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ARTICLE

Integration of genetic fine-mapping
and multi-omics data reveals candidate
effector genes for hypertension

Stefan van Duijvenboden,1,2,3,12 Julia Ramı́rez,1,4,5,12 William J. Young,1,6 Kaya J. Olczak,1

Farah Ahmed,1 Mohammed J.A.Y. Alhammadi,7 International Consortium of Blood Pressure,11

Christopher G. Bell,1,13 Andrew P. Morris,8,9,13,* and Patricia B. Munroe1,10,13,*
Summary
Genome-wide association studies of blood pressure (BP) have identified >1,000 loci, but the effector genes and biological pathways at

these loci are mostly unknown. Using published association summary statistics, we conducted annotation-informed fine-mapping

incorporating tissue-specific chromatin segmentation and colocalization to identify causal variants and candidate effector genes for sys-

tolic BP, diastolic BP, and pulse pressure.We observed 532 distinct signals associated withR2 BP traits and 84 with all three. For>20% of

signals, a single variant accounted for>75% posterior probability, 65 were missense variants in known (SLC39A8, ADRB2, andDBH) and

previously unreported BP candidate genes (NRIP1 andMMP14). In disease-relevant tissues, we colocalized>80 and>400 distinct signals

for each BP trait with cis-eQTLs and regulatory regions from promoter capture Hi-C, respectively. Integrating mouse, human disorder,

gene expression and tissue abundance data, and literature review, we provide consolidated evidence for 436 BP candidate genes for future

functional validation and discover several potential drug targets.
Introduction

Elevated blood pressure (BP) or hypertension affects over 1

billion people and is one of the most important risk factors

for cardiovascular disease (CVD), leading to significant

mortality and morbidity worldwide.1 It is estimated to

cause more than 10 million deaths per year.2 Approxi-

mately 95%of hypertension cases are referred to as primary

or essential hypertension and genetics contributes up to

50% of BP variance,3 the remainder due to lifestyle influ-

ences. Genome-wide association studies (GWASs), bespoke

targeted arrays (Cardio Metabochip), and Exome-array

wide association studies (EAWASs) have been deployed

across samples of diverse ancestries from consortia (Inter-

national Consortium for BP) and large biobanks (UK Bio-

bank,4 Million Veteran’s Program,5 Biobank Japan,6 Korean

Association Resource7). These studies have led to the iden-

tification of over 1,000 BP-associated loci, with both com-

mon and rare variant associations reported.8–13 However,

for most of these loci, the effector genes and relevant bio-

logical processes through which BP associations are medi-

ated have yet to be characterized. Here, we use published

GWAS meta-analysis summary statistics (n > 757,000) for
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systolic BP (SBP), diastolic BP (DBP), and pulse pressure

(PP)8 to perform fine-mapping of causal variants at BP

loci. Through the integration of GWASs with tissue-specific

epigenomic annotations, colocalization of BP associations

with expression quantitative loci (eQTLs) and protein

quantitative loci (pQTLs), and Hi-C promoter interaction

data, we identify consolidated effector genes and causal

pathways and assess their potential for drug target identifi-

cation or repurposing opportunities.
Material and methods

Study data and detection of distinct association signals
We utilized summary statistics from previously reported GWAS

meta-analyses of BP traits in up to 757,601 individuals of Euro-

pean ancestry from the International Consortium of Blood Pres-

sure and UK Biobank8 (ICBPþUKBB). Each contributing GWAS

had been imputed up to reference panels from the 1000 Genomes

Project14,15 and/or Haplotype Reference Consortium.16 After qual-

ity control, meta-analysis association summary statistics for SBP,

DBP, and PP were reported for 7,088,121, 7,160,657, and

7,088,842 single-nucleotide variants (SNVs), respectively. An over-

view of the study design is provided in Figure S1.
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We began by considering autosomal lead SNVs that have been

reported at genome-wide significance (variable threshold accord-

ing to study design) for SBP, DBP, or PP in previously published

GWASs of BP traits, which we have collated and are summarized

in the recent review by Magavern and colleagues.13 We initially

defined genomic regions as mapping 500 kb up- and downstream

of each lead SNV. However, where genomic regions overlapped, we

combined them as a single genomic region to account for poten-

tial linkage disequilibrium (LD) between previously reported lead

SNVs. Genomic regions that did not attain genome-wide signifi-

cance (p < 5 3 10�8) in the ICBPþUKBB meta-analysis for any

BP trait were not considered for downstream interrogation. We

then performed approximate conditional analyses using GCTA-

COJO17 to detect distinct association signals at each genomic re-

gion for each BP trait separately with European ancestry haplo-

types from the 1000 Genomes Project (Phase 3, October 2014

release)14 as a reference for LD. Within each genomic region, var-

iants attaining genome-wide significance (p < 5 3 10�8) in the

joint GCTA-COJO model were selected as index SNVs for distinct

association signals.

We next assessed the evidence that distinct association signals

for SBP, DBP, and PP were shared across multiple BP traits. At

each genomic region, distinct association signals for two traits

were considered to be the same if (1) the index SNVs were the

same for both traits; (2) the index SNVs were colinear in the joint

GCTA-COJO models for each trait after including the index SNV

for the other trait in the model; or (3) the p value of the index

SNV for one trait increased to p > 0.05 after including the index

SNV for the other trait in the model, and the p value of the

index SNP for the other trait increased to p > 0.0001 for the corre-

sponding reciprocal conditioning.
Enrichment of BP associations for genomic annotations
We used functional GWAS (fGWAS)18 to identify genomic annota-

tions enriched for SBP, DBP, or PP association signals. We consid-

ered a total of 253 functional and regulatory annotations derived

from (1) genic regions (protein coding exons, 30 UTRs and 50 UTRs)

as defined by the GENCODE Project19 and (2) chromatin state pre-

dictions of promoters and enhancers across 125 tissues from the

Roadmap Epigenome Consortium20 implemented in Epilogos

(https://epilogos.altius.org/). For each BP trait separately, we

used a forward-selection approach to derive a joint model of en-

riched annotations. At each iteration, we added the annotation

to the joint fGWAS model that maximized the improvement in

the penalized likelihood. We continued until no additional anno-

tations improved the fit of the joint model (p < 0.00020, Bonfer-

roni correction for 253 annotations).
Fine-mapping distinct association signals for BP traits
For each trait, we began by approximating the Bayes’ factor (BF),

Lij, in favor of association of the jth SNV at the ith distinct associ-

ation signal by using summary statistics from the ICBPþUKBB

meta-analyses. Specifically,

Lij ¼ exp

�
Dij � ln Kij

2

�
;

where Dij ¼ b2ij=vij and bij and vij are the allelic log-OR and corre-

sponding variance, respectively, across Kij contributing GWASs

to the ICBPþUKBB meta-analysis (here Kij ¼ 2).21 At genomic re-

gions with a single association signal, bij and vij were taken from

the unconditional meta-analysis. However, for genomic regions
2 The American Journal of Human Genetics 110, 1–17, October 5, 20
with multiple association signals, bij and vij were taken from the

joint GCTA-COJO model, conditioning on the index SNVs for

all other signals at the locus. The posterior probability for the

jth SNV at the ith distinct signal, was then given by pijfgjLij,

where gj is the relative prior probability of causality for the jth

SNV. We considered an annotation-informed prior model, for

which gj ¼ exp

�P
k

bbkzjk

�
,where the summation is over the en-

riched annotations, bbk is the estimated log-fold enrichment of

the kth annotation from the final joint fGWAS model, and zjk is

an indicator variable taking the value 1 if the jth SNV maps to

the kth annotation and 0 otherwise. Finally, we derived a 99%

credible set22 for the ith distinct association signal by (1) ranking

all SNVs according to their posterior probability pij and (2)

including ranked SNVs until their cumulative posterior probability

attains or exceeds 0.99. For comparison, we also calculated the

posterior probability for the jth SNVat the ith distinct signal under

a uniform prior model for which gjf1.

High-confidence SNV gene set enrichment analysis
We used Genomic Regions Enrichment of Annotations Tool

(GREAT) v.4.0.423 to explore the potential biological impact of

high-confidence SNVs. A high-confidence variant was defined as

a single SNV that accounted for more than 75% of the posterior

probability of driving the BP association under the annotation-

informed prior. The default GREAT association parameters for

gene-regulatory domains (proximal 5 kb upstream, 1 kb down-

stream, plus distal up to 1 Mb) were used and curated regulatory

domains included. Input was SNV BED files for each of the three

traits (SBP n¼ 208, DBP n ¼ 224, and PP n¼ 158). GREATanalysis

included gene ontology (GO) biological processes, human pheno-

type, mouse phenotype, and knockout data.

Functional annotation
We use variant-effect predictor (VEP) analysis to identify missense

variants and queried their overlap with high-confidence causal

variants from the credible set analysis (https://grch37.ensembl.

org/Homo_sapiens/Tools/VEP).24

Transcription-factor-binding motif analysis
We used the Transcription Factor Affinity Prediction (TRAP)

v.3.0.525 multiple sequences option to explore any enrichment

for transcription-factor (TF)-binding motifs within the high-confi-

dence non-coding variants for each of the three traits (SBP n ¼
178, DBP n ¼ 187, and PP n ¼ 137). Sequences around each

non-coding SNV were expanded to 510 bp (via AWK) and the

FASTA sequence extracted (hg19) via the BEDtools v.2.30.0 com-

mand getfasta.26 The Transfac 2010.1 Vertebrate matrix set was

interrogated with human_promoter set as background model

and the results were required to pass a Benjamini-Hochberg multi-

ple-testing correction.

Colocalization with eQTLs in BP-relevant tissues
We performed a Bayesian statistical procedure to assess whether

our annotation-informed GWAS fine-mapping colocalized with

eQTL signals. We selected eQTL tissues relevant for blood pressure

from the publicly available eQTL results from GTEx version 8.27

The tissue selection was informed by tissue enrichment analysis

from prior GWAS (adipose, adrenal gland, artery, and heart8,12)

and biological mechanisms known to regulate BP (kidney cortex,

nerve, and brain). The annotation-informed BF in favor of
23
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association of the jth SNVat the i-th distinct association signal was

defined as

L�
ij ¼ pij

X
j

Lij:

In this expression, pij is the annotation-informed posterior proba-

bility and Lij is the BF defined above. We lifted GWAS results from

hg19 to hg38 by using the UCSC liftOver tool28 to allow direct

comparison with the hg38 eQTL data. We undertook colocaliza-

tion by using the annotation-informed BF with the Coloc software

package in R,29 only for those signals for which a 99% credible set

variant was the lead eQTL SNV.

Single-cell RNA sequencing dataset analysis
We used the CellsxGene single cell dataset30 to explore patterns of

single-cell RNA sequencing expression data for BP effector genes

indicated fromourcolocalizedeQTLs.Weused the followinghuman

datasets: fetal adrenal tissue31; adult kidney32; adult heart33; adult

brain including cerebellum, cortex, hypothalamus, hippocampus,

and substantial nigra; and adult adipose including subcutaneous

and visceral adipose (donors were healthy or type 2 diabetic, with

BMI range 23–60). From the obtained single-cell mRNA expression

data, we calculated cell-specific expression for each gene as the ratio

of each cell-type expression to the total expression across all cell

types. This analysis was conducted separately for each tissue. Genes

witha relativeexpressionofmore than75%were selected forpresen-

tation of cell-type-specific expression.

Long-range chromatin interaction (Hi-C) analyses
We identified potential target genes of regulatory SNVs by using

long-range chromatin interaction (Hi-C) data from tissues and

cell types relevant for blood pressure regulation (adrenal gland,

left and right heart ventricles, hippocampus, and cortex).34 Hi-C

data are corrected for genomic biases and distance with the Hi-C

Pro and Fit-Hi-C pipelines according to Schmitt et al. (40 kb reso-

lution—correction applied to interactions with 50 kb–5 Mb

span).35 We selected the most significant promoter interactions

for all potential regulatory SNPs (RegulomeDB score % 3) that

were included in the 99% credible sets and report the interactors

with the SNVs of highest regulatory potential to annotate the

signals.

Colocalization with pQTLs in plasma
Using the same Bayesian statistical approach as performed for

eQTL colocalization, we assessed whether our annotation-

informed GWAS fine-mapping colocalized with cis-pQTL results

using plasma protein concentration summary statistics from a

study using 4,907 aptamers (SomaScan v.4 assay) in 35,559 Ice-

landers.36 Colocalization was performed with the annotation-

informed BF with the R Coloc software package,29 only for signals

for which a 99% credible set variant was the lead cis-pQTL SNV.

Collation of evidence for effector BP genes
A full list of candidate genes for each BP trait was collated from the

results of our fine-mapping pipeline and computational ap-

proaches. A gene was indicated for a signal if there was support

from a coding and high-confidence variant in the gene at the locus

or if the gene was indicated from eQTL or pQTL colocalization or

Hi-C analyses. To refine the list of candidate genes, we next

collated additional information for each gene by using data from

GeneCards (https://genealacart.genecards.org).37 This included
The A
(1) a mousemodel fromMouse Genome Informatics (MGI), which

has a cardiovascular or renal phenotype, and (2) a cardiovascular,

vascular, or renal phenotype described for the candidate gene in

the Human Phenotype Ontology database. We also included (3)

differential RNA expression of the candidate gene in the GTEx

database in cardiovascular, vascular, or renal tissues, but only

genes with fold changes > 4 in a tissue were selected. In addition,

we included (4) differential protein abundance of the candidate

gene based on 69 integrated normal proteomics datasets in

HIPED (the Human Integrated Protein Expression Database).

Genes with a fold change value of >6 and protein abundance

value of >0.1 PPM in an anatomical site were selected. Finally,

we included (5) the consistent tissue and target gene results

from EpiMap (Table S18). The consolidated effector candidate

genes for each BP trait were selected if there were at least two addi-

tional lines of evidence.
Consolidated effector gene pathway analysis
We used the Gene2Function analysis tool in FUMA (v.1.4.0) to

perform gene set enrichment and identify significantly associated

GO terms and pathways.38 Hypergeometric tests were performed

to test whether genes were over-represented in any predefined

gene set and multiple testing correction was performed per cate-

gory. The gene sets used are from MsigDB (https://www.

gsea-msigdb.org/gsea/msigdb) and WikiPathways (https://www.

wikipathways.org/) and genes from the GWAS catalog (https://

www.ebi.ac.uk/gwas/). The analysis included the consolidated

effector genes only. The analysis was conducted for all BP

traits, and we report results with adjusted p values < 0.05. Re-

dundant GO terms were removed via the Reduce and Visualize

Gene Ontology (REVIGO) web application.39 REVIGO uses a

hierarchical clustering method to remove highly similar terms,

incorporating enrichment p values in the selection process.

Default settings (dispensability cut off < 0.7) were used in this

analysis.
Druggability of consolidated effector genes
To identify candidate druggable targets, we performed a look-up in

a previously published database of the druggable genome devel-

oped by Finan et al.40 This list contains protein-coding genes cate-

gorized into three tiers: tier 1 are targets of approved drugs and

some drugs in clinical development, including targets of small

molecules and biotherapeutics; tier 2 are proteins closely related

to drug targets or associated with drug-like compounds (R50%

shared protein sequence identity); tier 3 includes extracellular pro-

teins and members of key drug target families in tier 1 (e.g., G pro-

tein-coupled receptors). To identify potential opportunities for

drug repurposing, we performed a look-up of each BP-consolidated

effector gene in tier 1 to identify existing drug targets (https://

www.genome.jp/kegg/genes.html). Primary targets of antihyper-

tensives were also identified via the KEGG drug database

(https://www.genome.jp/kegg/drug/). We subsequently interro-

gated the open targets database to identify disease associations

with each gene to identify potential overlap that could indicate

promising drug targets. Target, drug, and disease association

data were downloaded from the platform (https://platform.

opentargets.org/downloads). Open Targets calculates association

scores to capture the data type (e.g., gene level) and source, to

aggregate evidence for an association, by calculating the harmonic

sum with a weighted vector of data source scores. This sum is

divided by the maximum theoretical value, resulting in a score
merican Journal of Human Genetics 110, 1–17, October 5, 2023 3
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Figure 1. Overlap of 1,850 distinct signals attaining genome-wide significant evidence of association with SBP, DBP, and PP in meta-
analysis of BP GWAS in up to 757,601 individuals of European ancestry
(A) Venn diagram showing the number of signals shared across BP traits. Sharing of signals across traits is much more common between
SBP and DBP or SBP and PP, with just 16 associations shared between only DBP and PP.
(B) Comparison of allelic effect sizes on SBP, DBP, and PP for the index SNV at the 532 distinct association signals that are shared across
multiple BP traits. The effect has been aligned to the SBP- or PP-increasing allele for the signal. Blue points correspond to the 448 asso-
ciation signals that are shared across exactly two BP traits, whilst red points correspond to the 84 association signals that are shared across
all three BP traits. When signals are shared between SBP and PP, the direction of effect of the index SNV on the traits is always
concordant.
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between 0 and 1. To identify enrichment of candidate effector

genes in clinical indication categories and potentially re-positional

drugs, we utilized the Genome for Repositioning drugs (GREP)

software.41 GREP performs a series of Fisher’s exact tests to identify

enrichment of a gene set in genes targeted by a drug in a clinical

indication category (Anatomical Therapeutic Chemical Classifica-

tion System [ATC] or International Classification of Diseases 10

[ICD10] diagnostic codes).
Results

Identification of BP loci and signals

We considered a total of 650 genomic regions encompass-

ing previously reported lead SNVs for SBP, DBP, or PP (ma-

terial and methods). Of these, lead SNVs at 606 loci at-

tained genome-wide significance (p < 5 3 10�8) for at

least one BP trait and were considered for fine-mapping

(Table S1). Through approximate cross-trait conditional

analyses (material and methods), we partitioned BP associ-

ations at the 606 genomic regions into a total of 1,850

distinct signals that were associated with at least one BP

trait at genome-wide significance (Figure 1 and Table S2).

Of these signals, 532 were associated with at least two BP

traits (333 with SBP and DBP, 267 with SBP and PP, and

100 with DBP and PP) and 84 were associated with all three

traits. The only discordancy in direction of effect was for 17
4 The American Journal of Human Genetics 110, 1–17, October 5, 20
of the 100 signals shared across DBP and PP, where the DBP

increasing allele was the PP decreasing allele).

The cross-trait approximate conditional analyses re-

vealed several genomic regions with complex patterns of

associations with SBP, DBP, and PP (Table S2). For six

genomic regions, more than 20 distinct signals of associa-

tion were observed for at least one BP trait. The most com-

plex associations were observed across (1) a 6.4 Mb region

of chromosome 17, encompassing previously reported loci

that include PLCD3, GOSR2, HOXB7, ZNF652, and PHB1

(locus ID 576, 37 distinct signals); (2) a 5.8 Mb region of

chromosome 10, encompassing previously reported loci

that include PAX2, CYP17A1, NT5C2, and OBFC1 (locus

ID 403, 34 distinct signals); and (3) themajor histocompat-

ibility complex region of chromosome 6 (5.7 Mb, locus ID

251, 32 distinct signals) that encompasses previously

reported loci that include PRRC2A, ABHD16A, and

HLA-DQB1.

Fine-mapping and genomic annotation reveals high-

confidence causal variants for BP traits

Previous studies have demonstrated that improved locali-

zation of causal variants driving association signals for

complex human traits can be attained by integrating

GWAS summary statistics with genomic annotation.42 By

mapping SNVs to functional and regulatory annotations
23
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Figure 2. Distinct BP association signals
(A) Summary of distinct association signals for blood pressure traits. SBP, a single signal at 277 genomic regions and at least two at 180;
DBP, a single signal at 262 genomic regions and at least two at 188; PP, a single signal at 265 genomic regions and at least two at 144.
(B) Distribution of the posterior probability of causality of the variants in credible sets. SBP, systolic blood pressure; DBP, diastolic blood
pressure; PP, pulse pressure.
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from GENCODE19,43 and the Roadmap Epigenomics Con-

sortium20 (material and methods), we observed significant

joint enrichment (p < 2.0 3 10�4, Bonferroni correction

for 253 annotations) for BP associations mapping to pro-

tein-coding exons and 30 UTRs, enhancers in heart and ad-

renal gland, and promoters in adipose and heart (Table S3

and Figure S2).

For each distinct signal, we then derived credible sets of

variants that together account for 99% of the posterior

probability (p) of driving the BP trait association under

an annotation-informed prior model of causality in which

SNVs mapping to the genomic annotations in the globally

enriched signatures for SBP, DBP, and PP are upweighted

(material and methods). The median 99% credible set

size was 20 variants for SBP and DBP and 22 for PP

(Tables S4–S6). For 208 (24%), 224 (24.8%), and 159

(22.9%) SBP, DBP, and PP signals, respectively, there was

a high-confidence SNV. (Figure 2 and Tables S7–S9).

High-confidence SNVs are enriched for BP-related

phenotypes

We used GREAT v.4.0.423 (material and methods) to

explore the potential biological impact of all high-confi-

dence SNVs through their enrichment within trait-related

genomic regions including cis-regulatory elements (CREs).

We explored SNVs separately for the three BP traits and

physiologically consistent enrichment results were identi-
The A
fied for these location data for GO biological processes

(e.g., circulatory system processes, regulation of BP), hu-

man phenotype (e.g., abnormality systemic blood pres-

sure, abnormality of vasculature), mouse phenotype, and

knockout data (e.g., abnormal blood vessel morphology,

increased systemic arterial blood pressure) (Figure S3 and

Tables S10–S12).

Missense variants implicate causal candidate genes

We identified 65 high-confidence missense variants for BP

association signals (Tables S11 and S12). Among these, 20

were driving the same association signal for two BP traits

and one (RGL3 p.Pro162His; rs167479) was driving the

same association signal for all three BP traits (Table 1).

RGL3 is not well characterized, but several missense vari-

ants in the gene have been previously identified in BP EA-

WASs.12 In our study, three distinct association signals are

driven byHFEmissense variants; two are common, i.e., mi-

nor allele frequency (MAF) R 5% (p.His63Asp [rs1799945]

and p.Cys282Tyr [rs1800562]), and one is a low-frequency

variant, i.e., MAF < 5% (p. Ser65Cys [rs1800730]). These

variants are associated with predisposition to hereditary

hemochromatosis, of which, portal hypertension and

restrictive diastolic function are recognized phenotypes.44

Fifteen missense variants were identified to have a

posterior probability of >99.9% of driving distinct BP

association signals. These variants implicate several well
merican Journal of Human Genetics 110, 1–17, October 5, 2023 5



Table 1. High-confidence missense variants for blood pressure association signals (PP > 0.95)

Signal
ID Index SNV

Missense
variant

Canonical
transcript Annotation Chr Position PolyPhen SIFT Trait

p
value

Posterior
probability
(%)

1_6 rs262695 rs262695 ENST00000545087.1 AL590822.1
p.Cys78Arg

1 2,144,788 N/A N/A SBP 9.40 3
10�14

96.2

108_1 rs1047891 rs1047891 ENST00000430249.2 CPS1
p.Thr1412Asn

2 211,540,507 benign tolerated SBP 1.40 3
10�14

98.5

DBP 8.20 3
10�14

99.5

132_2 rs74951356 rs74951356a ENST00000418109.1 LAMB2
p.Ala1765Thr

3 49,158,763 benign tolerated DBP 5.00 3
10�09

95.8

158_3 rs61762319 rs61762319a ENST00000460393.1 MME
p.Met8Val

3 154,801,978 benign deleterious SBP 1.50 3
10�09

99.8

170_6 rs2498323 rs2498323 ENST00000382774.3 HGFAC
p.Arg644Gln

4 3,451,109 possibly
damaging

tolerated PP 7.40 3
10�13

100

191_3 rs13107325 rs13107325 ENST00000394833.2 SLC39A8
p.Ala391Thr

4 103,188,709 possibly
damaging

tolerated SBP 4.20 3
10�53

100

221_1 rs2307111 rs2307111 ENST00000428202.2 POC5
p.His36Arg

5 75,003,678 benign tolerated DBP 1.60 3
10�22

97.6

237_7 rs1800888 rs1800888a ENST00000305988.4 ADRB2
p.Thr164Ile

5 148,206,885 benign tolerated DBP 7.40 3
10�13

100

249_1 rs1800730 rs1800730 ENST00000357618.5 HFE
p.Ser65Cys

6 26,091,185 probably
damaging

deleterious SBP 2.00 3
10�09

96.4

249_3 rs1800562 rs1800562a ENST00000357618.5 HFE
p.Cys282Tyr

6 26,093,141 probably
damaging

deleterious DBP 2.10 3
10�37

96.4

251_7 rs41543814 rs41543814 ENST00000376228.5 HLA-C
p.Ala97Thr

6 31,239,430 benign tolerated
(LC)

DBP 1.50 3
10�19

100

251_10 rs2844573 rs2308655 ENST00000412585.2 HLA-B
p.Cys349Ser

6 31,322,303 benign tolerated
(LC)

PP 1.40 3
10�12

99.2

252_1 rs3176336 rs2395655 ENST00000448526.2 CDKN1A
p.Asp28Gly

6 36,645,696 benign tolerated
(LC)

PP 4.70 3
10�13

98.5

255_1 rs78648104 rs78648104 ENST00000008391.3 TFAP2D
p.Phe74Leu

6 50,683,009 benign tolerated SBP 2.40 3
10�15

99.9

272_1 rs6919947 rs6919947 ENST00000368357.3 NCOA7
p.Ser399Ala

6 126,210,395 benign tolerated
(LC)

SBP 4.90 3
10�17

100

300_3 rs2854746 rs2854746 ENST00000381083.4 IGFBP3
p.Ala32Gly

7 45,960,645 benign tolerated DBP 5.00 3
10�11

97.9

313_2 rs11556924 rs11556924 ENST00000358303.4 ZC3HC1
p.Arg363His

7 129,663,496 probably
damaging

deleterious DBP 1.50 3
10�26

98.3

365_2 rs76452347 rs76452347 ENST00000354323.2 HRCT1
p.Arg63Trp

9 35,906,471 possibly
damaging

deleterious
(LC)

SBP 7.10 3
10�14

100

379_2 rs6271 rs6271a,b ENST00000393056.2 DBH
p.Arg549Cys

9 136,522,274 possibly
damaging

tolerated SBP 1.20 3
10�19

97.6

394_1 rs2236295 rs2236295 ENST00000373783.1 ADO
p.Gly25Trp

10 64,564,892 possibly
damaging

tolerated SBP 2.80 3
10�22

96.7

402_3 rs2274224 rs2274224b ENST00000371380.3 PLCE1
p.Arg1575Pro

10 96,039,597 benign tolerated SBP 9.00 3
10�57

96.6

417_10 rs10770059
(SBP)

rs415895 ENST00000318950.6 SWAP70
p.Gln505Glu

11 9,769,562 benign tolerated SBP 5.00 3
10�47

96.5

432_4 rs117874826 rs117874826a,b ENST00000540288.1 PLCB3
p.Glu564Ala

11 64,027,666 benign deleterious SBP 2.30 3
10�11

100

434_1 rs36027301 rs36027301 ENST00000265686.3 TCIRG1
p.Arg56Trp

11 67,809,268 probably
damaging

deleterious SBP 6.00 3
10�11

97.6

447_7 rs573455 rs573455 ENST00000278935.3 CEP164
p.Gln1119Arg

11 117,267,884 benign tolerated PP 8.70 3
10�34

100

(Continued on next page)
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Table 1. Continued

Signal
ID Index SNV

Missense
variant

Canonical
transcript Annotation Chr Position PolyPhen SIFT Trait

p
value

Posterior
probability
(%)

463_15 rs1126930 rs1126930a ENST00000316299.5 PRKAG1
p.Thr98Ser

12 49,399,132 benign tolerated PP 4.60 3
10�14

95.6

499_1 rs17880989 rs17880989 ENST00000311852.6 MMP14
p.Met355Ile

14 23,313,633 benign deleterious DBP 3.20 3
10�12

100

572_1 rs704 rs704 ENST00000226218.4 VTN
p.Thr400Met

17 26,694,861 benign tolerated SBP 1.90 3
10�08

96.5

582_6 rs34587622 rs34587622 ENST00000427177.1 SEPT9
p.Pro145Leu

17 75,398,498 benign tolerated
(LC)

SBP 6.20 3
10�14

99.9

606_9 rs167479 rs167479 ENST00000393423.3 RGL3
p.Pro162His

19 11,526,765 probably
damaging

deleterious SBP 8.70 3
10�69

100

610_2 rs45522544 rs45522544 ENST00000357324.6 ATP13A1
p.Glu556Lys

19 19,765,499 benign tolerated DBP 3.10 3
10�08

100

616_4 rs34093919 rs34093919 ENST00000308370.7 LTBP4
p.Asp752Asn

19 41,117,300 possibly
damaging

deleterious PP 2.80 3
10�14

97.4

616_7 rs1800470 rs1800470 ENST00000221930.5 TGFB1
p.Pro10Leu

19 41,858,921 N/A tolerated
(LC)

PP 1.90 3
10�15

99

617_2 rs7412 rs7412 ENST00000252486.4 APOE
p.Arg176Cys

19 45,412,079 probably
damaging

deleterious SBP 2.00 3
10�14

100

623_3 rs35761929 rs35761929 ENST00000254958.5 JAG1
p.Pro871Arg

20 10,622,501 benign deleterious DBP 2.60 3
10�18

99.1

636_1 rs2229742 rs2229742 ENST00000400202.1 NRIP1
p.Arg448Gly

21 16,339,172 probably
damaging

deleterious SBP 7.40 3
10�16

100

PP 2.30 3
10�11

99.7

SNV, single-nucleotide variant; Chr, chromosome; SIFT, sorting intolerant from tolerant algorithm, which predicts the effect of coding variants on protein func-
tion; PolyPhen, polymorphism phenotyping tool predicts possible impact of an amino acid substitution on the structure and function of a human protein; posterior
probability, the SNV’s accounted posterior probability of driving the blood pressure association under the annotation-informed prior.
aIndicates a low frequency variant (our data and in non-Finnish Europeans, https://gnomad.broadinstitute.org).
bIndicates supporting evidence for this gene from exome and EAWASs.12,45–47
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characterized BP genes (including SLC39A8 p.Ala391Thr

[rs13107325]; ADRB2 p.Gly16Arg [rs1042713] and p.

Thr164Ile [rs1800888]; and DBH p.Arg549Cys [rs6271]).

The variants p.Thr164Ile in ADRB2 and p.Arg549Cys in

DBH are both of low allelic frequency. The results also

highlight less well-established candidate genes, including

NRIP1, MMP14, and PLCB3 (the MMP14 and PLCB3

missense variants have MAF < 5%). NRIP1 is a regulator

of the mineralocorticoid receptor, and MMP14 is an endo-

peptidase with a key role in degrading components of the

extracellular matrix and regulation of blood vessel stabil-

ity.48 EAWASs12 have identified missense variants associ-

ated with BP traits in PLCB3, which encodes an enzyme

involved in intracellular signal transduction found to

be increased in a mouse model of hypertension and

hypertrophy.49

Several high-confidence missense variants (MAF < 5%)

implicate genes associated with kidney traits/disorders

including NCOA7 p.Ser399Ala (rs6919947), LAMB2

p.Ala1765Thr (rs74951356) (MAF < 5%), and NPHS2

p.Arg229Gln (rs1747728). NCOA7 encodes the nuclear re-

ceptor coactivator 7, a vacuolar proton pumping ATPase

(V-ATPase)-interacting protein. It is highly expressed in
The A
the kidney with knockout mice observed to have lower

BP.50 LAMB2 encodes beta chain isoform laminin, and mu-

tations in this gene cause Pierson syndrome (MIM: 609049),

a congenital nephrotic syndrome in which the phenotype

includes hypertension.51 Mutations in NPHS2 cause ste-

roid-resistant nephrotic syndrome52 and prior work has

indicated a rare missense variant association with BP.12

Non-coding BP association signals map to trait-related

transcription-factor-binding sites

Whilst the identified high-confidence missense variants

have directly interpretable effects, the majority of the pos-

terior probability of causality for BP trait associations maps

to non-coding sequence. To explore these high-confidence

non-coding SNVs, we first sought evidence for enrichment

of TF-binding site (TFBS) motifs. We interrogated sets of se-

quences obtained by expanding 10 bp either side of these

SNVs for each of the three traits (see material and

methods). This identified significant enrichment for seven

SBP, ten DBP, and five PP TFBS motifs that were partially

overlapping (Table S13). The motif for PAX2 was signifi-

cant across all three traits (top corrected p ¼ 2.8 3 10�25

for DBP), and this transcription factor is involved in
merican Journal of Human Genetics 110, 1–17, October 5, 2023 7
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Figure 3. Colocalization between GWAS
signals for SBP and multi-tissue expression
data at locus ID 580 on chromosome 17
The top panel shows the unconditional
GWAS data of the genomic region at chro-
mosome 17 (60.2–62.9Mb) for SBP. The
lower four panels show the log-annota-
tion-informed Bayesian factors of the condi-
tional GWAS signal (blue, left axis) and gene
expression data from GTEx eQTL data (red,
right axis). Three distinct annotation-
informed signals colocalized with gene
expression data from MRC2 (second panel)
in tibial artery tissue, ACE (third panel) in
kidney cortex tissue, and CEP95 and DDX5
in aortic artery tissue (bottom panels). The
x axis shows the physical position on the
chromosome (Mb) and the y axes show
the log annotation-informed Bayesian fac-
tor from the GWAS (left axis) and the gene
expression data (right axis). The intensity
of the color indicates the linkage disequilib-
riumwith respect to the sentinel GWAS SNP
(blue) or top eQTL SNP (red).
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nephron development and is implicated in monogenic

renal abnormalities.53
Effector genes identified via gene expression in BP-

relevant tissues

To gain further insight into mechanisms through which

non-coding association signals are mediated, where identi-

fication of the cognate effector gene is challenging,42 we

integrated genetic fine-mapping data with cis-eQTLs in dis-

ease-relevant bulk tissues from the GTEx Consortium.27

The tissues included were adipose, adrenal gland, artery,

kidney cortex, heart, nerve, and brain. We observed

convincing support for colocalization with eQTLs (mate-

rial and methods) for 96 SBP, 107 DBP, and 84 PP signals

(Table S14). In total, 54 (56%), 58 (54%), and 41 (49%) of

the signals colocalized with an eQTL for a single gene in

at least one tissue. Across all traits, there was a total of

135 genes with tissue-specific colocalizations, of which

55 (41%) were in arterial tissues, 35 (26%) were in nerve

or brain tissues, 21 (16%) were in adipose tissue, 13

(10%) were in heart, 9 (7%) were in adrenal, and 2 (1%)

were in kidney.
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Of the signals associated with all

three BP traits, nine colocalized with

an eQTL for a single effector gene.

These were AGT (brain cerebellum),

ARHGAP24 (tibial artery and aorta),

ARHGAP42 (tibial artery, aorta, and ad-

ipose), CHD13 (aorta), lncRNA CTD-

2336O2.1 (brain tissues), FES (tibial ar-

tery), FGF5 (kidney cortex), IGFBP3

(heart left ventricle), and JPH2 (adrenal

gland). Three genes (AGT, ARHGAP42,

and IGFBP3) have known or support-
ing data for a role in BP regulation. AGT encodes angioten-

sinogen, a substrate of the renin-angiotensinogen sys-

tem—a key regulatory pathway.54 ARHGAP42 is

selectively expressed in smooth muscle cells and modu-

lates vascular resistance, and a knockout Arhgap42 mouse

model demonstrates salt-mediated hypertension.55

IGFBP3, which encodes the insulin growth factor binding

protein 3, has data supporting association with BP and

CVD phenotypes, and a knockout mouse model has

increased ventricular wall thickness and shortened ST

segment.56 It also modulates insulin growth factor 1

(IGF-1) bioactivity with potential regulation of vascular

tone in vivo through NO release.57 Additionally, there is a

high-confidence missense variant implicating IGFBP3,

highlighting distinct associations mediated by the same

gene but through different underlying biological pro-

cesses. Other colocalized effector genes demonstrate links

to cardiovascular phenotypes (FES,58 FGF5,59 and JPH260)

but have not yet been functionally characterized.

We observed many individual loci with several distinct

signals for each BP trait that colocalized with eQTLs

for different genes. The genomic region on chromosome

12 encompassing HDAC7, H1-7, CCDC65, PRKAG1,
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FAM186B, CERS5, andDIP2B spans 3.5 Mb and includes 11

signals for SBP, 12 for DBP, and five for PP. Three signals co-

localized with eQTLs and indicate two effector genes. One

signal (associated with both SBP and DBP) colocalized with

an eQTL for CACNB3 (adipose, tibial nerve, and artery),

which encodes a regulatory beta subunit of the voltage-

dependent calcium channel. The regulatory subunit of

the voltage-gated calcium channel gives rise to L-type cal-

cium currents.61 A Cacnb3 knockout mouse model has a

cardiovascular phenotype that includes abnormal vascular

smooth muscle cell hypertrophy, increased heart weight,

and increased SBP and DBP.62 A second signal (associated

with DBP) colocalized with an eQTL for lncRNA RP4-

605O3.4 (heart left ventricle), and a third signal (associated

with SBP) colocalized with an eQTL in brain and heart left

ventricle for this predicted gene.

A genomic region on chromosome 17 spanning 6.4 Mb,

which encompasses associations reported in several previ-

ous BP GWASs,8,12,63,64 includes 19 SBP, 16 DBP, and 15 PP

signals (locus ID 576, Table S2). Colocalization of signals

with eQTLs implicates six effector genes (DCAKD, NMT1,

lncRNA RP11-6N17.4, PNPO, PRR15L, and ZNF652). Three

independent signals colocalized with eQTLs for NMT1 in

brain. NMT1 encodes N-myristoyltransferase, which catal-

yses the transfer of myristate from CoA to proteins, and

there is no clear association with cardiovascular disease.

However, the MalaCards database indicates an association

with patent foramen ovale, a common post-natal defect of

cardiac atrial septation.65 One DBP signal colocalized with

an eQTL for DCAKD in adipose and nerve tissues. PP sig-

nals colocalized with eQTLs for RP11-6N17.4 and PNPO

in brain tissues. PNPO encodes pyridoxamine 50-phosphate
oxidase, an enzyme in the rate limiting step in vitamin B6

synthesis. Deficiency of PNPO primarily results in seizures,

with many systemic symptoms, including cardiac abnor-

malities.66 We also observed an SBP signal that colocalized

with an eQTL for PRR15L in tibial artery and a signal asso-

ciated with both with SBP and DBP that colocalized with

an eQTL for ZNF652 in adipose tissue.

At a second genomic region on chromosome 17 encom-

passing MRC2, ACE, PECAM1, and MILR1, we observed

four signals for SBP, three for DBP, and four for PP (locus

ID 580, Table S2), of which three signals colocalized with

different genes across multiple tissues (Figure 3). One SBP

signal colocalizes with an eQTL for MRC2 in tibial artery.

MRC2 encodes the mannose receptor C type 2 and plays

a role in extracellular matrix remodeling.67 A signal associ-

ated with both SBP and DBP colocalized with an eQTL for

ACE in kidney, adipose, and brain tissues. ACE encodes the

angiotensin-converting enzyme, a central component of

the renin-angiotensin-aldosterone system.68 A third SBP

signal colocalized with an eQTL for two genes across

several tissues: DDX5 (arteries, brain and tibial nerves)

and CEP95 (tibial nerve and arteries). These genes have lit-

tle prior association with cardiovascular phenotypes.

DDX5 encodes DEAD-box helicase 5, which is thought to

be a coregulator of transcription or splicing, and recent
The A
data indicate a role in smooth muscle cell protection and

neointimal hyperplasia.69 Homozygous Ddx5 knockout

mice die at embryonic day 11.5 and demonstrate blood

vessel abnormalities. There is little information on

CEP95, which encodes centrosomal protein 95, although

differential gene expression was observed in spontane-

ously hypertensive rats.70

Exploratory analysis of single-cell datasets for BP

effector genes

We performed an exploratory analysis investigating cell-

type specificity for effector genes indicated from eQTL

analysis by utilizing single cell datasets from the adrenal,

kidney, heart, brain, and adipose tissues (material and

methods). The results per effector gene per tissue are pro-

vided in Figure S4. There were several genes across each tis-

sue that had a relative expression > 75% in a particular cell

type compared to other cells in that organ, thus demon-

strating potentially strong cell-type-specific expression.

The genes indicated were lncRNA RP11-179B2.2 in neurons

in the brain hippocampus, HSPB7, CLCNKA, and ACE in

neurons in the brain cortex, and PCOLCE-ASI in neurons

in the brain cerebellum (as opposed to other non-neuronal

cell types present in cortical tissue, such as glia); lncRNA

RP11-373D23.3 in fibroadipogenic progenitor cells,

PAQR8 in lymphocytes, and ACHE in mesothelial cells all

from adipose tissues; ACHE in fibroadipogenic progenitor

cell in adipose visceral omentum; and JPH2, FHL3, lncRNA

CTB-30L5.1 in cortical cells of the adrenal gland. There

were no genes in the heart, kidney, or brain substantia ni-

gra where cell-type-specific expression exceeded the 75%

threshold we selected.

Identification of effector genes via promotor-centered

long-range chromatin interactions in disease-relevant

tissues

To explore possible long-range enhancer influence on spe-

cific target genes, we integrated genetic fine-mapping data

with potential functional CREs identified to target the pro-

moters of well-annotated protein-coding genes via long-

range chromatin interactions (capture Hi-C data from

Jung et al.34). Promoter interactions and candidate genes

were identified for 629 signals at 366 genomic regions

(RegulomeDB score% 3) across adrenal gland, dorsolateral

prefrontal cortex, hippocampus, aorta, left ventricle, right

ventricle, and fat (Table S15). We observed signals at 13

genomic regions that included 99% credible set variants

with regulatory potential across SBP and DBP, for

which several potential target genes of the regulatory

variants were indicated. At five signals, one gene was indi-

cated in a single tissue: ACTRT2 (dorsolateral prefrontal

cortex), ARMC4 (right ventricle), ncRNA AP001024.1 (hip-

pocampus), TBX3 (aorta), and YES1 (hippocampus). At

other genomic regions, many genes in one tissue were

indicated: HOXA5, HOXA6, and HOXA3 (adrenal gland);

ncRNA RP11691N7.6, SELENOH, TIMM10, CLP1, YPEL4,

ZDHHC5, FAM111A, lncRNA AP001350.1, GLYATL2, and
merican Journal of Human Genetics 110, 1–17, October 5, 2023 9
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GLYATL1 (hippocampus, dorsolateral prefrontal cortex),

and ABHD17C and MESD (two brain tissues). At three sig-

nals, more than one gene in more than one tissue were

highlighted, such as ADGRA2, DDHD2, FGFR1, PLPP5,

LETM2, TACC1 (two brain tissues, adrenal gland, aorta,

and right ventricle). Candidate genes at three signals

have existing functional data supporting an association

with BP or cardiovascular traits: HOXA3, ADM, and

TBX3.56,71,72

We next explored whether signals that colocalized with

eQTLs for effector genes overlapped with those implicated

by Hi-C predicted promoter interactions. We focused on

the 80 signals that have support for colocalization with

eQTLs in relevant tissues across all traits (Table S16). For

34 signals, the effector gene indicated by Hi-C was the

same as that identified via colocalization with the eQTLs,

and for 15 of these signals, the same tissue was implicated

(Table S16). The 15 candidate genes were AKR1B1, ASAP2,

COL27A1, IRF5, MAP1B, MRPS6, MXD3, RAD52, RERE,

RNF130, SLC5A3, SLC20A2, TNS3, TRIOBP, and USP36. A

review of the 15 genes indicates knockout mouse models

of three effector genes (COL27A1, RERE, and SLC20A2)

have cardiovascular abnormalities, but they have not pre-

viously been highlighted as potential candidate genes for

hypertension (Table S17).

To explore our Hi-C-predicted promoter interactions

more broadly, we additionally probed our results to see

whether there was also support for these potential CREs

to target the same effector gene through a completely

different prediction methodology from the recent

EpiMap analysis.73 This method is based on an active chro-

matin correlation with target gene expression. Several

physiologically relevant candidate effector transcripts

were highlighted, where the two methods predicted the

same target for the same SNV in the same tissue or organ

(see Table S18). Potential targets included genes previously

identified as highly plausible trait-related candidates from

previous analyses, including CLIC4, TNS1, and FERMT2.74

Target genes with presently unknown potential roles in

SBP and DBP pathophysiology were also identified. These

included two active CREs found in brain-related tissue,

which would be of interest to explore for additional activ-

ity in potentially more physiologically relevant non-as-

sayed tissues: SHMT1, which encodes the serine hydroxy-

methyltransferase 1 enzyme involved in folic acid

metabolism associated, although inconsistently, with hy-

pertension-related stroke,75 and PLXNB2, which encodes

the plexin-B2 transmembrane receptor that has an identi-

fied role in the developing kidney.76 For PP this comprised,

amongst others, some interesting target genes, including

MYH11, smooth muscle myosin heavy chain 11, with

CRE activity in aortic tissue. Mutations within this gene

lead to an autosomal-dominant aortic aneurysm and

dissection disorder (AAT4, MIM: 132900) with altered

aortic stiffness.77,78 Also, COL6A3, which encodes the

alpha-3 chain of type VI collagen, was a target identified

in heart tissue. This collagen gene is important in the
10 The American Journal of Human Genetics 110, 1–17, October 5, 2
developing mammalian heart79 and is associated with

monogenic myopathy and dystonia diseases (MIM:

158810, 254090, and 616411).80

Effector genes identified with pQTLs in plasma

We integrated genetic fine-mapping data with cis-pQTLs

by using summary statistics from a published study of

plasma protein concentrations in 35,559 Icelanders.36 Sup-

port for colocalization was identified for ten SBP, six DBP,

and 11 PP signals corresponding to ten, six, and ten unique

proteins, respectively. Across all BP traits, there were 16

unique signals at 16 proteins (Table S19). For two proteins

(angiotensin and matrix-remodelling associated protein 7

[MXRAP7]), the encoding gene was also a significant

eQTL finding. For four proteins (tyrosine-protein kinase

Fgr, collagen alpha-3 (VI) chain, plexin-B2, and

MXRAP7), the encoding gene was a significant finding in

the long-range chromatin interaction analyses.

Consolidated effector gene evidence

Using complementary fine-mapping and computational

approaches (high-confidence missense, colocalized eQTLs,

Hi-C interactions, and pQTLs), we identified 959 candidate

genes for SBP, 904 candidate genes for DBP, and 774 candi-

date genes for PP with at least one line of evidence

(Tables S20–S22).

We next looked for additional supportive evidence for

each of these candidate genes by combining information

from (1) mouse and (2) human cardiovascular and renal

phenotypes, (3) the consistent target and tissue EpiMap

findings, and differential (4) gene and (5) protein abun-

dance across cardiovascular tissues (material and

methods). We selected as consolidated effector genes those

that had two or more additional lines of evidence. In total,

215 SBP, 205 DBP, and 202 PP genes were identified

(Tables S23–S25), which together reflect 436 unique genes.

To gain insights into the biological role of the consoli-

dated effector genes for each BP trait, we performed

gene set enrichment analyses. We found significant

enrichment for 310, 270, and 245 GO biological processes

for SBP, DBP, and PP, respectively (following removal of

redundant processes, see material and methods). There

were 264 unique GO ID terms across the three traits,

with 111, 77, and 76 unique to SBP, DBP, and PP respec-

tively. In total, 172 pathways were associated with SBP

and DBP, 148 with SBP and PP, and 140 with DBP and

PP. Moreover, 119 pathways were associated with all three

BP traits (Tables S26–S28). Some of the pathways associ-

ated with all three BP traits included circulatory system

development, embryo development, tube development,

regulation of cell differentiation, urogenital system devel-

opment, and renal system development—all processes

previously highlighted as important in BP control. The

most significant SBP unique processes included heart

development (p ¼ 4.22 3 10�12), positive regulation of

signaling (p ¼ 8.77 3 10�10) and positive regulation of

gene expression (p ¼ 1.95 3 10�9); for DBP, epithelium
023
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development (p ¼ 6.45 3 10�14), embryonic organ devel-

opment (p ¼ 3.14 3 10�11), and epithelial cell prolifera-

tion (p ¼ 3.08 3 10�7); and for PP, tube morphogenesis

(p ¼ 9.57 3 10�18), muscle cell proliferation (p ¼ 1.3 3

10�11), and response to growth factor (p ¼ 1.67 3 10�7).
Drug target identification and repositioning

opportunities

We assessed the druggability of the consolidated effector

genes for each BP trait via the druggable genome dataset

from Finan et al.40 (Table S29, see material and methods).

We observed DBP to have a greater number of candidate

effector genes that encode proteins that are the main

drug targets for anti-hypertensive medications (ACE,

ADRA1A, ADRB1, and NR3C2) than SBP (ACE) and PP

(none). For several effector genes whose protein products

are targets of existing drugs, there was support as potential

therapeutic targets for hypertension (e.g., AKR1B1, PDE3A,

andMAP2K1). AKR1B1 (aldo-keto reductase family 1mem-

ber B) is a target of aldose reductase inhibitors that have

been investigated for use in diabetes and also have effects

on BP.81 PDE3A (phosphodiesterase 3A) is a target for hy-

pertension with bracydactyly, a rare autosomal-dominant

disorder, and there is recent data indicating several com-

mon variant associations also in the general popula-

tion.12,82 PDE3A is targeted by several existing drugs,

including Cilostazol (peripheral vascular disease), Levosi-

mendan for intravenous therapy for acutely decompen-

sated heart failure, and Enoximone (pulmonary hyperten-

sion). There are no data currently indicating the use of

PDE3A inhibitors for hypertension, however a recent study

suggests activation of PDE3A in the heart may protect it

from hypertrophy and failure.83 MAP2K1 is a target of

anti-neoplastic agents (MAP2K1 is altered in 1% of lung

and head and neck squamous cell carcinomas).84,85 The

MAPK pathway is well recognized in BP control and p38-

MAPK inhibition has been considered previously as a ther-

apeutic target (which MAP2K activates).

To further ascertain drug repositioning opportunities, we

tested for enrichmentof these consolidated effector genes in

clinical indication categories. We observed significant

enrichment of gene sets for cardiovascular and renal condi-

tions (Table S30), and the results support the findings from

interrogationof the Finan et al. druggable genomedatabase.
Discussion

Strongly replicated human genetic associations with BP

traits have been identified over the last decade, but there

is a lag in effector gene identification. In this study, we

have used a robust contemporary fine-mapping pipeline

to advance from these initial broadly associated genomic

regions to the identification of hundreds of previously un-

reported candidate effector genes. These consolidated can-

didates are now excellent targets for future focused func-

tional validation.
The Am
Wewere able to localize approximately a quarter of all as-

sociations across all three BP traits to a single causal variant

with >75% posterior probability. Of these high-confidence

SNVs, 65weremissense variants, including 20 identified for

two BP traits and one in RGL3 for all three traits. For the

high-confidence non-coding and potentially cis-regulatory

variants, we employed pathogenic tissue-specific expres-

sion and chromatin conformation to identify their target

genes. Of these SNVs, �100 per trait colocalized with cis-

eQTLs. Plausible effector genes included the well-known

angiotensin (AGT) and angiotensin converting enzyme

(ACE), also more recently described genes from GWASs

with functional data including sodium/potassium-trans-

porting ATPase subunit beta-1 (ATP1B1) and rho GTPase-

activating protein 42 (ARHGAP42). Other possible but less

well functionally evaluated genes identified through

eQTL analysis included CDH13, FES, FGF5, and JPH2.

We identified many loci with multiple complex signals

within the same genomic region affecting different genes

in different tissue types. Also, of note, while we observed

high-confidence missense variants in kidney genes, as

well as an enrichment for non-coding variants to overlap

a nephron developmental TFBS, we identified only a very

small proportion of eQTL colocalizations in this tissue

(FGF5 and ACE and the lncRNA AC021218.2). This may

reflect reduced power due to the relatively smaller numbers

in GTEx for kidney than other tissues.27 Using over 400 hu-

man kidneys and the same ICBPþUKBB GWAS dataset,

Eales and colleagues reported nearly 31% of BP-associated

loci contained lead eQTL variants.86 We were not able to

directly compare or incorporate results from this larger kid-

ney dataset into our pipeline, as summary statistics are not

available for colocalization analysis.With the big difference

in kidney eQTLs between datasets, the results strongly

emphasize the importance of access to larger tissue banks

for robust identification of all possible effector genes.

Focusing on the overlap between the eQTL and Hi-C re-

sults in disease-relevant tissues, there was a subset of 15

target genes identified in the same tissue. Of these,

COL27A1, RERE, and SLC20A2 also had additional evi-

dence from mouse data. Support for target genes consis-

tently predicted across multiple methods are the most

robust.87 We also explored overlap with the recent

EpiMap,73 highlighting, amongst others, MYH11 and

COL6A3, as strong effector candidates for PP. In total, our

pipeline identified consolidated evidence effector genes

for �25% of BP association signals (215 genes for 865

SBP signals; 205 genes for 904 DBP signals; and 202 genes

for 697 PP signals). Of the consolidated BP genes, 13%were

identified to be drug targets, and several of these have good

support for potential repurposing for BP control.

Our study applied rigorous multiple evidence methodol-

ogy employing differing datasets from the Evangelou et al.

to derive a consolidated effector gene list.8 This impacted

the identification of potential therapeutic targets, as we

were not able to replicate in our analysis the five candidate

genes (CA7, CACNA1C, CACNB4, PKD2L1, and SLC12A2)
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reported in their paper as the target of anti-hypertensive

drug classes. However, PKD2L1 did show individual Hi-C

evidence as being the effector gene at the locus.

Themain strength of this work is that it combines robust

GWAS associations, derived from a powerfully large data-

set, with comprehensive genetic annotation and tissue-

specific epigenomic maps derived from the Epigenomics

Roadmap Consortium. In the exploration of the putative

functional non-coding variants, a further strength was

that we were able to benefit from the expanded GTEx data-

set27 and publicly available promoter capture Hi-C data in

pathogenically relevant tissues34 as well as exploration of

target gene prediction overlap with EpiMap.73 These ana-

lyses identified many biologically plausible effector genes.

Our work builds and advances on the initial Evangelou

et al. findings, as here we perform formal fine-mapping

analysis as well as eQTL colocalization. Furthermore, un-

like previous work, our integrative analysis has enabled

us to delineate a distinct list of potential effector genes.

Current weaknesses are the lack of population diversity

in our GWAS dataset, as these are comprised of associations

from European ancestry individuals only. Consequently,

our results will be missing population-specific findings,

as have been identified in other common diseases.88 While

multi-ancestry BP sequencing studies have indicated the

strong ancestry-specific nature of rare variants,89 most

common variants may be shared.90 However, due to LD

and MAF complexity, identified variants will need detailed

exploration at a locus-by-locus basis across continental

groups.91 Furthermore, this lack of diversity is not only

limited to the genetic findings. The epigenomic maps,

while being derived from a breadth of cell types giving

good representation of strong tissue-specific regulatory dif-

ferences, are within each cell type drawn from very small

numbers. Therefore, they lack detail regarding potential

population variation in these functional units.92 Another

weakness is that while benefitting from dense genotyping

and imputation of common SNVs, this is not exhaustive in

capturing all the potential phenotypically associated ge-

netic variation within each locus. This will miss the

possible impact of rare SNVs as well as any poorly tagged

larger variants (copy-number variants, short tandem re-

peats, inversions, etc.). Furthermore, these large variants

may themselves facilitate functional epigenomic varia-

tion.93 Future exploration of the phased interplay of ge-

netic and epigenetic allelic elements by advancing long-

read technologies will help to fill in these gaps.94 We did

make use of currently available single-cell expression data-

sets to explore higher resolution cell-type specificity,

which is not able to be resolved with bulk tissue analyses.

However, while this revealed some intriguing findings,

which would be of interest to explore further experimen-

tally, we also acknowledge that these resources currently

have technical and power constraints, but they are rapidly

evolving and will become more comprehensive over time.

In conclusion, we have identified plausible causal ge-

netic variants and effector genes enriched in BP pathways.
12 The American Journal of Human Genetics 110, 1–17, October 5, 2
Their investigation through experimental biosystems will

not only improve functional understanding of the biology

of BP and its pathogenesis but also potentially enable

novel preventative and therapeutic opportunities.
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33. Litvi�nuková, M., Talavera-López, C., Maatz, H., Reichart, D.,

Worth, C.L., Lindberg, E.L., Kanda, M., Polanski, K., Heinig,

M., Lee, M., et al. (2020). Cells of the adult human heart. Na-

ture 588, 466–472. https://doi.org/10.1038/s41586-020-

2797-4.

34. Jung, I., Schmitt, A., Diao, Y., Lee, A.J., Liu, T., Yang, D., Tan,

C., Eom, J., Chan, M., Chee, S., et al. (2019). A compendium

of promoter-centered long-range chromatin interactions in

the human genome. Nat. Genet. 51, 1442–1449. https://doi.

org/10.1038/s41588-019-0494-8.

35. Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y.,

Lin, S., Lin, Y., Barr, C.L., and Ren, B. (2016). A Compendium

of Chromatin Contact Maps Reveals Spatially Active Regions

in the Human Genome. Cell Rep. 17, 2042–2059. https://

doi.org/10.1016/j.celrep.2016.10.061.

36. Ferkingstad, E., Sulem, P., Atlason, B.A., Sveinbjornsson, G.,

Magnusson, M.I., Styrmisdottir, E.L., Gunnarsdottir, K., Hel-

gason, A., Oddsson, A., Halldorsson, B.V., et al. (2021).

Large-scale integration of the plasma proteome with genetics

and disease. Nat. Genet. 53, 1712–1721. https://doi.org/10.

1038/s41588-021-00978-w.

37. Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M.,

Fishilevich, S., Stein, T.I., Nudel, R., Lieder, I., Mazor, Y., et al.

(2016). The GeneCards Suite: From Gene Data Mining to Dis-

ease Genome Sequence Analyses. Curr. Protoc. Bioinformatics

54, 1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5.

38. Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma,

D. (2017). Functional mapping and annotation of genetic as-

sociations with FUMA. Nat. Commun. 8, 1826. https://doi.

org/10.1038/s41467-017-01261-5.

39. Supek, F., Bo�snjak, M., �Skunca, N., and �Smuc, T. (2011). RE-

VIGO summarizes and visualizes long lists of gene ontology

terms. PLoS One 6, e21800. https://doi.org/10.1371/journal.

pone.0021800.

40. Finan, C., Gaulton, A., Kruger, F.A., Lumbers, R.T., Shah, T.,

Engmann, J., Galver, L., Kelley, R., Karlsson, A., Santos, R.,

et al. (2017). The druggable genome and support for

target identification and validation in drug development.

Sci. Transl. Med. 9, eaag1166. https://doi.org/10.1126/sci-

translmed.aag1166.

41. Sakaue, S., and Okada, Y. (2019). GREP: genome for REPosi-

tioning drugs. Bioinformatics 35, 3821–3823. https://doi.

org/10.1093/bioinformatics/btz166.

42. Schaid, D.J., Chen, W., and Larson, N.B. (2018). From

genome-wide associations to candidate causal variants by sta-

tistical fine-mapping. Nat. Rev. Genet. 19, 491–504. https://

doi.org/10.1038/s41576-018-0016-z.
The Am
43. ENCODE Project Consortium, Birney, E., Dunham, I., Green,

E.D., Gunter, C., and Snyder, M. (2012). An integrated ency-

clopedia of DNA elements in the human genome. Nature

489, 57–74. https://doi.org/10.1038/nature11247.

44. Milman, N.T., Schioedt, F.V., Junker, A.E., and Magnussen, K.

(2019). Diagnosis and Treatment of Genetic HFE-Hemochro-

matosis: The Danish Aspect. Gastroenterology Res. 12, 221–

232. https://doi.org/10.14740/gr1206.

45. Surendran, P., Drenos, F., Young, R., Warren, H., Cook, J.P.,

Manning, A.K., Grarup, N., Sim, X., Barnes, D.R., Witkowska,

K., et al. (2016). Trans-ancestry meta-analyses identify rare

and common variants associated with blood pressure and hy-

pertension. Nat. Genet. 48, 1151–1161. https://doi.org/10.

1038/ng.3654.

46. Liu, C., Kraja, A.T., Smith, J.A., Brody, J.A., Franceschini, N.,

Bis, J.C., Rice, K., Morrison, A.C., Lu, Y., Weiss, S., et al.

(2016). Meta-analysis identifies common and rare variants

influencing blood pressure and overlapping with metabolic

trait loci. Nat. Genet. 48, 1162–1170. https://doi.org/10.

1038/ng.3660.

47. Backman, J.D., Li, A.H., Marcketta, A., Sun, D., Mbatchou, J.,

Kessler, M.D., Benner, C., Liu, D., Locke, A.E., Balasubrama-

nian, S., et al. (2021). Exome sequencing and analysis of

454,787 UK Biobank participants. Nature 599, 628–634.

https://doi.org/10.1038/s41586-021-04103-z.

48. Sounni, N.E., Dehne, K., van Kempen, L., Egeblad, M., Affara,

N.I., Cuevas, I., Wiesen, J., Junankar, S., Korets, L., Lee, J., et al.

(2010). Stromal regulation of vessel stability by MMP14 and

TGFbeta. Dis. Model. Mech. 3, 317–332. https://doi.org/10.

1242/dmm.003863.

49. Wu, J., Zhang, C., Liu, C., Zhang, A., Li, A., Zhang, J., and

Zhang, Y. (2019). Aortic constriction induces hypertension

and cardiac hypertrophy via (pro)renin receptor activation

and the PLC-beta3 signaling pathway. Mol. Med. Rep. 19,

573–580. https://doi.org/10.3892/mmr.2018.9653.

50. Merkulova, M., P�aunescu, T.G., Nair, A.V., Wang, C.Y., Capen,

D.E., Oliver, P.L., Breton, S., and Brown, D. (2018). Targeted

deletion of the Ncoa7 gene results in incomplete distal renal

tubular acidosis in mice. Am. J. Physiol. Renal Physiol. 315,

F173–F185. https://doi.org/10.1152/ajprenal.00407.2017.

51. Mohney, B.G., Pulido, J.S., Lindor, N.M., Hogan, M.C., Consu-

gar, M.B., Peters, J., Pankratz, V.S., Nasr, S.H., Smith, S.J.,

Gloor, J., et al. (2011). A novel mutation of LAMB2 in a multi-

generational mennonite family reveals a new phenotypic

variant of Pierson syndrome. Ophthalmology 118, 1137–

1144. https://doi.org/10.1016/j.ophtha.2010.10.009.

52. Larionov, A., Dahlke, E., Kunke, M., Zanon Rodriguez, L.,

Schiessl, I.M., Magnin, J.L., Kern, U., Alli, A.A., Mollet, G.,

Schilling, O., et al. (2019). Cathepsin B increases ENaC activity

leading to hypertension early in nephrotic syndrome. J. Cell

Mol. Med. 23, 6543–6553. https://doi.org/10.1111/jcmm.

14387.

53. Bower, M., Salomon, R., Allanson, J., Antignac, C., Benedi-

centi, F., Benetti, E., Binenbaum, G., Jensen, U.B., Cochat, P.,

DeCramer, S., et al. (2012). Update of PAX2mutations in renal

coloboma syndrome and establishment of a locus-specific

database. Hum. Mutat. 33, 457–466. https://doi.org/10.

1002/humu.22020.

54. Xu, Y., Rong, J., and Zhang, Z. (2021). The emerging role of an-

giotensinogen in cardiovascular diseases. J. Cell. Physiol. 236,

68–78. https://doi.org/10.1002/jcp.29889.
erican Journal of Human Genetics 110, 1–17, October 5, 2023 15

https://doi.org/10.1371/journal.pgen.1004383
https://cellxgene.cziscience.com/
https://cellxgene.cziscience.com/
https://doi.org/10.1126/science.aba7721
https://doi.org/10.1126/science.aba7721
https://doi.org/10.1126/science.aat5031
https://doi.org/10.1038/s41586-020-2797-4
https://doi.org/10.1038/s41586-020-2797-4
https://doi.org/10.1038/s41588-019-0494-8
https://doi.org/10.1038/s41588-019-0494-8
https://doi.org/10.1016/j.celrep.2016.10.061
https://doi.org/10.1016/j.celrep.2016.10.061
https://doi.org/10.1038/s41588-021-00978-w
https://doi.org/10.1038/s41588-021-00978-w
https://doi.org/10.1002/cpbi.5
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1093/bioinformatics/btz166
https://doi.org/10.1093/bioinformatics/btz166
https://doi.org/10.1038/s41576-018-0016-z
https://doi.org/10.1038/s41576-018-0016-z
https://doi.org/10.1038/nature11247
https://doi.org/10.14740/gr1206
https://doi.org/10.1038/ng.3654
https://doi.org/10.1038/ng.3654
https://doi.org/10.1038/ng.3660
https://doi.org/10.1038/ng.3660
https://doi.org/10.1038/s41586-021-04103-z
https://doi.org/10.1242/dmm.003863
https://doi.org/10.1242/dmm.003863
https://doi.org/10.3892/mmr.2018.9653
https://doi.org/10.1152/ajprenal.00407.2017
https://doi.org/10.1016/j.ophtha.2010.10.009
https://doi.org/10.1111/jcmm.14387
https://doi.org/10.1111/jcmm.14387
https://doi.org/10.1002/humu.22020
https://doi.org/10.1002/humu.22020
https://doi.org/10.1002/jcp.29889


Please cite this article in press as: van Duijvenboden et al., Integration of genetic fine-mapping and multi-omics data reveals candidate
effector genes for hypertension, The American Journal of Human Genetics (2023), https://doi.org/10.1016/j.ajhg.2023.08.009
55. Carney, E.F. (2017). Hypertension: Role of ARHGAP42 in hy-

pertension. Nat. Rev. Nephrol. 13, 134. https://doi.org/10.

1038/nrneph.2017.13.

56. Koscielny, G., Yaikhom, G., Iyer, V., Meehan, T.F., Morgan, H.,

Atienza-Herrero, J., Blake, A., Chen, C.K., Easty, R., Di Fenza,

A., et al. (2014). The International Mouse Phenotyping Con-

sortium Web Portal, a unified point of access for knockout

mice and related phenotyping data. Nucleic Acids Res. 42,

D802–D809. https://doi.org/10.1093/nar/gkt977.

57. Tsukahara, H., Gordienko, D.V., Tonshoff, B., Gelato, M.C.,

and Goligorsky, M.S. (1994). Direct demonstration of insu-

lin-like growth factor-I-induced nitric oxide production by

endothelial cells. Kidney Int. 45, 598–604. https://doi.org/

10.1038/ki.1994.78.

58. Karamanavi, E., McVey, D.G., van der Laan, S.W., Stanczyk, P.J.,

Morris, G.E.,Wang, Y., Yang,W., Chan, K., Poston, R.N., Luo, J.,

et al. (2022). The FES Gene at the 15q26 Coronary-Artery-

Disease Locus Inhibits Atherosclerosis. Circ. Res. 131, 1004–

1017. https://doi.org/10.1161/CIRCRESAHA.122.321146.

59. Seo, H.-R., Jeong, H.E., Joo, H.J., Choi, S.-C., Park, C.-Y., Kim, J.-

H., Choi, J.-H., Cui, L.-H., Hong, S.J., Chung, S., and Lim, D.-S.

(2016). Intrinsic FGF2 and FGF5 promotes angiogenesis of hu-

man aortic endothelial cells in 3D microfluidic angiogenesis

system. Sci. Rep. 6, 28832. https://doi.org/10.1038/srep28832.

60. Reynolds, J.O., Quick, A.P.,Wang, Q., Beavers, D.L., Philippen,

L.E., Showell, J., Barreto-Torres, G., Thuerauf, D.J., Doroudgar,

S., Glembotski, C.C., and Wehrens, X.H.T. (2016). Junctophi-

lin-2 gene therapy rescues heart failure by normalizing RyR2-

mediated Ca2þ release. Int. J. Cardiol. 225, 371–380. https://

doi.org/10.1016/j.ijcard.2016.10.021.

61. Collin, T., Lory, P., Taviaux, S., Courtieu, C., Guilbault, P., Berta,

P., and Nargeot, J. (1994). Cloning, chromosomal location and

functional expression of the human voltage-dependent cal-

cium-channel beta 3 subunit. Eur. J. Biochem. 220, 257–262.

https://doi.org/10.1111/j.1432-1033.1994.tb18621.x.

62. Bult, C.J., Blake, J.A., Smith, C.L., Kadin, J.A., Richardson, J.E.;

and Mouse Genome Database Group (2019). Mouse Genome

Database (MGD) 2019. Nucleic Acids Res. 47, D801–D806.

https://doi.org/10.1093/nar/gky1056.

63. Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M.D., Bo-

chud, M., Coin, L., Najjar, S.S., Zhao, J.H., Heath, S.C., Eyher-

amendy, S., et al. (2009). Genome-wide association study

identifies eight loci associated with blood pressure. Nat.

Genet. 41, 666–676. https://doi.org/10.1038/ng.361.

64. International Consortium for Blood Pressure Genome-Wide

Association Studies, Ehret, G.B., Munroe, P.B., Rice, K.M., Bo-

chud, M., Johnson, A.D., Chasman, D.I., Smith, A.V., Tobin,

M.D., Verwoert, G.C., Hwang, S.J., et al. (2011). Genetic vari-

ants in novel pathways influence blood pressure and cardio-

vascular disease risk. Nature 478, 103–109. https://doi.org/

10.1038/nature10405.

65. Rappaport, N., Twik, M., Plaschkes, I., Nudel, R., Iny Stein, T.,

Levitt, J., Gershoni, M., Morrey, C.P., Safran, M., and Lancet,

D. (2017). MalaCards: an amalgamated human disease com-

pendium with diverse clinical and genetic annotation and

structured search. Nucleic Acids Res. 45, D877–D887.

https://doi.org/10.1093/nar/gkw1012.

66. Wilson, M.P., Plecko, B., Mills, P.B., and Clayton, P.T. (2019).

Disorders affecting vitamin B(6) metabolism. J. Inherit.

Metab. Dis. 42, 629–646. https://doi.org/10.1002/jimd.12060.

67. Wienke, D., Davies, G.C., Johnson, D.A., Sturge, J., Lambros,

M.B.K., Savage, K., Elsheikh, S.E., Green, A.R., Ellis, I.O., Rob-
16 The American Journal of Human Genetics 110, 1–17, October 5, 2
ertson, D., et al. (2007). The collagen receptor Endo180

(CD280) Is expressed on basal-like breast tumor cells and pro-

motes tumor growth in vivo. Cancer Res. 67, 10230–10240.

https://doi.org/10.1158/0008-5472.CAN-06-3496.

68. Imig, J.D. (2004). ACE Inhibition and Bradykinin-Mediated

Renal Vascular Responses: EDHF Involvement. Hypertension

43, 533–535. https://doi.org/10.1161/01.HYP.0000118054.

86193.ce.

69. Fan, Y., Chen, Y., Zhang, J., Yang, F., Hu, Y., Zhang, L., Zeng,

C., and Xu, Q. (2019). Protective Role of RNA Helicase

DEAD-Box Protein 5 in Smooth Muscle Cell Proliferation

and Vascular Remodeling. Circ. Res. 124, e84–e100. https://

doi.org/10.1161/CIRCRESAHA.119.314062.

70. �Seda, O., Li�ska, F., Pravenec, M., Vernerová, Z., Kazdová, L.,
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