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BACKGROUND Atrial fibrillation (AF) is the most common supra-
ventricular arrhythmia, characterized by disorganized atrial electri-
cal activity, maintained by localized arrhythmogenic atrial drivers.
Pulmonary vein isolation (PVI) allows to exclude PV-related drivers.
However, PVI is less effective in patients with additional extra-PV
arrhythmogenic drivers.

OBJECTIVES To discriminate whether AF drivers are located near
the PVs vs extra-PV regions using the noninvasive 12-lead electro-
cardiogram (ECG) in a computational and clinical framework, and to
computationally predict the acute success of PVI in these cohorts of
data.

METHODS AF drivers were induced in 2 computerized atrial models
and combined with 8 torso models, resulting in 1128 12-lead ECGs
(80 ECGs with AF drivers located in the PVs and 1048 in extra-PV
areas). A total of 103 features were extracted from the signals. Bi-
nary decision tree classifier was trained on the simulated data and
evaluated using hold-out cross-validation. The PVs were subse-
quently isolated in the models to assess PVI success. Finally, the
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classifier was tested on a clinical dataset (46 patients: 23 PV-
dependent AF and 23 with additional extra-PV sources).

RESULTS The classifier yielded 82.6% specificity and 73.9% sensi-
tivity for detecting PV drivers on the clinical data. Consistency analysis
on the46patients resulted in93.5%resultsmatch.ApplyingPVIon the
simulated AF cases terminated AF in 100% of the cases in the PV class.

CONCLUSION Machine learning–based classification of 12-lead-
ECG allows discrimination between patients with PV drivers vs those
with extra-PV drivers of AF. The novel algorithm may aid to identify
patients with high acute success rates to PVI.
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Introduction
Atrial fibrillation (AF) is the most common sustained
arrhythmia in clinical practice and a leading cause of hospi-
talization and death.1,2 Recent evidence from experimental
and clinical studies suggests that AF may be maintained by
localized AF drivers,3–5 which are organized reentrant
circuits (rotors)6,7 or focal sources8 that disorganize into AF.
Catheter ablation is a common nonpharmacological ther-
apy that aims to terminate AF, restoring sinus rhythm.9,10,1

Typically, “triggers” that start AF and the “substrate” that
supports perpetuation are targeted during ablation. Moreover,
Narayan and colleagues11 showed the importance of local-
izing and ablating rotors, focal source drivers, or organized
fibrillation sources to terminate the arrhythmia.11 However,
one of the major limitations of AF ablation is that the mech-
anisms that sustain AF are not easy to identify,1,12,13 in
contrast to many other arrhythmias in which the perpetuating
mechanism is the primary target for ablation. The seminal
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observations by Haissaguerre and colleagues10 revealed that
AF triggers and sustaining mechanisms are often localized
around the pulmonary veins (PVs).10 Thus, pulmonary vein
isolation (PVI) is established as the cornerstone of AF abla-
tion,1 being highly effective in patients with triggers confined
to the PVs.10,9 Nevertheless, PVI results remain suboptimal
in the presence of extra-PV sources maintaining AF.1,14 Pre-
procedural information regarding the confinement of the
driving mechanism to the PVs would be valuable for
decision-making pro/contra ablation and procedure planning.
To date, the best available proxy to plan the ablation proced-
ure is the classification of the arrhythmia into paroxysmal/
persistent AF.15 This classification, however, is based on
observed AF episodes, and it might correlate poorly with
the actual AF burden—and, consequently, with the extension
of substrate remodeling—in many patients.16 Moreover, in
the case of extra-PV drivers, a subsequent classification
whether the left atrium (LA) or right atrium (RA) is respon-
sible could lead to prior planning regarding the need for trans-
septal access or not.

Traditionally, invasive mapping approaches have been
applied to identify the location of AF drivers as targets for
catheter ablation.17,18 In contrast, noninvasive methods (ie,
the 12-lead electrocardiogram [ECG]) are mostly used for
the clinical and automatic detection of AF vs sinus rhythm19

or other arrhythmia.20 The use of a noninvasive technique,
such as the ECG, could help to guide ablation procedures
by identifying the location of the AF drivers pre-procedure,
and hence target more specific affected atrial regions for abla-
tion.

In the present work, we sought to discriminate AF drivers
located near the PVs compared to extra-PV atrial sites based
solely on the 12-lead ECG. Towards this end, we trained an
automatic machine learning classifier on data from computer
simulations and evaluated its performance on clinical ECGs.
Moreover, we assessed the acute success of PVI in the in sil-
ico cases to predict whether PVI in cases of AF drivers
located near the PVs would be sufficient to terminate AF
(ie, restoration of sinus rhythm, or AF conversion into atrial
flutter). In this case, AF drivers identified in the PVs could be
directly targeted for ablation without prior time-consuming
electroanatomic mapping.
Methods
Simulation setup
A database of simulated AF scenarios driven by localized ro-
tors and focal sources was computed on 2 volumetric biatrial
anatomies generated from segmented magnetic resonance
imaging data of healthy subjects (#3 and #5 from ref 21).
The atrial geometries were modeled with z11 million tetra-
hedral elements with fiber direction computed by a semiauto-
matic rule-based algorithm.22 Cellular atrial
electrophysiology was represented by the Courtemanche-
Ramirez-Nattel model, including AF-induced remodeling23

in 5 regions with different conduction velocities21 to take
into account heterogeneity and anisotropy in the atria. The
atrial geometries were considered with and without fibrotic
tissue. Transmural fibrotic tissue was modeled as 2 circular
patches with a radius of 14 mm in which 50% of the elements
were almost nonconductive (conductivity of 1027 S/m) to
model the presence of scar tissue, and the other 50% included
ionic changes to represent the effect of cytokines (TGF-b1)
as described by Roney and colleagues.24

AF rotor episodes were induced using the phase singular-
ity distribution method,25 which consists of placing phase
singularities in the atria, estimating an activation time map
by solving the Eikonal equation, and using this as an initial
state for a monodomain simulation with openCARP.26,27 In
addition, localized focal source episodes were induced by
30 mA

cm2 current applied for 2 ms to a cubic region with edge
length of 3 mm centered around the stimulation point in
monodomain simulations. The focal source pacing cycle
lengths were chosen in the 130–200 ms range following the
same distribution observed from the rotor cycle lengths.
The phase singularities and the focal stimulation points
were placed in 300 uniformly distributed points in the atria,
and 3 seconds of activation was computed (Figure 1A.1
and 1B.1). The following cases were excluded for further
analysis: (1) the single rotors were not maintained for the
whole simulation time; and (2) the focal source episodes
induced reentry that led to the termination of the focal activ-
ity. This led to a dataset of 141 biatrial simulations (10 sim-
ulations with the AF drivers located in the PVs; 131
simulations located in extra-PV areas, of which 106 were
in the RA and 25 in the LA). PV areas were defined as deter-
mined by the semiautomatic algorithm used to compute the
fiber directions and anatomical labels22 (Figure 2A).

The monodomain simulations resulted in spatiotemporal
transmembrane voltage distributions. The transmembrane
voltage distributions were subsequently interpolated on a
coarser surface mesh with sufficient resolution for the calcu-
lation of body surface potentials28 (z75,000 triangular ele-
ments). Body surface potential maps (BSPMs) were
calculated for each AF episode using the boundary element
method.29 For each AF episode BSPMswere computed using
8 different torso models (19,898 triangles on average) gener-
ated from segmented magnetic resonance imaging data of
healthy male and female subjects (Figure 1A.2 and B.2).21

From the BSPM, the 12-lead ECG was extracted with 3-
second duration (Figure 1A.3 and 1B.3). The simulated
12-lead ECG signals contain only f-waves and no QRS-T
complexes, since the ventricles were not included in the sim-
ulations. A total of 1128 12-lead ECGs composed the final
dataset (80 ECGs with the AF drivers located in the PVs;
1048 ECGs located in extra-PV areas, of which 848 were
in the RA and 200 in the LA).
Simulated ablation procedures
To assess the effect of PVI procedure on the mechanisms
driving AF, nonconducting scars were added circumferen-
tially around ipsilateral PVs in the simulations (Figure 3A).
PVI was applied after the initial 3 seconds of simulation.



Figure 1 A.1: Example of simulated atrial fibrillation (AF) driver located near the pulmonary veins (PVs). B.1: Example of simulated AF driver located in an
extra-PV region (right atrial appendage in this case). The red arrows show the AF driver position and propagation direction.A.2, B.2:Body surface potential maps
(BSPMs) on 1 magnetic resonance imaging–derived torso model. The torso potentials were obtained by solving the forward problem of electrocardiography from
the simulated transmembrane voltages on the atria.A.3, B.3: f-waves for leads I, II, and V1 from the 12-lead electrocardiogram signals extracted from the BSPMs.
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After PVI, simulations were continued for another 1 second
to check for arrhythmia termination or a change on the
driving mechanisms (eg, conversion to atrial flutter). In the
cases where PVI did not terminate AF, a roofline (RL) was
applied (Figure 3B). If the RL did not terminate the AF either,
an additional ablation scar was applied between the mitral
valve and the left PVI line (mitral isthmus [MI],
Figure 3C). Prior to applying subsequent ablation lines, the
simulations were always computed for 1 second to capture
any change of the arrhythmia dynamics.
Figure 2 Example of the atrial regions used to define the classes in which the atri
PV areas (blue) for binary classification. B: PVs (pink), extra-PV left atrium areas
Feature extraction
One hundred and three features were extracted from the sig-
nals using several biosignal processing methods, such as
Hjorth descriptors to analyze the spectral moments from
the time-domain signals30,31; recurrence quantification anal-
ysis (RQA) on the vectorcardiogram,32 spatial reduced
RQA, and individual component RQA33 to analyze the topo-
logical structure of multidimensional dynamical systems;
principal component analysis (PCA) eigenvalues to observe
the variability shown by the principal components (PCs)
al fibrillation drivers are located. A: Pulmonary veins (PVs) (pink) and extra-
(blue), and right atrium (green) for 3-class classification.



Figure 3 Scar lines were applied on the atrial models to simulate several ablation procedures. In the atrial model, the right endocardium is shown in white, the
left endocardium in red, both epicardia in blue, and the scar lines in cyan.A: Pulmonary vein isolation (PVI): Scars added circumferentially around ipsilateral PVs.
B: PVI1RL: Roofline scar added between the left PVI and the right PVI.C: PVI1RL1MI: Scar added between the left PVI and the mitral valve (mitral isthmus
ablation).
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over time and between them; ratio of the PCA eigenvalues to
increase and highlight the differences between the PCA ei-
genvalues; and organization index and spectral entropy to
study the variability and stability of these mechanisms in
time and frequency domains.30,34,35 No features were derived
for any single ECG leads to avoid an undesirable influence of
atria orientation on the resulting calculated ECGs.36 Hence,
all features were averaged over the 12 leads or calculated
over the PCs. A summary of the features and more informa-
tion regarding the feature extraction methods are provided in
the Supplemental Material.
Feature selection
Features were selected with a greedy forward selection tech-
nique to implement a feature set. This algorithm started with
an empty feature set and added, in each iteration, the feature
that led to the highest classification performance increase as-
sessed using the geometric mean (G-mean) between sensi-
tivity and specificity of a decision tree classifier (more
details about the implemented classifier are discussed in the
following section). The algorithm stopped when performance
based on the validation set could not be further increased.
Candidate features with a correlation coefficient .0.6 with
any of the features already included in the set were not
considered. This correlation threshold was chosen as a
compromise between avoiding redundant information and al-
lowing physiological explanation.
Machine learning classification
In this study, a decision tree classifier was implemented for
binary classification (AF drivers located at the PVs vs
extra-PV drivers) owing to its simplicity and explainability
(similar results obtained with other machine learning algo-
rithms for the binary classification are provided in the
Supplemental Material). The decision tree was trained and
applied using the MATLAB functions fitctree and predict,
respectively.

First, a multifeature classification was performed with the
feature set selected as described in the paragraph on feature
selection. Hold-out cross-validation was performed
randomly, dividing the simulated dataset into a training set,
validation set, and test set with a ratio of 70%, 15%, and
15%, respectively. The training set was used to tune classifier
parameters, while the validation set was used for the greedy
feature selection optimization. To reduce the random divi-
sion’s influence, the process was repeated 100 times (training
and validation sets were recalculated at each loop, while the
test set was saved and kept the same for all experiments). The
classes have been balanced by setting the Prior model param-
eter in the MATLAB fitctree function to uniform. Sensitivity,
specificity, and positive predictive value (PPV) were calcu-
lated considering the PV class as positive and the extra-PV
class as negative. Lastly, the classifier trained again with all
the simulated data and the resulting feature set from the pre-
vious analysis was tested on the clinical dataset, which was
not used during algorithm development.

Second, binary classification using the same feature set
extracted from the first approach was performed with
different cross-validation strategies: leave-one-atrium-out
(LOAO) and leave-one-torso-out (LOTO). These strategies
were applied to verify that the atrial geometries did not
have a significant influence on the features extracted from
the simulated signals.36 For LOAO, 1 atrial geometry was
used in the training set and the other atrial geometry was
used in both the validation and the test set (50% of the
ECGs from this geometry in each set). This procedure was
repeated twice to cover all permutations of validation and
test atrial geometry. The average G-mean of the 2 iterations
was used as performance parameter. The same process was
applied for LOTOwith 8 repetitions, since 8 torso geometries
were used in this study.

Finally, thanks to the ground truth given by the simula-
tions, and to estimate how feasibly a machine learning
approach can discriminate the position of AF drivers, a clas-
sifier was implemented for a 3-class classification. The 3 clas-
ses were defined as AF drivers located in the PVs, extra-PV
LA areas, and RA areas. A new feature set was selected with
the greedy technique similar to the first approach described in
this section, and hold-out cross-validation was used on the
simulated dataset. The classes have been balanced in a similar
manner to the binary classification.
Statistical analysis
Classifier performance was evaluated using the G-mean be-
tween sensitivity and specificity metric:



Table 1 Patient characteristics with univariate t test analysis between groups

All patients n546 Acute AF termination by PVI n523 No acute AF termination by PVI n523 P

Age (years) 64 (10.5) 64 (10.5) 64 (10.8) .966
Female sex 29 (63.0) 14 (60.9) 15 (65.2) .680
Body mass index (kg/m2) 28.1 (3.8) 28.1 (4.2) 28.3 (3.5) .907
Arterial hypertension 25 (54.3) 11 (47.8) 14 (60.9) .475
Prior stroke or TIA 7 (15.2) 5 (21.7) 2 (8.7) .203
Structural CMP 10 (21.7) 5 (21.7) 5 (21.7) .938
Coronary artery disease 9 (19.6) 3 (13.0) 6 (26.0) .307
Persistent atrial fibrillation 33 (71.7) 15 (65.2) 18 (78.3) .456
CHADS2-VASc score 2.0 (1.6) 2.3 (1.7) 1.7 (1.4) .217
Prior AA therapy 19 (41.3) 11 (47.83) 8 (34.8) .312
AA therapy on admission 23 (50.0) 11 (47.8) 12 (52.2) .887
Amiodarone 19 (41.3) 9 (39.1) 10 (43.5) .843
Flecainide 2 (4.3) 1 (4.3) 1 (4.3) .952
Sotalol 0 (0.0) 0 (0.0) 0 (0.0) -
Dronedarione 1 (2.2) 0 (0.0) 1 (4.3) .334
Propafenone 1 (2.2) 0 (0.0) 1 (4.3) .334
LVEF (%) 57 (9) 59 (6) 54 (10) .062
LVEDD (mm) 50.1 (4.7) 49.2 (4.4) 52.7 (5.1) .127
LAD (mm) 44 (6) 52 (5) 46 (6) .052
Renal dysfunction 20 (43.5) 13 (59.1) 7 (30.4) .062

Values are given as mean (6 standard deviation) or number (%).
Multivariate analysis is detailed in Supplemental Material.
AA5 antiarrhythmic; CMP5 cardiomyopathies; LAD5 left atrium dilatation; LVEDD5 left ventricular end-diastolic diameter; LVEF5 left ventricular ejec-

tion fraction; TIA 5 transient ischemic attack.
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G2Mean5OSensitivity,Specificity (1)

The G-mean metric strikes a balance for binary classifica-
tion performance on both the majority and minority classes.37

A low G-mean indicates a poor performance in the classifica-
tion of the positive cases even if the negative cases are
correctly classified as such. As such, it can avoid overfitting
the negative class and underfitting the positive class and vice
versa.

For the third classification approach, the G-mean metric
was modified to make it suitable for 3-class classification:

G2Mean5
2

K,ðK21Þ
XK

isj

OSensitivityij,Specificityij (2)

with K being the number of classes, and i and j the classes
considered as positive and negative, respectively.38

Patient characteristics were evaluated with the t test be-
tween case and control groups (P values , .01 considered
significant; Table 1). Multivariate regression analysis was
performed on variables that differed between groups with a
P value , .1 (Table 1) and our classifier. Age and sex were
included in the multivariate model for their clinical relevance.

Clinical data
We retrospectively included a total of 46 consecutive patients
(72% persistent AF, 70% male; Table 1) who presented be-
tween 2019 and 2020 with spontaneous AF (as baseline
rhythm) on admission day and during electrophysiology
study and who met the following criteria: first ablation for
AF without any prior LA ablations (eg, Wolff-Parkinson-
White patients, etc were excluded) and AF termination (sinus
rhythm restoration or conversion to atrial flutter) during or
within 1 minute after completion of PVI (case group/PV
class, n5 23). Patients meeting the above-mentioned criteria
but without termination of AF during/immediately following
PVI were included as controls (control group/extra-PV class,
n 5 23).

A dataset of 46 clinical AF 12-lead ECGs was used to vali-
date the classifier, which was trained solely on synthetic data
generated using the computational framework described
above. Three-second clinical ECGs were collected intrapro-
cedurally prior to PVI during ongoing AF. The signals
were notch filtered at 50 Hz and bandpass-filtered between
0.05 Hz and 100 Hz (examples of the 12-lead ECGs can be
found in the Supplemental Material). The QRS-T complexes
were automatically removed and replaced by a sigmoid func-
tion to connect the remaining f-wave segments using an inter-
polation method explained in Pilia and colleagues.39 All the
features extracted and selected from the simulated signals by
the feature selection algorithm were extracted from the clin-
ical signals too. A second set of 3-second clinical 12-lead
ECGs was collected from the same 46 patients during the
same procedure prior to PVI during ongoing AF. This ECG
set was also provided to the classifier to check the consis-
tency of the classification.

Patient information was de-identified and the study was
exempt from Institutional Review Board approval.
Results
Patient characteristics
Patient characteristics with associated P values between case
and control groups are provided in Table 1.
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The multivariate regression analysis performed between
the variables left ventricular ejection fraction, LA dilatation,
renal dysfunction, sex, age, and our classifier showed that the
classifier is the only significant variable (P5 .049, hazard ra-
tio 5 11.8), indicating that the classifier has added value
beyond the routine clinical parameters for detecting patients
who require more than a “PVI-only” approach (the whole
multivariate regression analysis table is provided in the
Supplemental Material).

Acute ablation outcome
The following results are summarized in Table 2. Virtual PVI
was applied in all 141 atrial simulated scenarios (Figure 3A).
In 13 cases, PVI had a consequence on the ongoing
arrhythmia; in 6 cases, the arrhythmia was terminated and si-
nus rhythm restored, whereas the remaining 7 cases con-
verted to different types of atrial flutter. These 13 cases
consisted of 10 simulations belonging to the PV class
(100% of all scenarios in the PV class, including all 6 simu-
lations where PVI restored sinus rhythm) and 3 simulations
belonging to the extra-PV class LA (12.5% of the total
extra-PV LA simulations).

RL ablation was applied to the 135 simulations where PVI
did not lead to sinus rhythm restoration (Figure 3B). The
additional RL terminated the arrhythmia in 2 cases that had
converted to atrial flutter after PVI (1 case in PV class and
1 case in extra-PV LA). MI ablation was then applied to
the 133 simulations where PVI1RL did not restore sinus
rhythm (Figure 3C). PVI1RL1MI terminated the
arrhythmia in another 3 cases, all of which had become atrial
flutter after PVI (1 case in PV class, 2 cases in extra-PV LA).

Binary classification on synthetic data
The decision tree for binary classification (AF drivers located
in the PVs vs extra-PV drivers) was repeated 100 times to
reduce the random division’s influence on the classifier per-
formance. Eleven is the number of features to which the
greedy forward selection technique has reached the
maximum G-mean, and therefore, it was used as the number
of features in the feature set. The 11 most frequently selected
features in the 100 iterations were as follows: the recurrence
rate extracted with individual component RQA from the sec-
ond and third PC of the 12-lead ECGs; the variance of the
mobility; l7, l5, l12, sl5, and sl6; RPC; the recurrence rate
extracted from the vectorcardiogram, and the organization in-
dex averaged over the 12-lead ECG. The selected features
Table 2 Simulated atrial fibrillation episodes converted to sinus
rhythm or atrial flutter after stepwise ablation

Sinus rhythm/atrial flutter PVs Extra-PV LA RA

PVI 6/4 -/3 -
PVI success (%) 100% 12.5% 0%
RL 1/- 1/- -
MI 1/- 2/- -

LA5 left atrium; MI5mitral isthmus; PV5 pulmonary vein; PVI5 pul-
monary vein isolation; RA 5 right atrium; RL 5 roofline.
can be seen in Figure 4A. All the selected features showed
a significant difference between the 2 classes. Extra informa-
tion regarding the extracted features and a feature importance
analysis are provided in the Supplemental Material.

The binary classifier achieved a G-mean of 85.3%6 9.4%
on the in silico test set with a sensitivity of 95.5%6 1.4% and
a specificity of 76.3%6 13.1% on the simulated dataset (PV
considered as the positive class). Classifiers trained using
the LOAO and LOTO strategies yielded test G-means of
84.3% 6 2.9% and 85.3% 6 3.7%, respectively.
Three class localization: PV vs extra-PV LA vs RA
The 3-class decision tree achieved 75.1% 6 9.9% test G-
mean with a feature set comprising, on average, 13 features.
The most often selected features are shown in Figure 4B.
Performance on clinical ECGs
The 11 features shown in Figure 4A were used to train the bi-
nary classifier solely on the simulated data. The resulting
classifier was subsequently evaluated on the 46 clinical
ECGs acquired from 46 patients. On this unseen clinical data-
set, the classifier achieved 78.1% G-mean with a sensitivity
of 73.9%, a specificity of 82.6%, and PPV of 80.9%. On
the clinical dataset extracted for the consistency analysis,
the classifier achieved 71.7% G-mean with a sensitivity of
69.6%, a specificity of 73.9%, and PPV of 72.7%. Only 3
cases were classified differently compared to the test per-
formed with the first set, reaching a matching rate of
93.5%. Table 3 shows the confusion matrix obtained from
the decision tree classifier on the clinical ECGs (the confu-
sion matrix obtained on the “consistency” ECG dataset is
provided in the Supplemental Material).
Discussion
Our results suggest that a noninvasive machine learning
approach can discriminate the source area of the mechanisms
sustaining AF, which could improve protocols for clinical
therapeutic decision-making and ablation procedure plan-
ning.

The 12-lead ECG is broadly used for cardiac diagnostics
and to discriminate AF from other cardiac rhythms.20 How-
ever, to the best of our knowledge, they have never been
used so far to infer AF driver positions, as opposed to inva-
sive intracardiac mapping, which is the most commonly
used approach.17,18

In the present work, we implemented a decision tree clas-
sifier to discriminate the location of AF drivers by using only
the noninvasive ECG signals (similar results obtained with
other machine learning algorithms are provided in the
Supplemental Material). An inside-out computational simu-
lation generated 12-lead ECGs from spatially distributed ro-
tors and focal sources sustaining AF with different
combinations of atrial and torso geometries. This provided
an ideal and controlled environment to generate a consistent
ground truth dataset of AF perpetuation mechanisms without



Figure 4 A: Histogram of the 11 most selected features in the 100 iterations of the binary hold-out cross-validation classification for atrial fibrillation (AF)
driver localization (pulmonary vein [PV] vs extra-PV). These 11 features were used as a feature set for the clinical test. B: Histogram of the 13 most selected
features in the 100 iterations of the 3-class hold-out cross-validation classification: PV vs extra-PV left atrial vs right atrial AF drivers.
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the influence of secondary, or unknown, interfering phenom-
ena.

This study builds on our previous work30,40 and expands
to different atrial geometries and different AF driving mech-
anisms adding focal sources, and presents a first application
of the resulting classifier on clinical data. Moreover, an acute
ablation procedure outcome analysis was implemented in the
in silico cases.
Acute PVI success prediction
PVI is the most common AF ablation therapy1 owing to the
often localized AF drivers in the PVs.10 Hence, we aimed
to identify the PV driving mechanisms using the 12-lead
ECG. We also wanted to verify whether AF would be termi-
nated following PVI, or at least converted into more orga-
nized rhythms that are often easier to treat, such as atrial
flutter.

The results of applying PVI in silico (Table 2) help to
illustrate the efficacy of this ablation procedure in cases
where AF is driven by mechanisms located in the PVs.
Accordingly, 100% of the cases labeled as PV showed AF or-
ganization: 6 terminated and 4 converted to atrial flutter.
Interestingly, the extra-PV cases were not affected by the
PVI, as expected: only 3 arrhythmias driven by extra-PV
LA areas converted into atrial flutter, probably owing to the
Table 3 Clinical test set confusion matrix for pulmonary vein vs
extra-pulmonary vein atrial fibrillation driver location classification

True class

PV Extra-PV

Predicted class
PV 17 4
Extra-PV 6 19

PV 5 pulmonary vein.
proximity of the AF driving mechanisms to the PVs even if
not labeled as belonging to the PV class. Therefore, the pro-
posed classifier could assist on clinical decision-making for
the delineation of the optimummapping and ablation strategy
according to patient-specific characteristics. For instance, if a
new case is identified as belonging to the PV class by our
classifier, the suggested procedure to treat the fibrillation
would be PVI. It could also be considered to use cryoabla-
tion, skipping the use of the time-consuming and costly elec-
troanatomical mapping step prior to PVI in these cases, as
identified by our novel ECG-based machine learning classi-
fier. On the contrary, for the cases identified as extra-PV
class, PVI showed to be not effective to acute sinus rhythm
restoration or to atrial flutter conversion. Nevertheless, there
are many studies that have certified the benevolent effects of
performing PVI,41,42 even if it does not lead to an acute AF
termination. However, based on the indications of our classi-
fier, electrophysiologists would know a priori the need for
subsequent ablation procedures in addition to PVI (thus a
patient-specific preparation of surgical instrumentation) to
achieve acute AF termination.

Finally, the clinical dataset was labeled using the acute
PVI success as decision parameter (ie, PVI-terminated AF
leads to PV class). The results regarding the PVI procedure
on our simulations support the perspective that the labeling
on the clinical dataset was properly performed, owing to
the obvious link between PV mechanisms and the success
of PVI.
Acute RL and MI outcome prediction
In addition to PVI, 2 common post-PVI ablation lines were
investigated: RL and MI (Figure 3B and 3C and Table 2).
RL and MI led to the termination of atrial flutter resulting
from PVI. However, the additional ablation created during
RL and MI had no influence on acute AF mechanism termi-
nation by PVI considered in this study, as suggested in
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previous work.43 Nevertheless, it is recognized that these
linear ablations can be effective to prevent some postablation
atrial flutter (eg, perimitral atrial flutter) segmenting the atria
into isolated regions.44
Feature sets
Compelling results were reported previously for RQA ap-
proaches and PCA eigenvalue ratios regarding the character-
ization and discrimination of different
arrhythmias.32,45,33,40,46 Indeed, RQA and the ratio of PCA
eigenvalues were also key features for the binary classifica-
tion implemented in this study. Nine of the 11 most selected
features were obtained with RQA or ratios of PCA eigen-
values (Figure 4A), probably owing to their sensitivity in de-
tecting changes in the dynamic behavior over time.47 We
observed that AF drivers located in the PVs produced a
more regular activity than the extra-PV cases (Figure 1A–
1B.3). In fact, in the simulated episodes, the irregular activity
driven by PV cases was limited to a small portion of tissue
owing to the presence of anatomical obstacles (eg, the PV
sleeves) that prevented the driving mechanisms from
meandering to the remaining parts of the atria. Therefore,
in the remaining atrial areas, the signal was propagated as
an organized single wavefront. Contrarily, AF driving mech-
anisms located in extra-PV areas were free to meander
throughout the tissue owing to the fewer anatomical con-
straints, which yielded more irregular ECGs. The selected
features succeeded in detecting these irregularities and differ-
ences between classes. This information was also quantified
by the selected RQA and PCA eigenvalue ratio parameters,
resulting in significantly higher values for the PV and
extra-PV classes, respectively.

Regarding the 3-class classification, 7 out of the 13 most
selected features (Figure 4B) were the same features selected
for the binary classification (Figure 4A). This supports the
considerations about the higher regularity of the signals pro-
duced by the PV cases compared to the extra-PV cases. The
PV cases have been shown more regular than the extra-PV
LA, and even more regular than the RA cases owing to fewer
anatomical constraints starting from the PV cases and ending
with the RA cases. These observations corroborate our previ-
ous studies.30,40 Some of the features are different between
the 2 sets, and more features are required to solve the 3-
class classification, since this represents a consecutive
approach more complex than the binary one. Therefore,
different information may be required to perform this
discrimination task. Accordingly, more features were needed
to characterize the increasingly irregular activity generated
by the 3 classes, starting from the PVs class up to the RA
class. This was the case with sOI and SE, which showed
significantly lower and higher values from class PVs to class
RA, respectively. However, some features differing between
the 2 classification approaches did indeed measure similar
characteristics of the signal (and were very correlated), so
they could be interchangeable, ie, the average eigenvalue
l7 and the average ratio R7 from the 3-class and binary
classification, respectively. Both these parameters analyze
the variability of PC 7 over time, but R7 emphasizes this vari-
ability more than l7.
AF driver localization
Previous works have considered ECGs to classify AF from
sinus rhythm,19,48 or to automatically diagnose multiple
types of abnormal heart beats.20,49 To the best of our knowl-
edge, ours represents the first study to use the 12-lead ECG
directly for automatic and noninvasive discrimination of
the location of AF drivers to guide clinical decision-making
and procedure planning (electroanatomical mapping
required? LA access required?).

The high performance on the simulated dataset achieved
for PV vs extra-PV AF driver classification with old-out
cross-validation indicates the potential of using the features
extracted in this work to identify the location of the sustaining
AF mechanism using only the noninvasive 12-lead ECG sig-
nals. The classifier trained in the computational framework
was subsequently tested on a clinical dataset, each consisting
of 12-lead ECGs acquired from 46 patients (23 labeled as PV
class, and 23 as extra-PV class). The G-mean of 78.1%
reached on the clinical test set suggests that such a noninva-
sive classification might provide valuable complementary in-
formation in clinical practice. The specificity of 82.6% and
PPV of 80.9% indicate the algorithm’s robustness in identi-
fying the extra-PV cases, suggesting that a PVI-only
approach (eg, using a cryoballoon) might not be sufficient
in these patients to treat AF. Instead, physicians may choose
an ablation technology that is able to detect non-PV trigger
(eg, electroanatomic mapping and additional extra-PVI ra-
diofrequency ablation). Also, the sensitivity of the classifier
is comparably high (73.9%), indicating robustness of the
classifier in identifying the cases where PVI is sufficient to
terminate or convert the arrhythmia (PV class). In these cases,
direct cryoablation without prior mapping might suffice to
treat the patient. In addition, the consistency test performed
on the ECG set of clinical data extracted from the same pa-
tients confirmed the nonrandomness of the classification im-
plemented in this project, matching 93.5% of the results
between the 2 sets (only 3 more cases were misclassified in
the second analysis than in the first one, 2 belonging to the
PV class and 1 to the extra-PV class).

The 3-class classifier demonstrated the potential of this
machine learning approach to identify the atrial position of
the mechanisms sustaining AF even more deeply. The G-
mean metric was only slightly lower than the binary classifi-
cation G-mean (75.1% vs 85.3%). The 3-class approach
could provide important information regarding the need to
perform a transseptal access to the LA during the electro-
physiologic study or whether catheter access to the RA
should suffice.
Influence of torso and atrial geometries
From the literature, it is known that the atrial models used to
generate ECG signals can have a strong influence on the
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signals themselves, likely introducing a bias in machine
learning approaches based on simulated training data.36

Such anatomical bias can lead to a misclassification of the
signals generated from unseen atrial geometries. Therefore,
in the present study, we focused on features that are not prone
to be affected by the specific torso and atria models used to
simulate the AF mechanisms. We used a multi-lead feature-
extraction approach to avoid focusing on a single lead, ie, a
specific projection of cardiac activity, which could be
strongly influenced by atrial geometry and orientation. As
such, it is easier for the multi-lead approach to generalize
well. The LOAO and LOTO analyses confirmed the good
generalization properties of our classifier regarding unseen
atrial and torso models.
Limitations
The simulated AF drivers used to train the machine learning
classifiers in this study are limited to stable long-standing ro-
tors and focal sources. Thus, the classifier was not specif-
ically trained to localize other drivers such as multi-wavelet
reentry,50,51 meandering rotors,52 or intramural reentry.53

Moreover, in silico analysis of acute PVI success in this study
may not lead to the same results in clinical practice because of
the presence of remodeled tissue. Nevertheless, the perfor-
mance on the clinical data containing in vivo AF drivers
was not markedly lower as on the synthetic dataset.

The AF episodes were simulated with atria-only models
without the ventricles. Thus, the QRS-T complex was absent
from our simulated signals. Nevertheless, the removal of
QRS-T complex and its replacement with a sigmoid function,
as done here, or other forms of QRS-T cancellation54 has
proven to robustly extract the f-wave component from the
clinical 12-lead ECG, so that the signals can be analyzed
by our classifier without relevant disturbance from ventricle
activity. Further refinements of the synthetic dataset could
focus on including heterogeneous atrial wall thickness55,56

or extending the dataset to cover even more anatomical torso,
atrial,57 and conduction velocity variability.

Three-second-long signals were simulated and used to
train the classifier implemented in this study for computa-
tional limitations. As an outlook, a test of the classifier with
clinical signals of a longer length could be performed to
verify the robustness of the classifier.

A decision tree was chosen as a machine learning classi-
fier for its simplicity. However, other classification algo-
rithms could be optimized and tested to investigate more
robust methods (eg, support vector machines or artificial neu-
ral networks; Supplemental Material).

To strengthen the statistical power, the classifier could be
prospectively applied on further clinical data. Clinical signal
labeling (PV and extra-PV classes) was done retrospectively
at acute PVI success (termination of AF or conversion to
atrial flutter). Nevertheless, there is no exact information
about the AF driver mechanisms and their positions. There-
fore, the ground truth of the clinical dataset between the
extra-PV LA and RA classes could not be labeled. In a
follow-up study, the predictive power of the classifier should
be tested regarding recurrence of AF after PVI (long-term
PVI outcome).
Conclusion
The results presented in this study show that (1) a machine
learning classifier to distinguish between AF drivers located
in the PVs vs in other atrial regions is feasible (82.6% spec-
ificity, 73.9% sensitivity on a clinical dataset using 12-lead
ECG; 93.5% of results matching on a set of different ECG
segments extracted from the same 46 patients for a consis-
tency analysis); (2) classifiers trained on simulated data for
which the ground truth is known can generalize well to un-
seen clinical data; (3) AF drivers identified in the PVs could
be considered to be treated with cryoballoon PVI without
prior time-consuming and costly electroanatomic mapping;
(4) AF drivers identified in extra-PV areas using the ECG
are unlikely to terminate or convert upon PVI. Prospective
studies are needed to confirm points 3 and 4.

As such, a machine learning–based classifier leveraging
the routinely available noninvasive ECG signal could prove
to be valuable for clinical decision-making and increase
personalization of therapy.
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