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Abstract—The number of Internet-connected devices exceeds 

the world's population by more than three times and this figure 

is expected to be doubled within the next five years. The Internet 

of Things is a concept that describes this trend and outlines 

certain aspects of design and functionality that new devices 

should incorporate for a successful integration into the Internet. 

In this respect, Digital Signage networks traditionally used for 

audiovisual media, accomplish many of the characteristics of the 

Internet of Things devices: interoperability, mobility, scalability 

and ubiquity, both in terms of access and control of devices and 

regarding the information they generate. This paper raises the 

power to employ a proposed Digital Signage network as a 

substrate to connect other types of devices that can benefit from 

the advantages of this kind of networks. For that aim, the main 

problems for this integration are discussed, mainly those related 

to the bidirectional tunneling scheme used in the proposed 

Digital Signage solution. The effects of this tunneling approach 

are analyzed in scenarios with bandwidth constraints, and 

different solutions are proposed. Tunneling performance in 

mobility is improved, to increase the amount of Internet of 

Things devices and applications that can benefit from this type of 

network. 

Keywords— Digital Signage, Internet of Things, port 

forwarding, network mobility, OpenSSH tunneling. 

I. INTRODUCTION  

The Internet of Things (IoT) is changing the traditional 
concept of the Net. In this new scenario universal connectivity 
arises, as the interconnection of networks with different 
devices and services becomes possible. This concept also 
comprises a change in the paradigm supporting the structure of 
the Internet. The IoT is composed by different networks that 
aim to provide communication systems, telephony, network 
security, control and operation of connected devices around the 
world, allowing the ability to incorporate, review and distribute 
information and knowledge across the network [1] [2]. 

 By 2020 the number of devices connected to the network 
for each individual is expected to be 6.6 (Table I) [3]. This fact 
encourages the creation of applications with high potential to 
analyze data and process information, in order to identify 
trends and patterns from the data provided by ubiquitous 
sensors and control systems [4]. 

 

TABLE I.  CONNECTED DEVICES VS. WORLD POPULATION [3]. 

  2010 2015 2020 

Connected devicesa 12.5 25 50 

Connected devices for each people 1.84 3.47 6.58 

Wolrd populationa 6.8 7.2 7.6 

a. Billions 

 

The increase of the number of connected devices influences 
the authorship of the information available online. According 
to recent studies [3] [5], a significant part of the information 
published on the Internet is automatically generated by 
connected devices (Fig. 1). Therefore, the nature of the 
information and its increasing amount makes it necessary to 
develop technology able to facilitate the processing of this 
information through systems that enable interoperability 
between devices [6]. Constant network deployment adds value 
to commodity, making it feasible the new conception of 
extending Internet to Everything [7].  

 

Fig. 1 Scheme Information generated by mobile devices [4]. 

Digital Signage (DS) is a technology focused on selective 
broadcasting of audiovisual media such as video, animation, 
sounds, images and interactive applications [8]. This 
broadcasting is usually made on screens distributed on wide 
areas on which contents are segmented according to its 
location. In parallel, DS networks [9] can be defined as those 
required to connect these audiovisual devices with the servers 
providing the contents to be displayed. DS requires a logical 
network allowing flexibility, reliability and control regardless 
of the geographic location of each device. The main purpose of 
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such networks is to communicate multimedia content, in some 
cases with interactive capabilities through recent digital 
technology devices. 

The main structure of a DS system is composed of two 
elements: (1) the players, i.e. the devices that reproduce the 
content and (2) a central server or core network, as a DS cloud, 
which provides access to different services, control devices and 
content distribution. 

When a DS system is deployed, a number of connected 
devices are spread in a geographical zone. Thus, if they are 
equipped with specific communication interfaces, the DS 
technology can be raised to interconnect other types of devices 
in a transparent way, providing scalability and mobility just as 
the IoT paradigm states. The DS element would then act as a 
relay for connecting other wireless devices to the network, 
sharing its backhaul link with them. So a third element should 
be added to the scenario, namely the IoT devices. We will call 
them “alien devices” in this document (Fig. 2). Obviously, 
security and privacy issues may arise if this scheme is 
followed, taking into account that the player will act as a relay 
for the information of other devices. 

It can be said that nowadays DS technology lacks 
standardization, and a clear description of its functionality does 
not exist so far. In this paper a specific solution is presented, 
based on open technology applied to both the central server 
and the players composing the DS network. This design has 
been elaborated making an efficient use of the concept of IoT, 
to generalize interactivity and accessibility through the DS 
network. To achieve this goal, every player is controlled via a 
web interface, real-time control is permitted through servers 
and a bidirectional tunneling connection scheme is used 
between servers and players. In this paper the structure of a DS 
network is presented, which has been deployed in real 
scenarios. Different use cases including a number of wireless 
devices are also considered. In addition, different mechanisms 
for optimizing its communication system, based on 
bidirectional tunneling, are studied. 

The remainder of the paper is organized as follows: In 
Section II (Related Work) common IoT features and DS classic 
systems are pooled. In Section III a proposed architecture for 
DS is explained. The section is focused on introducing all DS 
elements. Its communication scheme is also presented to justify 
its use with IoT devices. Also two ongoing projects are 
analyzed. Section IV describes some limitations of the 
tunneling described communication approach, and how to 
overcome them. Two test beds are proposed to measure and 

optimize communications performance and Section V ends this 
paper with the conclusions. 

II. RELATED WORK 

In [10], a decentralized architecture is proposed for a DS 
network integrating Radio Frequency IDentification (RFID) 
systems. Its implementation by some companies in the sector is 
described. The proposed design includes elements of great 
relevance when considering a more general use of the network 
following the IoT paradigm. Security in communications is 
implemented and its architecture allows a flexible network 
deployment. The presented architecture is based on the 
decentralization of services, applications and network 
functions. The network included in this scheme allows the 
integration of various elements related to RFID technology and 
also allows sending visual messages to users through DS 
devices. 

In the present article, although this type of network is not 
intended to be used in a more widespread sense, the importance 
of decentralizing processing services, running applications and 
communication control is stressed, as this increases scalability 
and resilience to failure. These ideas are kept in proposals for 
generic decentralized networks that are postulated as suitable 
platforms for a diverse number of services and applications for 
Internet of Things [11].   

Given these ideas, the DS system presented incorporates 
certain aspects of decentralized networks in order to develop a 
layered platform, flexible enough to adapt to any 
communication need or device requirements in terms of 
software or hardware. This network is intended to allow 
traditional DS players with other devices without requiring 
substantial hardware or software changes. Thereby, this DS 
network becomes valid for supporting applications and services 
for the IoT paradigm, in which a traditional DS player becomes 
a possible relay for other devices, applications or services. Two 
examples of ongoing projects are explained below. 

All in all, the contribution of this paper is twofold: (1) an 
architecture for a DS network is presented based on open 
technology and mature protocols: Transmission Control 
Protocol (TCP) over Internet Protocol (IP), OpenSSH and 
Hyper Text Transfer Protocol (HTTP); (2) the performance of 
bidirectional secure tunnels sharing a connection is studied. 
Both questions have been implemented and studied in real 
scenarios. 

 
Fig. 2 Integration scheme for alien devices into DS network throught DS players.  

 



III. PROPOSED ARCHITECTURE FOR DIGITAL SIGNAGE 

In the proposed design, several factors are considered: (1) 
The underlying Operating System (OS) of the players and the 
servers; (2) the web technology used to display and manage the 
content; (3) the structure of the content as web apps; and (4) 
the security in network communication and the flexibility in 
deploying this network in a way that it does not require 
complex configurations, allowing an overall management of 
device groups and content channels. 

In DS, the reliability of the whole system is very important 
to reduce as much as possible the human interaction required 
for maintenance. This is an important feature in most DS 
devices whose required operating service is 24/7. For that 
reason it is necessary to address all the elements of the system 
as a whole. Although policy usually leads to closed solutions 
rather monolithic for certain scenarios, in our case, the design 
of the whole system is carried out in layers following several 
recommendations stated for “fog computing” [11]. This 
scheme can provide network services to other applications 
beyond web content prepared expressly for DS, thus promoting 
the interconnection and communication with other various 
devices. The DS network provides basic services, all of them 
incorporating encryption, and transparent management on 
communication establishment and monitoring: 

 A bidirectional transmission channel for high and low 
priority content. 

 A bidirectional transmission channel to manage content 
applications or configure the player, generally web 
based. 

 A bidirectional transmission channel, with high priority, 
for internal network signaling. It is also used for 
notification of high priority events and alarms. 

 Communication between devices on the same DS 
network. If necessary, the DS cloud can set authorized 
tunneled connections when requested by any 
application between two or more devices. These 
authorizations are based on policy rules following 
ownerships and granted rights from networking 
administrators. 

A. Network scheme 

The DS network previously presented has a logical hybrid 
connection scheme (Fig. 3). It mainly follows a logical star 
architecture, where each device is connected to the centralized 
cloud services through the Internet. However, in certain cases, 
DS devices can communicate with each other without using 
these centralized cloud services. This usually occurs when the 
devices are in the same local network and the distribution of 
the same contents to every device is required. However, the DS 
network can also provide tunneled communication with other 
devices if needed (Fig. 4). The communications between the 
players through the cloud also follow a bidirectional tunneling 
scheme. 

This approach shares some similarities with some schemes 
outlined in IP Mobility protocols [12] [13], allowing real-time 
access to devices from any terminal connected to Internet. 

 

 
 

Fig. 3 Tunneled communications in DS network. 

 

 

 

Fig. 4 Tunneled connection between players on different networks. 

B. Communications security  

This aspect of the DS network is addressed by introducing 
tunneled communications encryption via SSL (Secure Socket 
Layer). Encryption is performed using pairs of public-private 
RSA keys of 2048 bits (RSA-2048) that are assigned at the 
factory. The device registration and allocation to end users in 
the cloud is performed at the time of purchase or renting. This 
type of security helps to protect the integrity of the data and to 
certify the source, thereof avoiding potential phishing attacks 
when updating contents [14]. In addition, this communication 
permits the tunneling of different traffic between a local 
process and a remote service. This is set thanks to the Secure 
SHell (SSH) port forwarding feature. Securing 
communications following this scheme does not require 
significant modifications on existing software and services. 

C. Quality of Service (QoS)  

Communications can be classified according to their level 
of priority into three groups: control, management and content 
distribution. In DS networks, most QoS degradation scenarios 
are often linked to a high degree of congestion in the local 



Internet access nodes. For that reason, a QoS system based on 
802.11e devices [15] [16] [17] and including standard queuing 
disciplines when available [18] has been implemented in our 
DS system, thus improving Internet access of high priority 
communication.   

D. Elements of the System 

1) Screens Network for public transport in Mexico City  
In Mexico City, we are collaborating with a local content 

provider 1  to equip buses with DS players using 3.5G+ 
connectivity. These devices also include a Global Positioning 
System (GPS) for geo positioning the bus with which to offer 
other future services under development. These players are in a 
mobility environment with moderate bandwidth and 
connectivity constraints, which our system has to overcome. 

The network will consist of 300 units (screens in buses, see 
Fig. 5 and 6) operating at the same time. The geo position of all 
buses is centralized through the DS network and this allows us 
to develop tailored applications and services for travelers 
(better controlling the bus service times). At the same time, 
advertisers can restrict the display spots in certain geographical 
areas of interest. The system is however partly decentralized, 
as players can communicate each other directly when 
downloading information at bus stations. This feature reduces 
downloading times as information is downloaded from the 
cloud only once, and then transmitted to other players. These 
devices can also execute contents and applications locally, thus 
avoiding occasional connectivity loss to be noticed by 
passengers.  

2) Network sensors for air quality 
AirPi platform [19] is a clear example of an alien device to 

be incorporated into the DS network already described. This 
element has several environmental sensors and functions that 
can be added as expansion shields for RaspberryPi platform 
[20], a System on Chip (SoC) device with a Reduced 
Instruction Set Computing (RISC) processor based on Acorn 
RISC Machine (ARM) technology. Its integration into our DS 
network was simple and allowed the real-time monitoring of 
the status of all its sensors and devices. A DS player together 
with an AirPi (Fig. 7) can provide audiovisual information and 
weather statistics alongside helps government institutions to 
measure air quality parameters on different parts of the city.  

 
Fig. 5 Public transport bus in Mexico City. 

                                                           
1 Tele Urban, http://www.teleurban.tv/ 

 

Fig. 6 Indoor layout of the screens on buses. 

 
Fig. 7 AirPI device for measuring environmental parameters. 

 

Fig. 8 Totem STI installed in Durango Fair 2014. 

This device has been successfully installed inside 
audiovisual outdoor cabinets called “totems” (Fig. 8) and 
operates in parallel to their DS player which manages the 
digital screen inside the totem. Thanks to DS flexibility, it can 
be controlled just as another DS device in the network.  

In this scenario, AirPI can get its running applications 
updated through a DS content channel. These updates can be 
done specifically to one device, some of them or all, exploiting 
content channel services in DS network. The environmental 
parameters measured by this device can also be monitored in 



real time and use the network event log to also review available 
historical data and statistics. Finally, an AirPi can interact with 
a Digital Signage Player directly to report data required for 
displaying it on screen, or any content in the player can query 
information directly to AirPi. 

IV. TESTS AND RESULTS 

As shown in Fig. 3, the proposed architecture considers a 
number of bidirectional SSH tunnels between the DS device 
and the control terminal. It has been observed that this system 
presents problems when the information is transmitted through 
port forwarding. In this scenario, SSH works as an extendable 
proxy: half of the proxy is local and the other half is on a 
remote machine. Both halves communicate with each other 
through a forwarder-tcpip channel [21]. However, all the 
recent OpenSSH implementations include an incoming buffer 
with a fixed size of 2 Mbytes [22], set on the local forwarder-
tcpip channel side. As a result, when there is an intensive 
throughput application sharing a session with other flows, the 
overall latency increases because the size of that incoming 
buffer degrades the overall performance. 

 These problems are well-known in the literature [23], and 
optimizations of OpenSSH implementation have been 
proposed, but mainly intended to improve throughput 
performance, not latency. To overcome this problem, we 
propose not to multiplex tunneled connections through the 
same SSH session. Instead, the connections of each player with 
the server should be generated in different SSH sessions. This 
allows each SSH session to have its own incoming buffer, thus 
preventing high latency values to propagate from one flow to 
another. It also allows SSH to apply DiffServ using the type of 
service (ToS) field of the packets from each session, allowing 
Linux default queuing discipline (pfifo_fast) to coordinate 
datagrams sending, based on their priority [18]. This approach 
does not require kernel modifications on most devices and 
facilitates future implementation on embedded android 
systems. 

In order to study and optimize this approach, we next 
separately analyze two aspects: performance evaluation of the 
main TCP variants’ congestion control, and latency 
degradation at application layer. According to the results, the 
validation of this communication scheme will be discussed. 

A. Performance of TCP congestion control variants 

To study the impact of buffering in port-forwarding 
connections using OpenSSH 6.6, a series of measurements 
have been made in communications between DS players and 
servers. The proposed testbed is as follows: four players are 
connected to the Internet with a 3.5G+ Huawei E173 modem 
each. This device allows High Speed Downlink Packet Access 
(HSDPA) 7.2 Mbps for the downlink channel and High Speed 
Uplink Packet Access (HSUPA) 2.1 Mbps for the uplink 
channel. All the players are running OpenSSH 6.6 in a Linux 
OS based on kernel 3.10.48. Each player runs a different TCP 
congestion control algorithm to test the upload channel. 
Connections with the server are made synchronously to prevent 
random effects to affect only one single connection. 3G signal 
level is -75 dBm in all devices, and all measurements were 
taken with the vehicle at rest. 

Each tests series consists on a set of 15 transmissions run in 
different hours of the day. On each test two tunnels are 
established through independent SSH port-forwarded 
connections from all players to a private testing server at 
Montreal, Canada, in the same datacenter where our DS cloud 
is hosted. This private server is linked to the cloud but during 
experiments its services were set offline. On the first 
connection, Iperf tool [24] is used to generate traffic for 120s 
and to measure statistics, and NetEm [25] is configured on the 
Point to Point Protocol (PPP) network interface of each player 
to model bursty packet losses. A 2% and 5% packet loss 
scenarios are modeled in order to study the worst cases on 
High-Speed Packet Access (HSPA) while the terminal is 
moving [26]. On the second tunneled connection of each 
player, a Python script is used to sample Round Trip delay 
Times (RTT) using echo server port through the second port-
forwarded channel for interactive connections. The scheme is 
shown in Fig. 9. The tested TCP variants are Reno, Bic, Cubic 
and Westwood.  

 

Fig. 9 Experimental testbed to study congestion control aglorythms through 
independent port-forwarded OpenSSH channels. 

The results presented in Fig. 10 and Fig. 11 represent the 
Cumulative Distribution Function (CDF) of Round Trip delay 
Time (RTT) values which indicates that the policies 
implemented to prevent high latencies at the interactive tunnel 
are working correctly. In all the tests performed, 85% echo 
packets are under 350 ms latency while Iperf is transmitting. In 



these circumstances, if an interactive application with low 
bandwidth requirements needs to transmit, its RTT will not 
increase due to parallel data flows, allowing the interactive 
application to work correctly. 

TABLE II.  THROUGHPUT MEASURED AT PPP INTERFACE. 

  Westwood BIC Cubic Reno 

2% packet loss 397 Kbps 340 Kbps 422 Kbps 355 Kbps 

5% packet loss 193 Kbps 222 Kbps 240 Kbps 210 Kbps 

 

The bandwidth usage is summarized in Table II, where 
Cubic obtains the best performance mark. This result is similar 
to the one obtained in experiments run on non-tunneled 
connections [27]. 

 

Fig. 10 Comparison of the latency with 2% packet loss.  

 

 

 

 

 

 

 

 

 

 

Fig. 11 Comparison of the latency with 5% packet loss.  

In Fig. 11, a slightly poor Westwood performance is 
detected. This may be caused by the interaction of OpenSSH 
with RTT traffic flow values: Westwood congestion window 
depends on RTT traffic flow values and these figures are 
altered in port-forwarding connections due to the proxy 
behavior of OpenSSH. This is clearly shown only on Fig. 10, 
but this slight degradation is always present. 

B. Latency degradation at application layer 

It is necessary to analyze the impact of tunneling at 
application level and to measure the RTT performance penalty 
that port-forwarded communications may imply. To measure 
this degradation, a test in a scenario including mobility (Fig. 
12) is performed as follows: One player is set in a car and it is 
connected to the Internet using the same 3.5G+ modem 
introduced before. The car follows a 20 min. bus city trip at 
Durango, Mexico (Fig. 13). There is an Internet Group 
Management Protocol (IGMP) ping sample each second 
besides the two port forwarded connections. The RTT 
measured through echo pings sent by the Python script through 
the tunneled connection is compared to the RTT presented by 
plain IGMP pings. This information helps to measure RTT 
penalties regarding to port forwarding connection. All these 
measures are performed in presence of background traffic 
generated through Iperf to measure bandwidth over time. This 
scheme is presented is Fig. 12. 

 

Fig. 12 Experimental motion testbed  to measure latency degradation in port 
forwarded communications in presence of background traffic (Iperf). 

 

 

Fig. 13 City trip followed in Durango superimposed on 3G Movistar signal 
level provided by OpenSignal2 

 

                                                           
2 OpenSignal:  http://opensignal.com/ 
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Fig. 14 Upload throughput measured at field test on a car.  

 

 

 

Fig. 15 Comparison between Latency on second tunnel using echo messages 
and IGMP when Iperf is transmitting. Values above 3 seconds have been cut, 
since we consider this value as the threshold of a disconnection. 

TABLE III.   PORT-FORWARDED AND IGMP COMMUNICATION RESULTS 

  IGMP Port Forwarded echo 

Conectivity  90% 89% 

RTT average  622 ms 632 ms 

 

According to the results shown on Fig. 14, Fig. 15 and 
summarized on Table III, the degradation of the tunneled 
communications is less than a 1.7% in terms of RTT, barely 
degrading connectivity. 

C. Validation of DS communication scheme 

Communications do not seem to be affected when using 

tunneled connections through OpenSSH port-forwarding as 

detailed above. The average latency in presence of background 

traffic sharing PPP connection is high despite using DiffServ 

due to the mobility and 3G coverage fluctuations. However, 

this approach may still be valid for communications between 

IoT devices. For example, this communication may employ 

protocols conforming to the Representational State Transfer 

(REST) architecture constraints [28], as the Constrained 

Application Protocol (CoAP) or HTTP, which does not require 

low RTT values to work. The use of RESTful protocols, 

particularly HTTP, also allows easy interoperability with 

external information systems as ThingSpeak [29] through 

HTTP methods GET, POST, PUT and DELETE.  

V. CONCLUSIONS 

This paper has presented a DS network able to distribute, 
collect information and control devices in real time. They are 
being deployed in public screens traveling in buses, and 
employed as relays for connecting IoT devices. The connection 
problem of these devices in mobility has been addressed. 

After analyzing the causes of OpenSSH port-forwarding 
limitations it is concluded that bidirectional tunneling scheme 
based on port-forwarding lacks dynamic incoming buffers, 
generating undesirable effects when sharing  SSH session with 
intensive throughput applications. However, the solution of this 
problem is feasible without modifying OpenSSH core 
implementation, by using different SSH sessions for each flow 
and applying Diffserv. 

Results from tests performed conclude that this scheme 
works in environments with packet loss and mobility without 
degrading latency. As future work, we want to test that all 
security features provided by open SSH as a process-to-process 
protocol have barely noticeable performance degradation at 
application level. Although this approach cannot be deployed 
in a widespread sense, this communication scheme has 
immediate application on many existing devices on the market 
with enough hardware features, allowing fast development of 
new IoT devices and services. 
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