be an integral number of occurrences of the event-related
signal (k = NL) where N is the number of occurrences:

L0287
M(-(-21))

In this expression when N — oo the steady-state im-
provement of SNR is reached. Since the convergence con-
dition assures |1 — 2u/L| < 1, we have that

lim ASNR, = l = 1
u

19)

ASNR,

(22)

ASNR, = 3)

im iy (24)

The convergence condition assumes 2u /L << 1 so we
can approximate the expression of ASNR, by a first order

Taylor expansion, which gives

1= =2w"
ASNR, =MA=a =205
When N is small enough to satisfy pN << 1, we can ap-
proximate (1 — 2u)" = (1 — 2uN ) in which case ASNR,
= N. This approximation for small values of N leads to
the same results as using a classical EA after averaging a
number N of records [1]. However, in classical EA the
improvement of SNR increases indefinitely with N, while
in this filter the SNR reaches a constant value 1/M. The
advantage of this AICF is the capability of adaptation to
dynamic changes in the deterministic signal s;. EA does
not adapt to such changes.

In Fig. 2 we see the evolution of ASNR, for different
values of p as a function of the number N of signal recur-
rences. We can see that initially (N — 0) all the curves
have unit slope ASNR,(N ) = N and they reach a constant
value 1 /M = 1/p.

@25)

D. The Adaptive Filter, Using the LMS Algorithm, as
an Exponentially Weighted Averager (EWA)

The behavior of this adaptive filter using the LMS al-
gorithm can be analysed from a different point of view.
We will show that the output y; is equivalent to an expo-
nentially weighted average of the input signal recur-
rences, with a forgetting factor that multiplies each re-
currence of the signal in an exponentially decreasing
fashion.

To show this equivalence, we make use of the LMS
algorithm expression (11) for each weight i of the vecto-
rial equality and considering the expression of the error
€, We can write

wy + 2u(dy — y)Xe—isn  i=1,-- L
(26)

Witk+1) =

Until now we have specified the discrete time index as
extending from k = 1 to . The index k is a sample index
that can be expressed as a function of the recurrence num-
ber m and the sample index in each recurrence I: k = (m
— 1)L + I. Thus, when we refer to time instants in dif-
ferent recurrences, we will denote by di' = dy—m-1)L+1
Y= Vemmonr+t Wil = Wik=@m -1+ ° » to refer to
values at the time instant [ (I = 1, , L) of the mth
signal recurrence. As s7' is assumed to be independent of
m (its value is constant for all m recurrences) we will omit
this dependence in these signals and denote them by s,.

The values of the weights w/j change only once in each
recurrence, when i = [, since the adaptation occurs only
when x, _;,; # 0. If we have N recurrences of the signal
(m =1, ++ -, N) we can rewrite expression (26) as a
function of the recurrence number m for each weight i:
=1, ", L

1
M/n+l —W” +2H(dm_y,) {
m=1, -
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Fig. 2. Improvement of SNR as a function of the number of recurrences (N) for the AICF filter and classical EA. ASNR, as
function of N (1, 200) for different values of x written upon the graph. We can compare the improvement of the adaptive filter

with that of classical EA (straight line of unitary slope).

In this expression we know that

L
Vi= Lowi = wi k=(m—DL+1 (8)
We will write w” to mean the weight i in the mth recur-
rence, given that the adaptation of each weight i only oc-
curs once in each recurrence m (when i 1). Thus we
omit one unnecessary subscript, since w7 is constant /.
Composing (27) and (28) we have the adaptation expres-
sion as

Wit = Wi+ 2ud! — wh 29

where i indexes the sample at each of the m recurrences
(d}") and the weight under consideration (w!™). In this way
we have isolated the study of the signal recurrence in the
study of the sample i (d}") of each m recurrence. Note how
each weight / is now associated only with the / = i sample
of the signal recurrences. This is a consequence of the
correlated impulse used as a reference input in this adap-
tive filter.

If we express the recursive relation (29) as a function
of the initial weight w;, which is initialized to zero W,
0), then

N
whNt = 20 2u(1 — 2V g, (30)
m=1
From (28) and noting that y" = w}", we obtain
N
D R A O b M) )

The index i has been changed to / since now it refers only
to samples in each record, and [ is the index generally
used in this case.

From the expression (31) we see that y?’ is a weighted
average of the /th sample of each signal recurrence m.
The weight factor 2u(1 — 2u)" ™™ decreases when
N — m increases as long as |1 — 2u| < 1 (here again,
the convergence condition appears). This equivalence
with the weighted averager implies that the adaptive filter
with an impulse reference input and using the LMS al-
gorithm is a linear filter (31). However, this fact is not
true in general for all adaptive filters.

Regarding (31) we see that the output at time instant /
of the (¥ + 1)th recurrence, depends only on the previous
di' =s; +nl'(m =1, -+ -, N) signal recurrences at the
same time instant /. Thus the requirement on the noise to
be filtered is that it must be uncorrelated between the sig-
nal recurrences. It does not need to be white noise to sat-
isfy the theoretically predicted filter performance. This is
very important in signals like evoked potentials in which
it is well known that the noise, usually the background
EEQG, is a highly correlated signal in each record. Taking
the expected value of (31) for each sample I, we obtain

N+1
]

N
E[y)*™" zus,m; (1 =2V

1 -1 =2

- <20 (32)

= 2[,LS1

If the convergence condition is satisfied then E[y[°] = s,.
This means that the weighted average, when the number
of recurrences is large enough, converges to the deter-
ministic signal component s;. This result is the same ob-
tained in Section II-A [see (7)].

Finally, we will deduce the improvement in the SNR
with this methodology from (31) and compare the results
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with the expression obtained through the adaptive for-
malism (Section II-C). If we take (31) and substitute d'
as a function of s, and the noise n;"', we obtain

N
= B 2p(1 = 2" s+ ) =

(33)
where
N
iVt = B 2u(1 - 20" (34)
is the residual noise, and
N
, _ 11— =2
NEL ST 21 — 2V s, =
s = w( W s = 2p 1= d -2 8-
(35)

Taking again the definition of SNR, and considering the
expected values of the signals, and assuming that the noise
n]" is stationary, has zero-mean and is uncorrelated be-
tween recurrences (although it is allowed to be colored),
we have

m__m 0
Eln'ni"] = E[n)
qn

m+ m
(36)
m=m vm, m'
from which we obtain that
E IN+1\2
xR, = ZAGI )
1A A

_ 40— (=20 = (= 20)Es])
420 — (1 = 200°(1 — (1 = 2p™EIn]

(37

and calculating ASNR, yields

d-wa—a-2p%
(- —2w?

This expression is the same as (25) except for a factor (1
— ). This derivation of SNR, is exact and does not in-
clude any approximation. However in (25) we used the
value of M = putr(R] for the LMS algorithm given in 2]
which includes the approximation of u << 1. If we con-
sider now the same approximation, we recover the expres-
sion for ASNR, that was obtained in (25). In the steady-
state case (N = oo) we will have

ASNR, = (38)

lim ASNR, = —%.

N—oo»

(39

This expression is the exact improvement of SNR in the
steady-state, while (24) is an approximated expression for
this SNR improvement.

E. Misadjustment

The value of M, given approximately in [2] (M =
utr[R]), can be calculated exactly in this case because of
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the particular simplicity of the reference input x;. To cal-
culate exactly the M value we need to obtain the Excess
MSE. From (4) and (9),

Excess MSE = Ef(se — w1 = —Elsi] + EIWX].
(40)

Since y; = WIX,, and in the steady-state y, converges to
s, we have Elsin] = E,[sf]. Considering that x, ;18
nonzero only for k = mL + i, and that in these cases it
takes the value of 1, we can write

Eltse — w0l = —Elsl + EIW{WJ]. (4D
From expression (30) with di" = s; + n!" we obtain
wi = i 2ul = 2N s + 0 (42)
and now we can calculate
E[W{W] = E, LZLZI (w,”“f}. @3)

Assuming again that the noise is uncorrelated between re-
currences [see (36)], stationary, and zero-mean, we have

_ _ N\ 2
E[WIW,] = 44 <———1 (1~ Z) >E,[s£]

-1 -2p
1 - (= 2™
+ 4’ <1—_((41_‘§%z' > E[ni]. (44)

In the steady-state (N — ) this expression, with the
convergence condition (p < 1), becomes

EIWIWA = E[s) + 7 Elmil. (49
Substituting this expression into (41) we get
Else = ') = 72—, Elnil (46)
and from (8) and (9), we have
_ ExcessMSE _ ¢ )

Emin 1 - ’4"

This is the exact expression of the misadjustment M for
this adaptive filter. We see that if we introduce in (24)
this exact value of M, we recover the expression for
ASNR, in the steady-state given in (39). Finally, if we
assume p << 1 we obtain the result given in [2] where
M = utr[R].

F. Comparison of the Adaptive Filter with a Moving
Window Averager (MWA)

The AICF and the moving window averager (MWA),
which considers a constant number of the most recent re-
currences, are two different approaches to tracking dy-
namic changes in the deterministic signal component.
Moreover, the MWA technique is actually implemented
in many monitoring devices. So in this section, a com-
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parative study of performance of the AICF and the MWA
is presented in terms of signal-to-noise ratio improvement
(ASNR) and tracking capability.

Using the same notation as in Section II-D, we can ex-
press the output of the MWA (y1) ") at the N + 1 re-
currence as

1 N

Am=N-4+1

0= dr (48)

where A is the constant number of the most recent recur-
rences that we consider in the averaging process of the
MWA filter.

To compare the capabilities of the AICF and the MWA
to track dynamic changes we will assume the determin-
istic signal to be free of noise. We consider that at the
first N recurrences the deterministic signal is s;, and start-
ing with the (N + 1) recurrence there appears a new and
different deterministic component §; during the next M re-
currences.

S m=1,--+-,N
dl' = . 49
5 m=N+1,--+- N+ M
After these N + M recurrences y17' ¥+ will be
A-M M
yl?’+M+‘ = A §; + Z 5[ (50)
with 4 > M, otherwise y1¥ *¥*! = 5,
The output of the AICF (32Y*M*1y from (31) is
1— (1 =2
INEMET _ g ] g oM
¥2 w( W T a2 "
1- -2
+ 2 ————§,. 51
“1—(1—2;1)51 (51
The outputs y1¥ *#* ! and y2***" are both linear com-

binations of s; and §;. In order to compare the filters (AICF
and MWA) we will now consider the situation where the
ratio between s; and §; is the same in the two output signal
filters, y1¥ *™*1and y2 *M*! for a given N and M. This
situation gives the same dynamic tracking of the deter-
ministic signal, at recurrence N + M, in both filters. Un-
der this restriction (same tracking) we study the ASNR,
in both cases and we determine which filter has the better
SNR improvement with the same tracking capability.
From (50) and (51) we see that the same dynamic tracking
is achieved in both filters when
A-M_d =21 -1 -2pY

M 1 -1 - 2" A > M)

(52)

which is a relation between the filter’s defining parame-
ters u and A for a given N and M.

Now we will analyse in this situation what is the
ASNR,, in steady-state, for each of the two filters. For
the MWA we have the well known SNR improvement of
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a classical EA with A recurrences, and from (52),
oM - = 2wt

MWA
=A 53
ASNRy =1 = 2p)" (53)
In the steady-state (N — o0),
M
A MWA 54
SNRy = = 20" (54)

Note that ASNRYY* depends on y and M because of
the condition imposed in (52). For the AICF, when N —
o, we have from (39)

1 —_
ASNRMCF = ——£. (55)

7
The difference between ASNRY'F and ASNRY™ is a

function of y and M, f(p, M ):
f(n, M) = ASNRYCT — ASNRY™*
1 - M

-—* (56)

w1 - 2"

In Fig. 3 we plot this function of u for different values
of a required M. We can see that in quickly tracking dy-
namic changes (small M) the AICF has better perfor-
mance in the steady-state ( f (u, M) > 0) for a wide range
of u. When M becomes higher, only small values of u
give better performance to the AICF than to the MWA.
This is logical since higher M implies that §; has higher
relative contribution in the A recurrences considered by
MWA. If we are interested in rapidly tracking changes
(small M), the AICF required for this has a better steady-
state performance than the equivalent MWA. In addition,
the AICF is more efficient and easy to implement than the
MWA (which needs to store A signal recurrences).

III. SIMULATION STUDY

A simulation study has been carried out to test the per-
formance of the adaptive filter. A signal was synthesized
as a sequence of records d;. Each one consisted of the
same QRS complex (s;), taken from a real ECG signal,
and additive Gaussian random noise (n;). Also, a refer-
ence signal (x;) was defined as an impulse at the begin-
ning of each record.

The adaptive filter was applied to this signal d;. Several
SNR values were studied, and different values of the gain
constant p were applied. The adaptive filter and the clas-
sical signal averaging technique were compared.

Fig. 4 shows the results for SNR = 10 dB, after differ-
ent numbers of adaptations (N ). At the top, we can see
the deterministic component s, which is present in each
beat. The second row shows different records with the
same SNR,. The third row displays the signal estimated
by classical EA after processing N beats. Next, the esti-
mation of the deterministic signal by means of the AICF
is shown for different values of gain constant u and after
N records. The signals’ duration was 200 ms and it was
sampled at 1 kHz, which implies a value of L = 200.
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Fig. 3. Comparison of the AICF and MWA filters. Function f(u, M) = ASNRAICF — ASNRMWA represents the difference in
the improvement of SNR for the AICF and MWA filters, with the same dynamic tracking capability as a function of the factor
4 and the number of recurrences (M ). M is the number of recurrences of the new deterministic signal s;, beyond that we reach

the same dynamic tracking in both filters.
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Fig. 4. Results for 160 beats (d,) with a change of the shape of s,
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to s at beat number 81. The first row displays the deterministic

components s; (column N = 1, 80) and si (column N = 81, 120, 160); in the second row are the 160 records d, generated by

adding noise to s, and s;

with a SNR = 10 dB. In the third row are the results after classical EA of N records, and the next row

shows the output of the MWA filter with a constant number of recurrences (80). The following rows show the AICE filter output

after processing N records for different p values.

Calculated values of ASNR agree with the results ob-
tained in the simulation study. Thus, for example, a value
p = 0.01 leads to a ASNR = 99, in the steady-state, with
a convergence time of 25 records. In this case, adaptive
filtering and classical signal averaging produced compa-
rable results, and thus we can verify that the filter con-
verges to the deterministic component under ideal condi-
tions.

The first 80 records have a deterministic component s,
and the next 80 records have another s; (first row of Fig.
4). Here the AICF performs better than classical EA, be-
cause it can learn more quickly the new s;. We can ob-
serve this by comparing the results after 120 beats with

i

classical EA and AICF. Also comparing results with
MWA (fourth row in Fig. 4 with 4 = 80) we see how its
performance in this case is similar to that of AICF with p
= 0.01.

IV. APPLICATIONS

A. Ventricular Late Potentials

The adaptive filter described in this paper has been ap-
plied to high resolution ECG signals in order to detect
ventricular late potentials (LP). Several p values were
tested and a comparison with classical signal averaging
was also carried out. The ECG signals were measured by
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Fig. 5. Application to real high-resolution ECG signals (100 beats). The first row displays the high-resolution ECG signal
recurrences. In the second row are the results after classical EA of N records. The following rows show the AICF filter output

after processing N records for different p values.
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Fig. 6. Band-pass filtered versions of the signals displayed in the previous figure with a FIR filter of bandwidth 50-250 Hz.
The time scale is the same as in Fig. 5 and the y-axis scale is renormalized in order to show late potentials.

low-noise high-gain isolated amplifiers and recorded with
a PC-based digital acquisition system. The signals were
sampled at 5 kHz, with a resolution of 16 bits. The un-
corrected orthogonal leads (X, Y, Z) were used in this
study. These three bipolar leads were independently pro-
cessed by both the adaptive filter and classical signal av-
eraging. In both cases, a matched filter [17] was used to
align QRS complexes and to define the impulse signal x;
synchronized with the beats.

Fig. 5 shows, in the first row, a sequence of records
that include the QRS complex and the ST segment from
an ensemble of 100 cardiac beats. These signals were re-
corded from the X lead in a patient who previously had
had ventricular tachycardia and hence was a candidate to
show LP. The results after averaging and adaptive filter-
ing are displayed in the same manner as the simulation
results. The records extend 300 ms sampled at 5 kHz,
which gives a value of L = 1500.

Fig. 6 shows the signals corresponding to the ECG’s in

Fig. 5, after band-pass filtering with a FIR filter with
bandwidth 50-250 Hz. In this filtered signal, we can see
remarkable late potentials estimated by EA and AICF fil-
tering. The deterministic component appears practically
constant. Thus, classical EA [18] achieves an excellent
signal estimation from the first 25 beats. The AICF also
obtains comparable estimates. However, the AICF would
be more sensitive to dynamic beat-by-beat variations than
EA. The slower the signal variations, the more accurate
the variable signal estimated by the AICF will be.

B. Somatosensory Evoked Potentials

As in the previous section, the filters have been applied
to somatosensorial evoked potentials (SEP). The electri-
cal stimulus is a current of 20 mA given at the rate of
5.9/s. The response is recorded from 40 ms before until
40 ms after the stimulus with a sampling frequency of
3200 Hz. Thus, in each SEP we have the first part with
only the EEG signal and the second part with the EEG +
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Fig. 7. Application to time-varying somatosensory evoked potentials (2840 recurrences) from a subject with application of
etomidate in the 1420 recurrence. The records extend 80 ms, 40 ms previous to the electrical stimulus (20 mA) and 40 ms after
the stimulus. The first row displays the SEP recurrences. In the second row are the results after classical EA of N records, and
in the third row is the output of the MWA flter with a constant number of recurrences (100). The following rows are the AICF

filter output after processing N records for different p values.

SEP. After 1420 recurrences, etomidate (0.2 mg /kg) was
administered to the subject and an additional 1420 SEP
recurrences were recorded. The SEP response changed,
and we can see in Fig. 7 how the AICF adapts to the
dynamic changes. In this figure we have in the first row
different recurrences of the SEP. In the second row are
the results after classical EA, in the third we have the
results obtained with the MWA with 4 = 100 recur-
rences, and in the following rows are the AICF results for
different values of the p parameter. We note that, in this
case, the AICF tracks the dynamic changes in the deter-
ministic signal (N = 1700, p = 0.2, 0.05) better than the
MWA (MWA(100)) and the classical EA.

V. CONCLUSIONS

An adaptive filter for event-related bioelectric signals
has been proposed. This filter estimates the deterministic
component of the signal, removing the noise uncorrelated
with an impulse time-locked to the deterministic signal.
The theoretical analysis of the filter was presented includ-
ing the convergence, the improvement of the SNR, and
the misadjustment, in the case of stationary signals. The
adaptive filter AICF using the LMS algorithm has been
shown to be equivalent to a weighted averager. If other
adaptive algorithms, such as the recursive least squares
algorithm [2], were considered then the performance
would be different (convergence, misadjustment, . . .) and
the result would not be equivalent to an exponentially
weighted averager. The equivalence of the AICF to a
weighted averager, in the case of the LMS algorithm,
shows that this filter is a linear filter.

The misadjustment in this case is calculated exactly,
rather than approximately, with the usual notation as given
in [2]. For values of p near 1 /3 (the highest allowed
value), the difference between the exact M and the ap-

proximation could be very important. Hence this exact
result is of great interest when estimating the steady-state
improvement of the SNR in stationary signals.

The relative improvement in the SNR, or ASNR, is a
function of the parameter p. In the steady-state it takes
the value ASNR = (1/M) =[1 — ¢}/ w). On the other
hand, the convergence time (7,,s = [L /4u]) also depends
on the parameter p. Thus, the choice of u must be a com-
promise between the convergence time and the SNR im-
provement. In biomedical event-related signals (ECG, EP)
many times we are interested in tracking the signal vari-
ations. If we have some a priori knowledge of the ex-
pected change rate, we can select the minimum p that
leads to a 7, lower than the expected number of recur-
rences in which the change is supposed to be completed.
If we do not expect variations we can select the u accord-
ing to the criteria used in [16]. If we do not have any a
priori information we can select the p value as a function
of the more relevant clinical requirement in each case. In
critical care or surgery units, detection of changes in
evoked potential response will be critical, hence a p that
gives a quick response time will be desirable. In late po-
tentials detection where the ECG signals are recorded at
rest (we do not expect big signal changes), a low steady-
state error will be required and then the p value must be
selected according to the desired SNR improvement.

Comparing this adaptive filter with a moving window
averager, we find that the adaptive filter AICF, in the case
of the LMS algorithm, achieves better steady-state per-
formance (ASNR) than the MWA, for the same capability
of fast change tracking (small M values in Fig. 3).

The simulation results agree with this theoretical study.
The adaptive filter shows better performance than classi-
cal EA and MWA when the signal presents dynamic vari-
ations. On the other hand, if the signal keeps constant,
the different techniques obtain comparable results.
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The presented filter appears to be a good way to detect
LP, and it also allows us to track the dynamic variations
of the signal. The AICF filter was also applied to soma-
tosensory evoked potentials with dynamic changes in the
deterministic component. The AICF exhibits better be-
havior than the MWA for quick detection of these
changes. This AICF filter, due to its impulse reference
input, has been proved to estimate the deterministic sig-
nal, with noise which is colored, zero-mean, and uncor-
related between records. This is the case in EP signals,
where the noise is usually colored but uncorrelated be-
tween recurrences (background EEG). We have also
shown that this AICF reaches a steady-state improvement
of SNR which depends on p. So, if background activity
changes the SNR at the input signal (common in EP), the
SNR at the output will change in the same ratio.

Another aspect of this filter concerns the impulse ref-
erence input. If this impulse x; is not well synchronized
with the onset of the deterministic signal recurrence d;, a
filter effect appears in the signal estimation [19]. In the
case of a Gaussian distributed error in the impulse defi-
nition, with a standard deviation o, the filter effect is a
low-pass effect [19] which has a cutoff frequency of f. =
132.3 /. In evoked potentials this error can be due to the
synchronization with the external trigger or to the phys-
iological delay between the trigger and the transient re-
sponse (latency). If this physiological delay is random be-
tween recurrences, there appears the previously mentioned
low-pass effect. If this delay appears at some time and
then remains consistent, it must be seen as a signal
change, and so, it will be detected if the u has been cor-
rectly selected.

APPENDIX A

In this Appendix we will show that the signal compo-
nent s{ defined in Section II-C, equation (18), is related
to the deterministic signal component s, as described in
equation (19).

Using (3) we write s; as follows:

s{ = Elyd = EIWIXJ = EIW{IX,.

To calculate E,[W ] we make use of the recursive equa-
tion given in [2] for E?[WZ] in the case of the LMS al-
gorithm:

E[Wiii] = (I — 2uRE[W,] + 2uRW*. (38)

Also, this equation can be derived from (11) by taking
the expected value and using the expression for the error
¢. Adding and subtracting W *, and using the value of R
= (1/L)I, the recursive expression becomes

&0

E[Wi il = W* + (1 - 2%>(Ee[Wk] - W*. 59

If the initial conditions are W, = W, we can rewrite the
expression as a function of Wy:

k
E[W,] = W* — (1 - 2—;> (W* — W,), (60)

and if W, = 0 (the usual initialization), then

k
— _ _ o F
EJ[W,] = W*<l <1 2L>>.

Using this relation in (57) we can express s; as
k
si = EJWNX, = (1 - <1 - 2%) > W*X, (62)

and from (7)

i=(1-(1-2))

APPENDIX B

In this Appendix we will show that the noise compo-
nent n} defined in Section II-C, equation (18), is neither
correlated with s, nor with s,. Also we will deduce the
relation between E,[n}?] and E[n;] referred to in (20). If
ergodicity is assumed, then Ejfnd] = E,[n}] and E[n{’] =
E[n{’].

Using (18), we obtain

(61)

(63)

Eln)) = EJn] = Elyd — Elyl =0 (69
showing that nj is zero-mean. If we now calculate
Elsini] = ElydEIn] = 0, (65)

we see that n} and s; are not correlated. This implies that
s, is also not correlated with nj, hence s; and s, are pro-
portional (19). The conclusion is that s is the component
of y, correlated with s, and also the component of interest.
The component 7}, is the residual noise that contaminates
the estimation.

To derive the relation between E,[n,ﬁz] and E,[ni], given
that n} is uncorrelated with s; and with s,, we get from
(16)

El(y — 071 = EIn) + Ef(si — s'1. (66)
From (9) we can write
E[n?] = £ — £mn — ElGE — 5971 (67)

In this expression we need to know what is the depen-
dence of £ on each recurrence. The MSE £ converges to
the steady-state solution according to 2 geometric pro-
gression [2] with a time constant 7,,;, = (1/2)7,. Then
we can write the expression (60) for & instead of W where
the value of £ in the steady-state is Eqin(1 + M) [this
takes the place of W * in (60)] and the initial value when
k =0 (y, = 0) is E[d7] [this takes the place of Wo in
(60)].

2k
£ = E(l + M) + <1 - 2%)

- (EJd — Emn(l + M), (68)

The factor 2k is due to the fact that the convergence
time of £ is twice the convergence time of the weight vec-
tor.
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From (67) and considering (8) and (19) we obtain

2k
E[n}] = ME[n}] (1 - <1 -2 %) > (69)
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