
Leveraging on Digital Signage Networks to Bring

Connectivity to IoT Devices

J. David de Hoz, Jose Saldana,

Julián Fernández-Navajas, José Ruiz-Mas

I3A, University of Zaragoza

Ada Byron Building, 50018, Zaragoza, Spain

e-mail: {dhoz, jsaldana, navajas, jruiz}@unizar.es

Rebeca Guerrero Rodríguez, Félix de Jesús Mar

Luna, Raúl Iván Herrera González

Technological University of Durango

Carretera Durango – Mezquital, 34080 Durango, México

e-mail: {rebeca.guerrero, felix.mar, raul.herrera}

@utd.edu.mx

Abstract—The number of Internet-connected devices exceeds

the world's population by more than three times and this figure

is expected to be doubled within the next five years. The Internet

of Things is a concept that describes this trend and outlines

certain aspects of design and functionality that new devices

should incorporate for a successful integration into the Internet.

In this respect, Digital Signage networks traditionally used for

audiovisual media, accomplish many of the characteristics of the

Internet of Things devices: interoperability, mobility, scalability

and ubiquity, both in terms of access and control of devices and

regarding the information they generate. This paper raises the

power to employ a proposed Digital Signage network as a

substrate to connect other types of devices that can benefit from

the advantages of this kind of networks. For that aim, the main

problems for this integration are discussed, mainly those related

to the bidirectional tunneling scheme used in the proposed

Digital Signage solution. The effects of this tunneling approach

are analyzed in scenarios with bandwidth constraints, and

different solutions are proposed. Tunneling performance in

mobility is improved, to increase the amount of Internet of

Things devices and applications that can benefit from this type of

network.

Keywords— Digital Signage, Internet of Things, port

forwarding, network mobility, OpenSSH tunneling.

I. INTRODUCTION

The Internet of Things (IoT) is changing the traditional
concept of the Net. In this new scenario universal connectivity
arises, as the interconnection of networks with different
devices and services becomes possible. This concept also
comprises a change in the paradigm supporting the structure of
the Internet. The IoT is composed by different networks that
aim to provide communication systems, telephony, network
security, control and operation of connected devices around the
world, allowing the ability to incorporate, review and distribute
information and knowledge across the network [1] [2].

 By 2020 the number of devices connected to the network
for each individual is expected to be 6.6 (Table I) [3]. This fact
encourages the creation of applications with high potential to
analyze data and process information, in order to identify
trends and patterns from the data provided by ubiquitous
sensors and control systems [4].

TABLE I. CONNECTED DEVICES VS. WORLD POPULATION [3].

 2010 2015 2020

Connected devicesa 12.5 25 50

Connected devices for each people 1.84 3.47 6.58

Wolrd populationa 6.8 7.2 7.6

a. Billions

The increase of the number of connected devices influences
the authorship of the information available online. According
to recent studies [3] [5], a significant part of the information
published on the Internet is automatically generated by
connected devices (Fig. 1). Therefore, the nature of the
information and its increasing amount makes it necessary to
develop technology able to facilitate the processing of this
information through systems that enable interoperability
between devices [6]. Constant network deployment adds value
to commodity, making it feasible the new conception of
extending Internet to Everything [7].

Fig. 1 Scheme Information generated by mobile devices [4].

Digital Signage (DS) is a technology focused on selective
broadcasting of audiovisual media such as video, animation,
sounds, images and interactive applications [8]. This
broadcasting is usually made on screens distributed on wide
areas on which contents are segmented according to its
location. In parallel, DS networks [9] can be defined as those
required to connect these audiovisual devices with the servers
providing the contents to be displayed. DS requires a logical
network allowing flexibility, reliability and control regardless
of the geographic location of each device. The main purpose of

This work has been partly financed by CONACYT (PEI 682/2014);

Servicios d TI de Durango S.A. de C.V.; Ateire S.A.C., and de ER H2020

Wi 5 project (Grant Agreement no: 644262).

such networks is to communicate multimedia content, in some
cases with interactive capabilities through recent digital
technology devices.

The main structure of a DS system is composed of two
elements: (1) the players, i.e. the devices that reproduce the
content and (2) a central server or core network, as a DS cloud,
which provides access to different services, control devices and
content distribution.

When a DS system is deployed, a number of connected
devices are spread in a geographical zone. Thus, if they are
equipped with specific communication interfaces, the DS
technology can be raised to interconnect other types of devices
in a transparent way, providing scalability and mobility just as
the IoT paradigm states. The DS element would then act as a
relay for connecting other wireless devices to the network,
sharing its backhaul link with them. So a third element should
be added to the scenario, namely the IoT devices. We will call
them “alien devices” in this document (Fig. 2). Obviously,
security and privacy issues may arise if this scheme is
followed, taking into account that the player will act as a relay
for the information of other devices.

It can be said that nowadays DS technology lacks
standardization, and a clear description of its functionality does
not exist so far. In this paper a specific solution is presented,
based on open technology applied to both the central server
and the players composing the DS network. This design has
been elaborated making an efficient use of the concept of IoT,
to generalize interactivity and accessibility through the DS
network. To achieve this goal, every player is controlled via a
web interface, real-time control is permitted through servers
and a bidirectional tunneling connection scheme is used
between servers and players. In this paper the structure of a DS
network is presented, which has been deployed in real
scenarios. Different use cases including a number of wireless
devices are also considered. In addition, different mechanisms
for optimizing its communication system, based on
bidirectional tunneling, are studied.

The remainder of the paper is organized as follows: In
Section II (Related Work) common IoT features and DS classic
systems are pooled. In Section III a proposed architecture for
DS is explained. The section is focused on introducing all DS
elements. Its communication scheme is also presented to justify
its use with IoT devices. Also two ongoing projects are
analyzed. Section IV describes some limitations of the
tunneling described communication approach, and how to
overcome them. Two test beds are proposed to measure and

optimize communications performance and Section V ends this
paper with the conclusions.

II. RELATED WORK

In [10], a decentralized architecture is proposed for a DS
network integrating Radio Frequency IDentification (RFID)
systems. Its implementation by some companies in the sector is
described. The proposed design includes elements of great
relevance when considering a more general use of the network
following the IoT paradigm. Security in communications is
implemented and its architecture allows a flexible network
deployment. The presented architecture is based on the
decentralization of services, applications and network
functions. The network included in this scheme allows the
integration of various elements related to RFID technology and
also allows sending visual messages to users through DS
devices.

In the present article, although this type of network is not
intended to be used in a more widespread sense, the importance
of decentralizing processing services, running applications and
communication control is stressed, as this increases scalability
and resilience to failure. These ideas are kept in proposals for
generic decentralized networks that are postulated as suitable
platforms for a diverse number of services and applications for
Internet of Things [11].

Given these ideas, the DS system presented incorporates
certain aspects of decentralized networks in order to develop a
layered platform, flexible enough to adapt to any
communication need or device requirements in terms of
software or hardware. This network is intended to allow
traditional DS players with other devices without requiring
substantial hardware or software changes. Thereby, this DS
network becomes valid for supporting applications and services
for the IoT paradigm, in which a traditional DS player becomes
a possible relay for other devices, applications or services. Two
examples of ongoing projects are explained below.

All in all, the contribution of this paper is twofold: (1) an
architecture for a DS network is presented based on open
technology and mature protocols: Transmission Control
Protocol (TCP) over Internet Protocol (IP), OpenSSH and
Hyper Text Transfer Protocol (HTTP); (2) the performance of
bidirectional secure tunnels sharing a connection is studied.
Both questions have been implemented and studied in real
scenarios.

Fig. 2 Integration scheme for alien devices into DS network throught DS players.

III. PROPOSED ARCHITECTURE FOR DIGITAL SIGNAGE

In the proposed design, several factors are considered: (1)
The underlying Operating System (OS) of the players and the
servers; (2) the web technology used to display and manage the
content; (3) the structure of the content as web apps; and (4)
the security in network communication and the flexibility in
deploying this network in a way that it does not require
complex configurations, allowing an overall management of
device groups and content channels.

In DS, the reliability of the whole system is very important
to reduce as much as possible the human interaction required
for maintenance. This is an important feature in most DS
devices whose required operating service is 24/7. For that
reason it is necessary to address all the elements of the system
as a whole. Although policy usually leads to closed solutions
rather monolithic for certain scenarios, in our case, the design
of the whole system is carried out in layers following several
recommendations stated for “fog computing” [11]. This
scheme can provide network services to other applications
beyond web content prepared expressly for DS, thus promoting
the interconnection and communication with other various
devices. The DS network provides basic services, all of them
incorporating encryption, and transparent management on
communication establishment and monitoring:

 A bidirectional transmission channel for high and low
priority content.

 A bidirectional transmission channel to manage content
applications or configure the player, generally web
based.

 A bidirectional transmission channel, with high priority,
for internal network signaling. It is also used for
notification of high priority events and alarms.

 Communication between devices on the same DS
network. If necessary, the DS cloud can set authorized
tunneled connections when requested by any
application between two or more devices. These
authorizations are based on policy rules following
ownerships and granted rights from networking
administrators.

A. Network scheme

The DS network previously presented has a logical hybrid
connection scheme (Fig. 3). It mainly follows a logical star
architecture, where each device is connected to the centralized
cloud services through the Internet. However, in certain cases,
DS devices can communicate with each other without using
these centralized cloud services. This usually occurs when the
devices are in the same local network and the distribution of
the same contents to every device is required. However, the DS
network can also provide tunneled communication with other
devices if needed (Fig. 4). The communications between the
players through the cloud also follow a bidirectional tunneling
scheme.

This approach shares some similarities with some schemes
outlined in IP Mobility protocols [12] [13], allowing real-time
access to devices from any terminal connected to Internet.

Fig. 3 Tunneled communications in DS network.

Fig. 4 Tunneled connection between players on different networks.

B. Communications security

This aspect of the DS network is addressed by introducing
tunneled communications encryption via SSL (Secure Socket
Layer). Encryption is performed using pairs of public-private
RSA keys of 2048 bits (RSA-2048) that are assigned at the
factory. The device registration and allocation to end users in
the cloud is performed at the time of purchase or renting. This
type of security helps to protect the integrity of the data and to
certify the source, thereof avoiding potential phishing attacks
when updating contents [14]. In addition, this communication
permits the tunneling of different traffic between a local
process and a remote service. This is set thanks to the Secure
SHell (SSH) port forwarding feature. Securing
communications following this scheme does not require
significant modifications on existing software and services.

C. Quality of Service (QoS)

Communications can be classified according to their level
of priority into three groups: control, management and content
distribution. In DS networks, most QoS degradation scenarios
are often linked to a high degree of congestion in the local

Internet access nodes. For that reason, a QoS system based on
802.11e devices [15] [16] [17] and including standard queuing
disciplines when available [18] has been implemented in our
DS system, thus improving Internet access of high priority
communication.

D. Elements of the System

1) Screens Network for public transport in Mexico City
In Mexico City, we are collaborating with a local content

provider 1 to equip buses with DS players using 3.5G+
connectivity. These devices also include a Global Positioning
System (GPS) for geo positioning the bus with which to offer
other future services under development. These players are in a
mobility environment with moderate bandwidth and
connectivity constraints, which our system has to overcome.

The network will consist of 300 units (screens in buses, see
Fig. 5 and 6) operating at the same time. The geo position of all
buses is centralized through the DS network and this allows us
to develop tailored applications and services for travelers
(better controlling the bus service times). At the same time,
advertisers can restrict the display spots in certain geographical
areas of interest. The system is however partly decentralized,
as players can communicate each other directly when
downloading information at bus stations. This feature reduces
downloading times as information is downloaded from the
cloud only once, and then transmitted to other players. These
devices can also execute contents and applications locally, thus
avoiding occasional connectivity loss to be noticed by
passengers.

2) Network sensors for air quality
AirPi platform [19] is a clear example of an alien device to

be incorporated into the DS network already described. This
element has several environmental sensors and functions that
can be added as expansion shields for RaspberryPi platform
[20], a System on Chip (SoC) device with a Reduced
Instruction Set Computing (RISC) processor based on Acorn
RISC Machine (ARM) technology. Its integration into our DS
network was simple and allowed the real-time monitoring of
the status of all its sensors and devices. A DS player together
with an AirPi (Fig. 7) can provide audiovisual information and
weather statistics alongside helps government institutions to
measure air quality parameters on different parts of the city.

Fig. 5 Public transport bus in Mexico City.

1 Tele Urban, http://www.teleurban.tv/

Fig. 6 Indoor layout of the screens on buses.

Fig. 7 AirPI device for measuring environmental parameters.

Fig. 8 Totem STI installed in Durango Fair 2014.

This device has been successfully installed inside
audiovisual outdoor cabinets called “totems” (Fig. 8) and
operates in parallel to their DS player which manages the
digital screen inside the totem. Thanks to DS flexibility, it can
be controlled just as another DS device in the network.

In this scenario, AirPI can get its running applications
updated through a DS content channel. These updates can be
done specifically to one device, some of them or all, exploiting
content channel services in DS network. The environmental
parameters measured by this device can also be monitored in

real time and use the network event log to also review available
historical data and statistics. Finally, an AirPi can interact with
a Digital Signage Player directly to report data required for
displaying it on screen, or any content in the player can query
information directly to AirPi.

IV. TESTS AND RESULTS

As shown in Fig. 3, the proposed architecture considers a
number of bidirectional SSH tunnels between the DS device
and the control terminal. It has been observed that this system
presents problems when the information is transmitted through
port forwarding. In this scenario, SSH works as an extendable
proxy: half of the proxy is local and the other half is on a
remote machine. Both halves communicate with each other
through a forwarder-tcpip channel [21]. However, all the
recent OpenSSH implementations include an incoming buffer
with a fixed size of 2 Mbytes [22], set on the local forwarder-
tcpip channel side. As a result, when there is an intensive
throughput application sharing a session with other flows, the
overall latency increases because the size of that incoming
buffer degrades the overall performance.

 These problems are well-known in the literature [23], and
optimizations of OpenSSH implementation have been
proposed, but mainly intended to improve throughput
performance, not latency. To overcome this problem, we
propose not to multiplex tunneled connections through the
same SSH session. Instead, the connections of each player with
the server should be generated in different SSH sessions. This
allows each SSH session to have its own incoming buffer, thus
preventing high latency values to propagate from one flow to
another. It also allows SSH to apply DiffServ using the type of
service (ToS) field of the packets from each session, allowing
Linux default queuing discipline (pfifo_fast) to coordinate
datagrams sending, based on their priority [18]. This approach
does not require kernel modifications on most devices and
facilitates future implementation on embedded android
systems.

In order to study and optimize this approach, we next
separately analyze two aspects: performance evaluation of the
main TCP variants’ congestion control, and latency
degradation at application layer. According to the results, the
validation of this communication scheme will be discussed.

A. Performance of TCP congestion control variants

To study the impact of buffering in port-forwarding
connections using OpenSSH 6.6, a series of measurements
have been made in communications between DS players and
servers. The proposed testbed is as follows: four players are
connected to the Internet with a 3.5G+ Huawei E173 modem
each. This device allows High Speed Downlink Packet Access
(HSDPA) 7.2 Mbps for the downlink channel and High Speed
Uplink Packet Access (HSUPA) 2.1 Mbps for the uplink
channel. All the players are running OpenSSH 6.6 in a Linux
OS based on kernel 3.10.48. Each player runs a different TCP
congestion control algorithm to test the upload channel.
Connections with the server are made synchronously to prevent
random effects to affect only one single connection. 3G signal
level is -75 dBm in all devices, and all measurements were
taken with the vehicle at rest.

Each tests series consists on a set of 15 transmissions run in
different hours of the day. On each test two tunnels are
established through independent SSH port-forwarded
connections from all players to a private testing server at
Montreal, Canada, in the same datacenter where our DS cloud
is hosted. This private server is linked to the cloud but during
experiments its services were set offline. On the first
connection, Iperf tool [24] is used to generate traffic for 120s
and to measure statistics, and NetEm [25] is configured on the
Point to Point Protocol (PPP) network interface of each player
to model bursty packet losses. A 2% and 5% packet loss
scenarios are modeled in order to study the worst cases on
High-Speed Packet Access (HSPA) while the terminal is
moving [26]. On the second tunneled connection of each
player, a Python script is used to sample Round Trip delay
Times (RTT) using echo server port through the second port-
forwarded channel for interactive connections. The scheme is
shown in Fig. 9. The tested TCP variants are Reno, Bic, Cubic
and Westwood.

Fig. 9 Experimental testbed to study congestion control aglorythms through
independent port-forwarded OpenSSH channels.

The results presented in Fig. 10 and Fig. 11 represent the
Cumulative Distribution Function (CDF) of Round Trip delay
Time (RTT) values which indicates that the policies
implemented to prevent high latencies at the interactive tunnel
are working correctly. In all the tests performed, 85% echo
packets are under 350 ms latency while Iperf is transmitting. In

these circumstances, if an interactive application with low
bandwidth requirements needs to transmit, its RTT will not
increase due to parallel data flows, allowing the interactive
application to work correctly.

TABLE II. THROUGHPUT MEASURED AT PPP INTERFACE.

 Westwood BIC Cubic Reno

2% packet loss 397 Kbps 340 Kbps 422 Kbps 355 Kbps

5% packet loss 193 Kbps 222 Kbps 240 Kbps 210 Kbps

The bandwidth usage is summarized in Table II, where
Cubic obtains the best performance mark. This result is similar
to the one obtained in experiments run on non-tunneled
connections [27].

Fig. 10 Comparison of the latency with 2% packet loss.

Fig. 11 Comparison of the latency with 5% packet loss.

In Fig. 11, a slightly poor Westwood performance is
detected. This may be caused by the interaction of OpenSSH
with RTT traffic flow values: Westwood congestion window
depends on RTT traffic flow values and these figures are
altered in port-forwarding connections due to the proxy
behavior of OpenSSH. This is clearly shown only on Fig. 10,
but this slight degradation is always present.

B. Latency degradation at application layer

It is necessary to analyze the impact of tunneling at
application level and to measure the RTT performance penalty
that port-forwarded communications may imply. To measure
this degradation, a test in a scenario including mobility (Fig.
12) is performed as follows: One player is set in a car and it is
connected to the Internet using the same 3.5G+ modem
introduced before. The car follows a 20 min. bus city trip at
Durango, Mexico (Fig. 13). There is an Internet Group
Management Protocol (IGMP) ping sample each second
besides the two port forwarded connections. The RTT
measured through echo pings sent by the Python script through
the tunneled connection is compared to the RTT presented by
plain IGMP pings. This information helps to measure RTT
penalties regarding to port forwarding connection. All these
measures are performed in presence of background traffic
generated through Iperf to measure bandwidth over time. This
scheme is presented is Fig. 12.

Fig. 12 Experimental motion testbed to measure latency degradation in port
forwarded communications in presence of background traffic (Iperf).

Fig. 13 City trip followed in Durango superimposed on 3G Movistar signal
level provided by OpenSignal2

2 OpenSignal: http://opensignal.com/

 Followed route

Weak signal – Strong signal

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 100 200 300 400 500 600 700 800 900 1000

Th
ro

u
gh

p
u

t
(K

b
p

s)

Time [s]

Fig. 14 Upload throughput measured at field test on a car.

Fig. 15 Comparison between Latency on second tunnel using echo messages
and IGMP when Iperf is transmitting. Values above 3 seconds have been cut,
since we consider this value as the threshold of a disconnection.

TABLE III. PORT-FORWARDED AND IGMP COMMUNICATION RESULTS

 IGMP Port Forwarded echo

Conectivity 90% 89%

RTT average 622 ms 632 ms

According to the results shown on Fig. 14, Fig. 15 and
summarized on Table III, the degradation of the tunneled
communications is less than a 1.7% in terms of RTT, barely
degrading connectivity.

C. Validation of DS communication scheme

Communications do not seem to be affected when using

tunneled connections through OpenSSH port-forwarding as

detailed above. The average latency in presence of background

traffic sharing PPP connection is high despite using DiffServ

due to the mobility and 3G coverage fluctuations. However,

this approach may still be valid for communications between

IoT devices. For example, this communication may employ

protocols conforming to the Representational State Transfer

(REST) architecture constraints [28], as the Constrained

Application Protocol (CoAP) or HTTP, which does not require

low RTT values to work. The use of RESTful protocols,

particularly HTTP, also allows easy interoperability with

external information systems as ThingSpeak [29] through

HTTP methods GET, POST, PUT and DELETE.

V. CONCLUSIONS

This paper has presented a DS network able to distribute,
collect information and control devices in real time. They are
being deployed in public screens traveling in buses, and
employed as relays for connecting IoT devices. The connection
problem of these devices in mobility has been addressed.

After analyzing the causes of OpenSSH port-forwarding
limitations it is concluded that bidirectional tunneling scheme
based on port-forwarding lacks dynamic incoming buffers,
generating undesirable effects when sharing SSH session with
intensive throughput applications. However, the solution of this
problem is feasible without modifying OpenSSH core
implementation, by using different SSH sessions for each flow
and applying Diffserv.

Results from tests performed conclude that this scheme
works in environments with packet loss and mobility without
degrading latency. As future work, we want to test that all
security features provided by open SSH as a process-to-process
protocol have barely noticeable performance degradation at
application level. Although this approach cannot be deployed
in a widespread sense, this communication scheme has
immediate application on many existing devices on the market
with enough hardware features, allowing fast development of
new IoT devices and services.

REFERENCES

[1] B. Edson, “Creating the Internet of Your Things,” Microsoft

Corporation, 2014.

[2] CISCO, “The Internet of Things Reference Model,” 15 November

2014. [Online]. Available: http://cdn.iotwf.com/resources/71/IoT_

Reference _Model _White _Paper_June_4_2014.pdf.

[3] C. Visual Networking Index, The Zettabyte Era: Trends and Analysis,

San Jose, California, 2014.

[4] D. Evans, “The Internet of Things. How the Next Evolution of the

Internet is Changing Everything,” Cisco Internet Business Solutions

Group (IBSG), 2011.

[5] V. Turner and J. F. Gantz, “The Digital Universe of Opportunities,” in

Rich Data and the Increasing Value of the Internet of Things,

Framingham, MA, 2014.

[6] International Telecommunication Union, “ITU Internet Reports 2005:

The Internet of Things,” December 2006. [Online]. Available:

http://www.itu.int/osg/spu/publications/internetofthings/.

[7] A. J. Jara, L. Ladid and A. Skarmeta, “The Internet of Everything

through IPv6: An Analysis of Challenges, Solutions and

Opportunities,” Journal of Wireless Mobile Networks, Ubiquitous

Computing, and Dependable Applications, vol. 4, nº 3, pp. 97-118,

September 2013.

[8] R. Want, B. N. Schilit, “Interactive Digital Signage,” Computer, vol.45,

no. 5, pp. 21-24, May 2012.

[9] D. Franck and A. Martin, Digital signage: the right information in all

the right places, ITU-T Technology Watch Report, 2011.

[10] D. B. Kotak and W. A. Gruver, Distributed Intelligent RFID Systems,

San Antonio, Texas: IEEE International Conference on Systems, Man,

and Cybernetics, 2009.

[11] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, Fog Computing and Its

Role in the Internet of Things, San Jose, California: Cisco Systems

Inc., 2012.

[12] J. Jaehoon, P. Jungsoo and K. Hyoungjun, “Dynamic Tunnel

Management Protocol,” IEEE Xplore, vol. 7, pp. 4754 - 4757, 2004.

[13] W. Xiaoming, “A framework of enhanced local mobility routing,”

IEEE Xplore, vol. 3, pp. 2030 - 2034, 2003.

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

 P
in

g
R

TT
 (

m
s)

IGMP
Tunnel

http://cdn.iotwf.com/resources/71/IoT_

[14] E. A. Cooper, Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile, 2008.

[15] Heinanen and et al, “IETF Network Working Group, RFC2597:

Assured Forwarding PHB Group,” June 1999. [Online]. Available:

http://tools.ietf.org/html/rfc2597.

[16] B. Davie and et al, “IETF Network Working Group, RFC3246: An

Expedited Forwarding PHB,” March 2002. [Online]. Available:

http://tools.ietf.org/html/rfc3246.

[17] Wi-Fi Alliance, “Wi-Fi CERTIFIED™ for WMM™ - Support for

Multimedia Applications with Quality of Service in Wi-Fi®

Networks,” 2 September 2004. [Online]. Available: http://www.wi-

fi.org/wi-fi-in-your-life.

[18] Graf, Thomas, et al, “Simple, classless Queueing Disciplines,”

[Online]. Available: http://lartc.org/howto/lartc.qdisc.classless.html.

[19] A. Dayan and T. Hartley , “AirPi,” 4 april 2013. [Online]. Available:

https://airpies.wordpress.com/.

[20] Raspberry Pi org, “What is a Raspberry PI,” Cambridge, UK, 2014.

[21] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Connection

Protocol,” 2006 [Online]. Available: https://tools.ietf.org/html/rfc4254.

[22] OpenSSH 6.9 Source Code (channels.h), 2015.

[23] Rapier, M. Stevens y B. Bennet, “High Performance SSH/SCP -HPN-

SSH,” Pittsburgh Supercomputing Center, 2012. [Online]. Available:

http://www.psc.edu/index.php/hpn-ssh.

[24] M. Gates and et al, “Iperf,” [Online]. Available: https://iperf.fr/.

[Accessed 21 noviembre 2014].

[25] Linux Foundation, “NetEm: Network Emulation,” 19 November 2009.

[Online]. Available: http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem.

[26] J.A. Esquerra-Soto, J.A. Pérez-Díaz, I. Amezcua-Valdovinos and C.F.

García-Hernández “Performance Analysis of 3G+ Cellular

Technologies with Mobile Clients,” Instituto Tecnológico de

Monterrey, 2012.

[27] S. Mascolo and L. De Cicco, “TCP Congestion Control over HSDPA:

an Experimental Evaluation,” arXiv, December 2012.

[28] A. Aijaz and A. Hamid Aghvami, F, “Cognitive Machine-to-Machine

Communications,” IEEE Internet of Things Journal, vol. 2, nº 2, April

2015.

[29] ThingSpeak Community “ThingHTTP”, [Online]. Available:

http://community.thingspeak.com/documentation/apps/thinghttp/.

http://tools.ietf.org/html/rfc3246
http://www.psc.edu/index.php/hpn-ssh
http://www.linuxfoundation.org/collaborate/

