

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 1

Implementation Methodology
for Interoperable Personal Health Devices with

Low-Voltage Low-Power Constraints
Miguel Martı́nez-Espronceda, Student Member, IEEE, Ignacio Martı́nez, Luis Serrano, Senior Member, IEEE,

Santiago Led, Jesús Daniel Trigo, Asier Marzo, Javier Escayola, and José Garcı́a, Member, IEEE

Abstract—Traditionally, e-Health solutions were located at the
Point of Care (PoC), while the new ubiquitous user-centered
paradigm draws on standard-based Personal Health Devices
(PHD). Such devices place strict constraints on computation
and battery efficiency, which encouraged the ISO/IEEE11073
(X73) standard for medical devices to evolve from X73PoC
to X73PHD. In this context, Low-Voltage Low-Power (LV-LP)
technologies meet the restrictions of X73PHD-compliant devices.
Since X73PHD does not approach the software architecture,
the accomplishment of an efficient design falls directly on
the software developer. Therefore, computational and battery
performance of such LV-LP-constrained devices can even be
outperformed through an efficient X73PHD implementation de-
sign. In this context, this paper proposes a new methodology to
implement X73PHD into microcontroller-based platforms with
LV-LP constraints. Such implementation methodology has been
developed through a patterns-based approach and applied to a
number of X73PHD-compliant agents (including weighing scale,
blood pressure monitor and thermometer specializations) and
microprocessor architectures (8, 16 and 32 bits) as a proof-of-
concept. As a reference, the results obtained in the weighing scale
guarantee all features of X73PHD running over a microcontroller
architecture based on ARM7TDMI requiring only 168 bytes of
Random Access Memory (RAM) and 2546 bytes of flash memory.

Index Terms—Interoperability, ISO/IEEE11073 standard,
Low-Voltage Low-Power, microcontroller architecture, patterns-
based design, Personal Health Device.

ACRONYMS

APDU Application Protocol Data Unit
ARM Advanced RISC Machine
CE Compute Engine
CFM Core Functionality Module
DIM Domain Information Model

This research work has been partially supported by projects TIN-2009-
08414 and TIN-2008-00933/TSI from Comisión Interministerial de Cien-
cia y Tecnologı́a (CICYT) and European Regional Development Fund
(ERDF), TSI-020100-2010-277, TSI-020302-2009-89 and TSI-020302-2009-
7/Plan Avanza I+D from Ministerio de Industria, Turismo y Comercio, and
FPI grant to M.Martı́nez-Espronceda (Res.1342/2006 Public University of
Navarre).

M.Martı́nez-Espronceda, L. Serrano, S. Led, and A. Marzo are with the
Electrical and Electronics Engineering Dept., Public University of Navarre
(UPNA), Campus de Arrosadı́a, s/n 31006 Pamplona, Spain (corresponding
e-mail: miguel.martinezdeespronceda@unavarra.es).

I. Martı́nez, J.D. Trigo, J. Escayola, and J. Garcı́a are with the Communica-
tions Technologies Group (GTC), Aragón Institute of Engineering Research
(I3A), University of Zaragoza (UZ), c/Marı́a de Luna, 1 50018 Zaragoza,
Spain.

This paper has been accepted for publication in a future issue of this journal
but has not been fully edited. Content may change prior to final publication.

FSM Finite State Machine
HCIS Health Care Information System
ICS Implementation Conformance Statement
IOAL Input Output Abstraction Layer
IPC Inter-Process Communication
LV-LP Low Voltage-Low Power
MDS Medical Device System
OS Operating System
RAM Random Access Memory
ROM Read Only Memory
X73 ISO/IEEE11073
X73PHD ISO/IEEE11073 for Personal Health Devices

I. INTRODUCTION

THE fast development of Information and Communica-
tion Technologies (ICT) is fostering the transformation

of classic healthcare models into new patient-centered envi-
ronments. Allowing the patient to monitor and report vital
signs (e.g. electrocardiographic (ECG) signal, weight, blood
pressure, temperature, glucose concentration in blood, etc.) is
a key issue in the follow-up of some diseases such as heart fail-
ure, Chronic Obstructive Pulmonary Disease (COPD), arterial
hypertension (one of the main risk factors for heart diseases,
strokes and also a prognostic indicator of renal failure), or obe-
sity, which increases the potential of suffering other illnesses
such as diabetes, cholesterol-related illnesses, hypertension,
joint diseases, gallbladder malfunction, metabolic syndrome,
or coronary and respiratory complications, among others [1].
Such paradigm, so-called patient empowerment [2] changes
the conventional role of patients and physicians into a novel
scenario where patients play a greater role in their own health
and wellness. Furthermore, the e-Health solutions allow the
physician to follow the patient’s evolution remotely, improving
both the efficiency of the overall healthcare systems and the
life quality of the patient.

To provide the monitoring process with ubiquity, Personal
Health Devices (PHD) may be incorporated to acquire biomed-
ical signals and measurements that can be afterwards gathered
by a Compute Engine (CE) [3]. This medical information is
then sent by the CE to the Healthcare Information System
(HCIS) to be subsequently analyzed by the physicians. A
scheme of this architecture is shown in Fig. 1. This architecture
includes several PHDs such as weighing scale, blood pressure
monitor, glucose meter, thermometer and ECG monitor (Holter

mmartinez
Texto escrito a máquina
Copyright (c) 2011 IEEE. Personal use of this material is permitted.

mmartinez
Texto escrito a máquina

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 2

HOSPITAL

36.8ºC

GLUCO

78.4

HOLTIN138
90

74

SYSTO

MEAN

DIAST

CE/manager

PHD/agent

HCIS

USB

 Short-range
 Communication
Technology

 Long-range
 Communication
Technology

Fig. 1: Architecture scheme for e-Health solutions based on
Personal Health Devices.

Intelligent, HOLTIN, for heart failure patient’s follow-up [4]),
and a CE that could be implemented over a cell phone,
a Smartphone, a tablet PC or a set-top-box, among others
devices. The communication process between a PHD and a CE
follows the agent-manager model and it is supported by short-
range communication technologies such as Universal Serial
Bus (USB), Bluetooth and ZigBee [5], [6]. The interconnection
process between the CE and the HCIS follows the client-server
model and it is supported by the long-range communication
technologies such as Asymmetric Digital Subscriber Line
(ADSL), General Packet Radio System (GPRS) or Wireless
Fidelity (WiFi).

As mentioned before, PHDs are essential to assist patients
with the follow-up of their diseases in a personalized manner.
Ideally, these PHDs should be wearable or portable in order
to further ease personal usability and mobility. Moreover,
they need to integrate communication protocols that allow the
transmission of biomedical data to a CE. The high reliability,
ergonomics and accessibility requirements that these PHDs
must meet necessitate the optimization of computation and
battery efficiency in terms of both software and hardware.
Thus, the use of Low-Voltage Low-Power (LV-LP) technolo-
gies becomes essential.

Most PHDs use proprietary protocols and are therefore
difficult to be integrated in several personal e-Health scenarios.
Therefore, using standardization seems to be the best way to
solve the problem of interoperability, as has been remarked in

[7], [8]. In this context, several protocols have arisen to cover
this interoperability gap. One of the most widely known is
the ISO/IEEE11073 (X73) family of standards for interoper-
ability of medical device communications. This was initially
designed for the Point-of-Care of the patient (X73PoC) [9]
and it has recently been extended to PHDs (X73PHD) [10],
[11], [12] in order to be supported by emerging transmission
technologies as well as LV-LP PHDs with limited capabilities.
The use of X73PHD provides plug-and-play capabilities so
that any PHD assigned to the patient can be directly replaced
without technical knowledge. Thus, the CE should be able to
recognize automatically the PHDs related to the patient and
self-configure to operate correctly. However, there are some
drawbacks in the implementation of X73PHD: its inherent
complexity, the time needed to learn and implement it, its need
of integration with other standards, the current lack of available
tools for developers and the need for restrictive hardware
to run it [13]. Furthermore, the use of X73PHD increases
computing requirements, which works against the high au-
tonomy that PHDs require. Likewise, LV-LP approaches must
be considered as the basis for reducing power consumption
of PHDs, both in hardware (LV-LP microcontrollers) and
software designs (reduced size algorithms, high usage of
processor’s LP states, etc.). These software and hardware
limitations together with the high degree of reliability needed
for the sake of the patient lead to the need for a deeper
understanding of how X73PHD works at low computational
level and its implications in the workflow for its further
implementation into microcontrollers. Taking advantage of this
approach, a robust and efficient design for a microcontroller
could improve the overall functionality of PHDs.

In this paper, starting from previous implementation re-
sults [14] and in collaboration with the European Committee
of Standardization (CEN) and the International Organization
for Standardization (ISO), a methodology for the design of
X73PHD-compliant PHDs based on LV-LP technologies as
well as several implementation techniques into microcon-
trollers are proposed. In Section II, X73PHD features and
its specific characteristics related with the elements of the
X73PHD architecture (agents and managers) are presented.
Both hardware and software constraints are analyzed and
the basis of the implementation methodology for X73PHD-
compliant LV-LP agents is established. In Section III, the
proposed methodology and an appropriate architecture for its
further implementation are detailed. In Section IV, the obtained
results of the application of the patterns-based methodology
to several X73PHD-compliant agents as a proof-of-concept
are presented and discussed. Finally, conclusions are drawn in
Section V.

II. X73PHD FEATURES AND LV-LP CONSTRAINTS

X73PHD defines point-to-point communications between
the above mentioned agent and manager entities (PHD and
CE, respectively, in Fig. 1). The agent attempts to establish an
X73PHD association with the manager and, if it succeeds, they
will proceed with the vital signs exchange by using different
data schemes and services. To manage both device information

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 3

and vital signs acquired from the patient, X73PHD is based on
an object oriented framework which guarantees scalability and
reusability [10], [11], [12]. Basically, X73PHD defines three
different models:

• Domain Information Model (DIM): this describes an
abstract model composed of a set of object classes which
are instantiated and can be referenced in an X73PHD
communication, including the attributes and methods that
can be executed on each one of them. DIM covers the
definition of the Medical Device System (MDS) object
(the root object in the agent modeling), scanner objects
(for reporting of agent data), different metrics (numeric,
real time sample array and enumeration objects), and
Persistent Metric (PM) store and segment objects for long
term data storage.

• Service model: this defines the means by which the
manager can interact with the agent and distinguishes
two different types of services as well: association ser-
vices and object access services. Association services
provide methods to negotiate and agree on a common
configuration (association request and response), release
associations and abort connections. Object access services
provide methods that allow a manager to interact with an
agent by remotely executing actions as well as allow-
ing access object attributes through the established link.
These services include:

– event reports (often implemented by scanner objects
and the MDS) that are initiated by the agent and
used to send its configuration during the association
procedure and medical or personal health data once
the association has been established

– get and set methods that allow the manager access
to object attributes

– actions that allow the manager to execute Remote
Procedure Calls (RPCs) over agents’ objects. Whilst
event reports are initiated by agents’ objects, get, set
and action are executed over them and initiated by
the manager.

In addition, the service model provides protocol exception
handling services meeting objectives such as aborting the
association (abrt), error reporting (roer) and operation
rejection (rorj).

• Communication model: this defines a Finite State Ma-
chine (FSM) for both agent and manager that controls
the communication state and the transport layer. All the
possible transitions in the FSM are well defined and
they involve the execution of some actions internally in
the agent or the manager, the reception or transmission
of Application Protocol Data Units (APDUs), etc. The
FSM determines the sequence diagrams in any X73PHD
communication and its implementation is independent of
the transport technology. It also includes different Encod-
ing Rules (ER), such as Medical Device ER (MDER),
that define the algorithms responsible for marshalling
the APDUs generated by the DIM and how the abstract
model given by the DIM has to be transformed into a
stream of bytes.

X
7
3
-1
0
4
0
4

X
7
3
-1
0
4
0
6

X
7
3
-1
0
4
0
7

X
7
3
-1
0
4
0
8

X
7
3
-1
0
4
1
5

X
7
3
-1
0
4
1
7

X
7
3
-1
0
4
1
8

…

X73-20601

Short-range wire/wireless

Transport Layer

Transport layer

Application layer

Patterns

Library

X73PHD

Kernel

Fig. 2: Mapping of X73PHD three-layer protocol stack into
the proposed patterns-based methodology.

From this three-component model, X73PHD defines the
architecture for its communication protocol stack that enables
the connection between agent and manager. This stack is
divided into three levels (see left hand of Fig. 2):

• Device Specializations (X73-104xx) [12]. A set of model
descriptions which describes all object classes and at-
tributes representing the device components and the con-
figuration of the MDS. New PHDs are continuously being
developing, by defining their DIM through the particular
X73-104xx specializations.

• Optimized Exchange Protocol (X73-20601) [10], [11].
The main part of this standard consists of a medical
and technical terminology framework (DIM) which will
be encapsulated inside APDUs. From the communication
model definition, the point-to-point connection is devel-
oped through the FSM.

• Transport Layer. X73PHD data transmission can be held
over any transport technology. The specific transport tech-
nologies supported by X73PHD are outside the scope of
the standard. Several Special Interest Groups (SIG) have
developed medical profiles for USB (Personal Health
Device Class, USB PHDC [15]), Bluetooth (Health De-
vice Profile, BT-HDP [16]) and ZigBee (Health Care
Profile, ZHC [17]) following the recommendations of the
integration initiative Continua Health Alliance [18].

The role of managers can be either as a basic gateway
or as more complex monitoring equipment with added value
services [19]. These devices are usually provided with an
Operating System (OS, such as Windows, Windows Mobile,
Symbian, Linux or Android) and sometimes with a Virtual
Machine (VM, such as JAVA VM or the .Net platform for
C# language). The key feature in these devices is a relatively
high degree of intelligence. Usually, a single manager must
recognize several agents and gather information from them.
Moreover, in e-Health solutions, plug-and-play capabilities are
required to facilitate the addition or replacement of agents.
Therefore, PHDs can be used by the assistance staff or the
patients themselves without having to configure or manipulate
the manager.

Regarding agents, the ergonomics of these devices is a key
point due to the fact that they are usually portable or wearable

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 4

which implies that, first, both size and weight must be kept to a
minimum and, second, autonomy must be kept to a maximum.
Furthermore, these devices are built on LV-LP microcontrollers
with limited processing and memory features. Typical hard-
ware features consist of a few kilobytes of Random Access
Memory (RAM), a few tens of kilobytes of non-volatile solid-
state memory (typically flash or Read-Only Memory, ROM),
and a small Megaflops processor [20]. Both hardware and
software features are usually designed ad-hoc for a specific
agent. Hardware boards typically include a microcontroller, a
communication module and a sensor; there are also System-
on-Chip (SoC) modules that integrate all these components in
a single chip. Although agents do not require a high degree of
computational intelligence, the software framework is written
in assembler, C or embedded C++ programming languages
to increase efficiency. Moreover, software features are de-
termined by the involved hardware characteristics because
communication protocol stacks provide, in some cases, their
own Real Time Operating System (RTOS) and Application
Programming Interface (API). Regarding the communications
protocol stack, even though X73 evolved from X73PoC to
X73PHD to reduce complexity, it still involves relatively
high requirements when it is investigated in the context of
LV-LP. For example, in most common SoC modules used
in ZigBee applications, RAM resources for the application
layer are shared with the ZigBee stack and they are in the
order of kilobytes. Depending on the X73PHD specialization
implemented, incoming and outgoing APDUs can require up to
63 kilobytes and 8 kilobytes RAM, respectively, for buffering
purposes [20]. Therefore, developers usually need to upgrade
hardware requirements [21]. In these cases, the implementa-
tion of X73PHD poses a challenge for the developer.

Since X73PHD does not approach the software architecture,
the accomplishment of an efficient design falls directly on
the software developers. Typical implementation techniques
associate the DIM with a static class model within the soft-
ware solution [13]. Consequently, each object in the DIM is
usually represented by an object in the targeted programming
language. In this way, an increment in RAM arises due to two
factors. First, a complete DIM image is created in RAM during
the agent’s boot-up process. Second, some additional buffers
in RAM are needed in order to generate and transmit the
APDUs each time the interchange of information is required.
Indeed, such techniques produce implementations that turn
out to be more generic and scalable but less efficient in
terms of processor load and memory footprint. Nevertheless,
alternative implementation approaches that outperform the
APDU processing techniques are possible as according to
X73PHD, there is no real need to implement the DIM in such
a way. For X73PHD, agents are black boxes that must follow a
communication protocol which is defined by an abstract model
consisting of the DIM, the service model and the communi-
cation model. In this paper, a patterns-based methodology for
X73PHD implementation is proposed in order to enhance PHD
capabilities by reducing memory and processing requirements,
extending device autonomy and reducing hardware costs.

III. PATTERNS-BASED IMPLEMENTATION METHODOLOGY

Following the previously explained X73PHD features and
considering the LV-LP constraints, a patterns-based method-
ology is proposed in this section. The presentation of this
methodology has been divided in two subsections: the first
describes its basic principles and the second proposes a
specific software architecture for a X73PHD-compliant LV-
LP-constrained microcontroller.

A. Methodological principles

The pattern-based methodology gives great importance to
the APDUs. X73PHD has been optimized considering the
agent constraints. It provides mechanisms for reducing to a
minimum the APDUs’ overhead at byte level, thus showing
low variability between fields [22]. A remarkable point is
that most APDUs in X73PHD do not differ greatly. If a
specific type of APDU in a given device configuration (e.g.
an event report in any specialization) is taken and analyzed,
the conclusion is that only a few bytes of the APDUs can
change [10], [11]. Indeed, this analysis suggests that it is
possible to use a template to generate APDUs [13]. Such a
conclusion may have a huge impact on how to implement
X73PHD minimizing the program footprint, volatile memory
consumption and processor usage.

The fundamentals of this methodology are based on the
concept of patterns. A pattern is a model that can be used to
produce a copy of itself. In this case, the concept is applied to
analyze APDUs interchanged by X73PHD agents. The idea is
to build most of the structure of the APDU by using different
previously-identified patterns and, thereafter, fill the non-fixed
gaps, which usually represent a small percentage of the total
APDU length. The similarities found among the APDUs of the
same type can be explained through the highly abstract, struc-
tured, versatile and verbose schema of X73PHD. This idea
is related to the concept of canned messages [13]. However,
unlikely the canned messages approach, this approach do not
need the use of buffers. Therefore, in addition to generating
APDUs, patterns can also be used to process incoming APDUs
using the same principles but back-ward.

An exhaustive study of the X73PHD APDUs is mandatory
in order to obtain the patterns that are used by an agent spe-
cialization. This study must take into account all the X73PHD
features that may appear in an agent-manager communication
including the APDUs definition, the DIM structure of the
device, the Abstract Syntax Notation One (ASN.1) definitions
and the codification used (usually, MDER). Once every pattern
has been determined, they are stored in the so-called Patterns
Library which can be shared between and reused by devices
with similar configurations, as well as interchanged between
an agent and a manager with minimal processing resources, as
is shown in Fig. 3. The outgoing APDUs are synthesized using
the appropriate patterns from the Patterns Library along with
certain variables stored in RAM, such as invoke-id and Simple-
Nu-Observed-Value (e.g. a measurement obtained from the
Analog-to-Digital (A/D) converter). The incoming APDUs are
analyzed and correlated to the Patterns Library to identify and
match suitable patterns while the non-fixed parts of the APDU

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 5

P7P4 P2 P8a b

Outgoing X73PHD APDU

P7P4 P2 P8

a b

Volatile Memory

(RAM)

X73PHD Agent

P8 P9 P10

P5 P6 P7

P1 P2 P3 P4

Patterns Library

X73PHD Manager

??

Incoming X73PHD APDU

? ?

ca
P1

Volatile Memory

(RAM)

P3

Synthesis: build

and send out-

going APDUs

a,b,c : variables

Pi : pattern

Analysis: identify

incoming APDUs

and extract rele-

vant data

matching

Fig. 3: Analysis and synthesis of APDUs using the principles
of the patterns-based methodology.

are saved in variables (e.g. the arguments of Set-Time actions).
Both synthesis and analysis processes are represented in Fig.
3.

B. Proposal of software architecture for X73PHD implemen-
tation into a LV-LP microcontroller-based platform

The main components of the architecture proposed are
the Patterns Library and the so-called X73PHD Kernel. The
mapping between the X73PHD three-layer model to this
proposed patterns-based methodology is shown in Fig. 2. The
analysis and synthesis of APDUs using the aforementioned
basic principles of this methodology is schematized in Fig.
3. The X73PHD Kernel manages the X73PHD FSM and the
state of the DIM objects. Moreover, the X73PHD Kernel is re-
sponsible for both the analysis of incoming X73PHD APDUs,
and the synthesis of outgoing X73PHD APDUs as is shown
in Fig. 3. Module features have been reduced to a minimum
in order to keep their footprint as small as possible while
preserving relatively high execution efficiency. APDUs usually
launch some processes in the agent (e.g. a change in the
FSM state) according to X73PHD [10], [11], [12]. A scheme
of the proposal of software architecture fully compliant with
X73PHD is provided in Fig. 4. In this proposal, the X73PHD
Kernel is built on top of the Threading Module, the Inter-
Process Communication (IPC) module and the Input Output
Abstraction Layer (IOAL). It provides X73PHD functionalities
to the application layer in a transparent way. An in-depth
technical description of these modules is provided as follows:

1) X73PHD Kernel: this is comprised of three modules:
readers, writers and the Core Functionality Module (CFM)
as is shown in Fig. 4. Readers are APDU analyzers and,

Transport layer

Application layer

Communication interface (IOAL)

M
ic

ro
co

nt
ro

lle
r

M
ea

su
re

m
en

t i
nt

er
fa

ce
(I

O
A

L)

Application interface

P
at

te
rn

s
L

ib
ra

ry

Reader
Tasks

Writer
Tasks

Core
Functionalities
Module (CFM) FSM

X73PHD
Kernel

Threading
Module+IPC

Fig. 4: Proposal of software architecture for the X73PHD
implementation into a LV-LP microcontroller-based platform.

reciprocally, writers are APDU synthesizers. The CFM con-
trols the execution of readers and writers, the states of the
protocols (including the FSM states), the interactions with the
application layer, and the management of the IOAL.

No task is assigned to the CFM, whilst two independent
tasks – corresponding to a reader and a writer – are assigned
for each channel. This enables multiple channels with parallel
processing and avoids the eventual block of the system (e.g.,
if data is not ready or transmission queues are full). The al-
gorithms used to analyze and synthesize APDUs are based on
the concepts previously described in Section III-A. Moreover,
in order to reduce buffering requirements, the processing of
APDUs is done byte by byte as soon as data and channels are
ready.

Readers, writers and the CFM work together to provide
X73PHD functionalities to the application layer in a trans-
parent way. Readers analyze incoming APDUs continuously.
Once an APDU has been analyzed, a notification containing
a summary of the relevant information is sent to the CFM.
The CFM takes different actions depending on the type of the
incoming events, which include indications from the readers
(e.g. APDU reception report), the Communication Interface
(e.g. connection and disconnection reports), the Measurement
Interface (e.g. new measurement available report), etc. These
actions are then applied on the appropriate module: the appli-
cation layer interface (e.g. indications regarding the state of the
X73PHD stack), the Communication Interface (e.g. requests to
establish or break a connection) or the writers (requests to send
APDUs).

Following the above mentioned principles, an implemen-
tation proposal of the CFM is provided in this paper. This
is approached by describing the relationship between the

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 6

Disconnected

Operating

Waiting approval

Sending Config

Unassociated

Associating
+entry/sendAssocReq()

Disassociating
+entry/sendAssocRel()

associate()

Connected

Associated

receivedAssocRsp
(result=accepted)

re
ce

iv
ed

A
ss

oc
R

sp
(r

es
ul

t=
ac

ce
pt

ed
-u

nk
n

ow
n

-c
fg

)
onConnect()

onDisconnect()

Waiting data

Waiting response

onWeight(weight)/
sendEventReport(invokeId, weight)

receivedEventReportRsp(invokeId)

dissociate()

receiveCfgRsp
(result=unsupported)

re
ce

iv
eA

ss
oc

R
el

()
/s

en
dA

ss
oc

R
e

lR
sp

()

received
AssocRelRsp()

*/sendCf-
gReq()

receiveCfgRsp(result=accepted)

Configuring

receivedAssocRsp
(result=rejected)

re
ce

iv
eA

ss
oc

R
el

()
/

se
nd

A
ss

oc
R

el
R

sp
()

Fig. 5: Proposal of implementation of the Core Functional-
ity Module (CFM) and its relationship with the Finite Sate
Machine (FSM) of the X73PHD standard.

proposed implementation design and the X73PHD FSM. The
implemented states and changes between states are shown
in Fig. 5. A black circle with an arrow is used to indi-
cate both the initial state and the initial substate inside a
state. The notations <EVENT>, <EVENT>/<ACTION>
and +entry/<ACTION> are used for state transitions sim-
ilarly as in [10], [11]. For example, in the “Associating”
state, if the association response is accepted (i.e. receivedAs-
socRsp(result=accepted)) the FSM jumps into the “Operat-
ing” state. The +entry /sendAssocReq() indicates that each
time the FSM jumps into the “Associating” state, the CFM
sends an association request APDU. In the “Associated” state,
the receiveAssocRel()/sendAssocRelRsp() indicates that, after
receiving an association release request, the CFM sends an
association release response APDU. To send an APDU, the
CFM sends the appropriate command to one writer through
the IPC services and then the writer synthesizes and sends the
corresponding APDU. Finally, a service operation example of
the X73PHD Kernel is illustrated in Fig. 6. This corresponds

ready
(RX_MSG_SET_TIME)

Reader
Tasks

Writer
Tasks

Core
Functionalities
Module (CFM) FSM

Incoming APDU
(ACTION Set-Time)

Outgoing APDU
(ACTION response)

1 7

sendSetTimRsp(OK)6

set_time
(12:01:59, 04/30/2010)

3

Application
Controller

4

LCD Display
Controller

Blick Clock
Lights

5

System
Clock

receivedSetTime
(12:01:59, 04/30/2010,1sec)

2

X73PHD
Kernel

Fig. 6: Service operation example of the X73PHD Kernel for
the Set-Time procedure.

to the Set-Time procedure defined in [10], [11]. Once the
incoming APDU owing to the ACTION Set-Time arrives from
the transport layer (1), the reader matches the corresponding
APDU and fills up an extract using the Patterns Library. When
the extract is concluded (2), the reader sends it to the CFM
indicating in this case the Date-and-Time and the precision
parameters, among others. As a result, this module starts to
execute some actions. In this case, the APDU does not change
the state of the FSM (it stays in the operating state) but sends
other signals, such as the configuration of the system clock
(3), and indicates to the application layer the event arisen (4).
The application layer can provide information to the user by,
for example, using a Liquid Crystal Display (LCD) controller
(5). Once the core functionalities module has finished the
processing, it must proceed with the confirmation of the action
execution by sending a send-APDU command to one of the
writers (6). Then the writer sends the outgoing APDU through
the ACTION response using the Patterns Library (7).

2) The Threading Module: this provides the basic multi-
tasking capabilities required to enable the parallel processing
of APDUs, as is shown in Fig. 3. This module can be
executed on top of the native OS. Traditionally, two scheduling
approaches have been considered in the literature: 1) preemp-
tive multitasking, where the time-slot allocation procedure is
performed by the OS and 2) cooperative multitasking, where
each task voluntarily cedes the processor to other tasks. For the
development of this module, the second approach has been se-
lected for two reasons. First, context-switching overheads are
lower. Second, since the tasks usually require short time-slots –
i.e. low latency –, there is no actual need for the OS to remove
any task from the processor. The mathematical background of
the switching algorithm implemented is explained as follows.
However, some definitions are provided beforehand:

{〈RPR〉m} is the set of Preserved Registers (PRs) (1)

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 7

Rsp is the stack register (2)
MEMPR,i is the memory in taski used to save PRs (3)
MEMsp,i is the memory in taski used to save Rsp (4)

The following switching algorithm is applied to switch the
context between taski and taskj :

1) Save {〈RPR〉m} in MEMPR,i

2) Save Rsp in MEMsp,i

3) Load MEMsp,j in Rsp

4) Load MEMPR,j in {〈RPR〉m}
Tasks can stay in different states: RUNNING if the task

is being or can be executed in the processor, WAITING if
the task has decided by itself to wait for any event to occur,
and BLOCKED if the task is waiting the conclusion of a
complex operation.

3) IPC Services: this enables the processes to communicate
with each other. The IPC service implements shared message
queues. Each one of these queues has one server and one or
more clients. Whenever the queue is empty and the server
attempts to read a new message, the server is moved to the
BLOCKED state until a new message is available to be read.
Then, the task is restarted and moved to the RUNNING
state. Something similar occurs when a client attempts to
write a new item in a full queue. The client is moved to
the BLOCKED state until some memory is freed in the
queue. Other IPC services can be implemented easily, but
this service alone gives enough capabilities to implement
versatile solutions to X73PHD implementations while not
requiring considerable memory resources. Following these
considerations, several access primitives have been specifically
implemented for the IPC service, as it is shown in Table I.

4) IOAL: this makes the X73PHD Kernel independent
of the hardware. In addition, appropriate parts of the im-
plementation can be reused along with different hardware
platforms (through the Measurement Interface) and commu-
nication technologies (through the Communication Interface).
These interfaces are described below:

Communication Interface: this makes the X73PHD Kernel
independent of the transport technology and the communi-
cation stack. This transport-independent interface has been
defined in compliance with the requirements of X73PHD op-
timized exchange protocol [10], [11]. Therefore, this interface
manages multiple channels that can be of two different types:
reliable and best-effort. Reliable channels transmit data end-
to-end using flow control and error recovery mechanisms.
Therefore, APDUs are always expected to arrive in order and
free of errors. In contrast, best-effort channels usually transmit
data that require lower latency. In this case, packets may be
delivered out of order or even lost. It is assumed by the
specification that all channels are established simultaneously
before the association and remain open during the entire
Associated state. Thereafter, they can be used by the modules.
The primitives that have been specifically implemented for this
Communication Interface are shown in Table I.

Measurement Interface: this interface attempts to isolate
X73PHD core functions from hardware specific issues. As
opposed to the Communication Interface, the interface dealing
with the acquisition of data is not approached by X73PHD.

Disconnected

Operating

Waiting approval

Sending Config

Unassociated

Associating
+entry/sendAssocReq()

Disassociating
+entry/sendAssocRel()

associate()

Connected

Associated

receivedAssocRsp
(result=accepted)

re
ce

iv
ed

A
ss

oc
R

sp
(r

es
ul

t=
ac

ce
pt

ed
-u

nk
n

ow
n

-c
fg

)

onConnect()

onDisconnect()

Waiting data

Waiting response

onWeight(weight)/
sendEventReport(invokeId, weight)

receivedEventReportRsp(invokeId)

dissociate()

receiveCfgRsp(res-
ult=unsupported)

re
ce

iv
eA

ss
oc

R
el

()
/s

en
dA

ss
oc

R
e

lR
sp

()

received
AssocRelRsp()

*/sendCf-
gReq()

receiveCfgRsp(result=accepted)

Configuring

receivedAssocRsp
(result=rejected)

re
ce

iv
eA

ss
oc

R
el

()
/

se
nd

A
ss

oc
R

el
R

sp
()

Fig. 7: Example of the state functions of the Core Function-
ality Module: event report for the X73PHD weighting scale
specialization.

This poses a trade-off between hardware efficiency – i.e.,
adaptability and integration – and homogeneity, since this
freedom broadens the number of different potential definitions,
making it difficult to define a common interface for all
specializations. This claim can be accomplished if a specific
PHD is selected (the specific primitives developed for the
implemented X73PHD-compliant weighing scale are defined
in the next section). Therefore, the proposed Measurement
Interface improves the reusability of the implementations
based on Patterns Methodology.

5) Application layer interface: this makes the X73PHD
Kernel independent of the user interface. The application layer
interface can be used to provide X73PHD information to the
application layer, for example, by using a LCD controller as
is described in the following section.

IV. RESULTS AND DISCUSSION

The patterns-based implementation methodology proposed
in this paper has been applied to several X73PHD special-
izations as a proof-of-concept, including a weighing scale
(11073-10415) [23], a blood pressure monitor (11073-10407)
[24] and a thermometer (11073-10408) [25]. These imple-
mentations have been embedded in a development platform,
thereby facilitating maintenance and extensibility. The weigh-
ing scale specialization, using the standard configuration (Dev-
Configuration-Id=1500), has been selected to illustrate the
details of this implementation, but similar results have been
obtained for the other implementations (blood pressure moni-
tor and thermometer). The software has been mostly developed
using C programming language, which is the most used
language for embedded devices and microcontrollers. The
x73 10415.c source file contains the Patterns Library and the
X73PHD Kernel. The uc.s assembler file and vlib.c source
file correspond to the Threading Module. Finally, the main.c
source file contains a testing module specifically implemented
to check the correctness of the code operation and partially
integrated in the program. The weighing scale report process,
executed in the “Operating” state, is shown in Fig. 7. In
this Figure, the state functions of the CFM even report are
shown as well as the following specific primitives for the
Measurement Interface: void onWeight(), called by the IOAL
when a new measurement is available; weight t getWeight() ,
used by the application to access to the measurement data;
and void clrWeight () , used by the application to delete the
measurement.

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 8

TABLE I: List of specifically implemented primitives for the IPC services and the IOAL Communication Interface.

Module Type Primitive Function

IPC services void init queue (queue t q) initialization of a queue indicated as q
void reset queue (queue t q) reset of a queue indicated as q
bool t push(queue t q, byte t b) pushing of a byte at the end of the q queue
bool t pop(queue t q, byte t *b,bool t drop) popping of a byte in the beginning of the q queue (storing its

value at b)
IOAL bool t newPacket(channel t id , size t s) request to send a new packet of s size through the id channel

bool t send(channel t id , byte t b) sending of a new packet (located at the b byte) through the id
channel

bool t recv(channel t id , byte t b) receiving of a new packet (located at the b byte) through the
id channel

void onConnect(channel t id) notification of a connection through the id channel
void onDisconnect(channel t id) notification of a disconnection through the id channel
void onSend(channel t id) notification only if the previous send call returns FALSE when

the transmit queue has any empty space
void onReceive(channel t id) notification only if the previous recv call returns FALSE when

new data has arrived at the reception queue
void onPacket(channel t id) notification of a new packet is available

The resulting source code was compiled on different
microcontroller architectures including 32-bit ARM7TDMI
(LPC2294), 16-bit (MSP430) and 8-bit 8052 (ADuC841).
The ARM7TDMI architecture has been selected for foot-
print comparison purposes, since it is widely used for 32-
bit microprocessors. These results are shown in Table II. The
object files main.o, uc.o, vlib.o and x73 10415.o correspond
to the previously-presented main.c, c.s, vlib.c and x73 10415.c
files, respectively. These numerical results can be considered
as illustrative, as they may vary depending on the hardware
platform, the X73PHD specialization and the compiler as well
as the experience of the software developer. Nevertheless,
these results highlight the reduced resources needed to im-
plement an X73PHD agent into a microcontroller using the
proposed patterns-based methodology: about 2546 bytes of
flash memory and 168 bytes of RAM, meanwhile the previ-
ous prototypes over Personal Computers using Windows OS
required about 1880 kilobytes (with X73PHD standard) [26]
and 8450 kilobytes (with X73PoC standard) [14]. The footprint
results using ADuC841 and MSP430 are of the same order of
magnitude. Unfortunately, the comparison of those footprint
results with other LV-LP approaches is not addressed in this
paper because these data are not either of the public domain or
comparable – given that the communication stack is included
in the calculus – [18], [27], [28]. Nevertheless, based on our

TABLE II: Memory usage for the implemented X73PHD
modules (in bytes)

Module ro code ro data rw data

main.o 236 9

uc.o 84 4

vlib.o 14

x73 10415.o 2 132 316 164

Total: 2 466 316 177

broad experience implementing X73PHD specializations, the
results presented above can be considered as optimum and
the patterns-based methodology very suitable for realizing
X73PHD specializations in LV-LP microcontrollers.

Regarding to X73PHD conformance, different levels of
compliance are provided by X73PHD at the appropriate sys-
tem interface and application interfaces, including both manda-
tory and optional clauses. The Implementation Conformance
Statements (ICSs) define specifically the clauses implemented
as well as the grade of conformance of an implementation
to 11073-20601 and 11073-104xx which, in this case, corre-
sponds to the weighing scale specialization 11073-10415 [10],
[11], [12], [23]. In Table III, the ICSs for the implemented
weighing scale specialization are shown. The first column
represents specific codes GEN-x, REQ-y, POC-n, ATTR-n-
a, NOTI-n-s, ACT-n-t (as defined in X73PHD), corresponding
to general, minimum service support, PHD Object-and-Class
(POC), POC attributes, POC notification, and POC behavior
ICSs, respectively. The second column specifies the feature to
be implemented. Finally the last column indicates the status
of the feature (remarking if it has been implemented and the
degree of implementation). In the case of static attributes, the
last column also includes the implemented value.

More specifically, mention can be made of the follow-
ing challenges faced during the realization of the patterns-
based methodology into LV-LP microcontrollers. First, since
the main aim is to implement the X73PHD standard, the
natural trend of the developer is to reproduce the abstract
structures of the standard in the source code. This easy-
to-follow approach could be suitable in other platforms, as
the X73Poc and X73PHD platforms previously implemented
by our research group [14], [26], and, indeed, that was the
initial approach taken by our group when attempting to im-
plement the X73PHD standard into a LP-LV microcontroller.
However, this approach was not suitable for several low-
cost, LV-LP microcontrollers due to memory requirements.
Therefore, an optimized implementation was pursued and,

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 9

TABLE III: ICSs of the weighing scale patterns-based implementation into an ARM7TDMI microcontroller

Index Feature Reference Status, Support (Value)

GEN-1 Implementation/Description – Standard configuration Weighing scale. Configuration 1500
GEN-2 Std Doc Revision – IEEE 11073-20601-2008, IEEE 11073-20601-2010a
GEN-3 Conformance Adherence -Level 1- – Yes
GEN-4 Conformance Adherence -Level 2- – IEEE 11073-10415-2008
GEN-5 Communication Profile and hardware – Bluetooth/HDP
REQ-1 State Machine – Yes (-20601)
REQ-2 Protocol Messages – Yes (-20601)
REQ-3 Objects – Yes (-20601)
REQ-4 Encoding – MDER
REQ-5 Nomenclature – Yes (-10101)
REQ-6 Transport – Type-I compliance
SRV-1 GET service 8.3 Accepts command
SRV-2 SET service 8.3 Not supported
SRV-3 Confirmed SET service 8.3 Not supported
SRV-4 EVENT REPORT service 6.2 Not supported
SRV-5 Confirmed EVENT REPORT service 6.2 Sends command
SRV-6 ACTION service 8.3 Not supported
SRV-7 Confirmed ACTION service 8.3 Accepts command
POC-0 Simple MDS:Weighing Scale 7.3.2.2 Implemented
POC-1 Numeric:Body Mass 7.3.2.2 Implemented

ATTR-0-1 Date-and-Time 7.3.2.3 Implemented/C, observational
ATTR-0-2 Dev-Configuration-Id 7.3.2.3 Implemented/M, static (1500)
ATTR-0-3 Handle 7.3.2.3 Implemented/M, static (0)
ATTR-0-4 System-Id 7.3.2.3 Implemented/M, static (11:22:33:44:55:66:77:88)
ATTR-0-5 System-Model 7.3.2.3 Implemented/M, static (U-WSBT-001)
ATTR-0-6 System-Type-Spec-List 7.3.2.3 Implemented/M, static (MDC DEV SPEC PROFILE SCALE v1)
ATTR-1-1 Absolute-Time-Stamp 7.3.3.3 Implemented/C, observational
ATTR-1-2 Attribute-Value-Map 7.3.3.3 Implemented/M, static (MDC ATTR NU VAL OBS SIMP 4,

MDS ATTR TIME STAMP ABS 8)
ATTR-1-3 Handle 7.3.2.3 Implemented/M, static (1)
ATTR-1-4 Metric-Spec-Small 7.3.3.3 Implemented/M, static (0xF040)
ATTR-1-5 Simple-Nu-Observed-Value 7.3.4.3 Implemented/C, observational
ATTR-1-6 Type 7.3.3.3 Implemented/M, static (MDC PART SCADA |

MDC MASS BODY ACTUAL)
ATTR-1-7 Unit-Code 7.3.3.3 Implemented/M, static (MDC DIM KILO G)
ACT-0-1 Set-Time 7.3.2.4 Confirmed
NOTI-0-1 MDS-Configuration-Event 7.3.2.5 Confirmed
NOTI-0-2 MDS-Dynamic-Data-Update-Fixed 7.3.2.5 Confirmed

as a result, the patterns-based methodology was proposed to
optimize memory consumption. Second, no complete testing
or conformance tool for X73PHD is publicly available. The
ValidatePDU checking tool currently provided by the National
Institute of Standards and Technology (NIST) only supports
X73PoC APDU analysis and it is not suitable for X73PHD
conformance testing [29]. In the absence of such a tool,
several alternatives have been investigated and used to check
both the fulfillment of the application requirements and the
conformance to X73PHD. First, a two own development tools
– a test tool that validates APDU contents and sequences and
the previously-implemented X73PHD platform [26] – were
used. Second, the impleemnted LV-LP constrained X73PHD-
compliant agents were able to successfully connect to an
externally-developed X73PHD-compliant manager developed
by the MORFEO OpenHealth project [30]. Despite that an
exhaustive checking procedure – through an official, certified
X73PHD testing tool – is unattainable at the moment of writ-
ing, evidence is provided of the compliance of the proposed
implementation with the ICSs by means of these crossed-
platform tests.

Regarding to reader and writer tasks (see Fig. 4), several

optimizations were included to support some optional features
of X73PHD. First, regarding reader tasks, several factors –
such as the need of computing the length of the fields in the
MDER codification or the high number of different errors that
the agent has to be able to report (roer, rorj and abrt messages,
mentioned in Section II) – increase both complexity and
footprint. These factors were optimized by adding supplemen-
tary pattern-embedded information about error handling that
enables the analysis procedure to easily determine by context
the actions to be taken if an analysis error occurs. The pattern-
embedded information consist on logical structures that con-
tain all the information required to execute the corresponding
actions. Second, regarding writer tasks, the computation time
needed to synthesize variable-length APDUs can be reduced if
the writer knows the length of the APDU beforehand. Some of
these variable-length APDUs include the “Remote Operation
Response | Get” using a variable attribute list argument and
the “Remote Operation Invoke | Event | MDS-Dynamic-Data-
Update-Fixed” using buffered-measurements. Specific algo-
rithms that use microcontroller-efficient operations (mostly,
addition, shift and product operations) to calculate the length
of each variable-length APDU have been implemented. For

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 10

instance, in the “Remote Operation Response | Get” case, the
APDU length, L, is obtained as: L = Lh + Li1 + ... + LiN ,
where Lh is the header length (i.e. 18 bytes), Lij , is the length
of attribute ij ∈ {1...M}, M is the number of attributes of
the MDS object, j ∈ {1...N}, N is the number of attributes
in the list.

Once the final implementation for a weighing scale was
achieved, the implementation and testing of a blood pressure
monitor (11073-10407) and a thermometer (11073-10408)
was carried out using the same procedures shown above.
Only some minor changes and modifications were required to
accomplish the implementation of these new specializations,
compared to the initial development of the weighing scale.
This design results in a reduced time to market while facilitates
integration into a fully-fledged development platform.

V. CONCLUSION

In this paper, a patterns-based methodology and a software
architecture to efficiently implement X73PHD into LV-LP
agents in terms of both memory consumption and processor
usage have been presented. The proposed methodology has
been designed to offer an intuitive, easy-to-implement solution
for LV-LP microcontrollers. The proposed software architec-
ture splits the implementation problem in several modules that
can be reused and applied to different software and hard-
ware solutions. As a proof-of-concept, this methodology has
been applied to implement a number of X73PHD-compliant
agents: a weighing scale, a blood pressure monitor, and a
thermometer. Quantitative results regarding X73PHD memory
requirements have also been provided. These results show the
reduced footprint required to implement the patterns based
methodology and highlights its applicability to other X73PHD
specializations.

REFERENCES

[1] “Obesity: preventing and managing the global epidemic. report of a
WHO consultation.” World Health Organization - Technical Report
Series, vol. 894, pp. i–xii, 1–253, 2000.

[2] J. L. Monteagudo and O. Moreno, “eHealth for patient empowerment
in Europe,” World Wide Web electronic publication, 2009, last
access: 02/11. [Online]. Available: http://ec.europa.eu/information
society/newsroom/cf/itemdetail.cfm?item id=3448

[3] P. Bonato, “Wearable sensors and systems,” IEEE Engineering in
Medicine and Biology Magazine, vol. 29, no. 3, pp. 25–36, 2010.

[4] M. Martinez-Espronceda, I. Martinez, S. Led, J. D. Trigo, I. Oses,
J. Escayola, L. Serrano, J. Garcia, and A. Garcia, “INTENSA: heart
failure patient’s follow-up system using the ISO/IEEE11073 standard,”
in 2009 9th International Conference on Information Technology and
Applications in Biomedicine (ITAB 2009), 5-7 Nov. 2009, p. 4. [Online].
Available: http://dx.doi.org/10.1109/ITAB.2009.5394343

[5] W. S. Wang, “Bluetooth: A new era of connectivity,” IEEE Microwave
Magazine, vol. 3, no. 3, pp. 38–42, 2002.

[6] P. Kinney, “ZigBee technology: Wireless control that simply works,”
ZigBee Technology: Wireless Control that Simply Works, 2003.

[7] C. Chronaki and F. Chiarugi, “Interoperability as a quality label for
portable & wearable health monitoring systems.” Studies in health
technology and informatics., vol. 117, pp. 108–116, 2005.

[8] M. Reynolds et al., “Can telemonitoring systems interoperate? Review
of the suitability of existing stantards for adaptable telecare provision,”
Healthcare Comp Conf of British Comp Soc (HC), pp. 104–115, 2007.

[9] M. Galarraga, L. Serrano, I. Martinez, and P. de Toledo, Standards
for medical device communication: X73 PoC-MDC, ser. Medical and
Care Compunetics 3. IOS Press - ”Studies in Health Technology and
Informatics”, pp. 242–56, 2006.

[10] “Health Informatics-Personal Health Device Communication Part
20601: Application Profile–Optimized Exchange Protocol,” IEEE Std
11073-20601-2008, 2008. [Online]. Available: http://standards.ieee.org/
findstds/standard/11073-20601-2008.html

[11] “Health Informatics–Personal Health Device Communication Part
20601: Application Profile–Optimized Exchange Protocol Amendment
1,” IEEE 11073-20601a-2010 (Amendment to IEEE Std 11073-20601-
2008), pp. 1–119, 2011. [Online]. Available: http://standards.ieee.org/
findstds/standard/11073-20601a-2010.html

[12] “Health Informatics-Personal Health Device communication Part 104xx:
Device specializations,” IEEE Std 11073-104xx. [Online]. Available:
http://standards.ieee.org/findstds/standard/healthcare it.html

[13] J. Yao and S. Warren, “Applying the ISO/IEEE 11073 standards
to wearable home health monitoring systems,” Journal of Clinical
Monitoring and Computing, vol. 19, no. 6, pp. 427–436, 2005. [Online].
Available: http://dx.doi.org/10.1007/s10877-005-2033-7

[14] I. Martinez, J. Fernandez, M. Galarraga, L. Serrano, P. De Toledo,
S. Jimenez-Fernandez, S. Led, M. Martinez-Espronceda, and J. Garcia,
“Implementation of an end-to-end standard-based patient monitoring
solution,” IET Communications, vol. 2, no. 2, pp. 181–191, 2008.
[Online]. Available: http://dx.doi.org/10.1049/iet-com:20060703

[15] “Universal Serial Bus Device Class Definition for Personal Healthcare
Devices (USB PHDC) release 1.0,” USB Implementers Forum Inc., vol.
1st Ed., 2007.

[16] “Bluetooth Health Device Profile (BT HDP) version 1.0 revision 00
[Multi-Channel Adaptation Protocol (MCAP)][Implementation Guid-
ance Whitepaper],” Bluetooth Special Interest Group (SIG), vol. 1st Ed.,
2008.

[17] “Zigbee Health Care profile (ZHC) specification version 1.0 revision
15,” ZigBee Alliance, vol. 1st Ed., 2010.

[18] Continua Health Alliance. Last visit: 02/11. [Online]. Available:
www.continuaalliance.org

[19] M. Martinez-Espronceda, L. Serrano, I. Martinez, J. Escayola, S. Led,
J. Trigo, and J. Garcia, “Implementing ISO/IEEE 11073: Proposal of
two different strategic approaches,” in Proceedings of the 30th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBS’08, Vancouver, BC, Canada, pp. 1805–1808,
2008.

[20] “MSP430 family,” last visit: 02/11. [Online]. Available: www.ti.com
[21] S. Warren, J. Lebak, and J. Yao, “Lessons learned from applying

interoperability and information exchange standards to a wearable
point-of-care system,” Arlington, VA, United states, pp. 101–104, 2006.
[Online]. Available: http://dx.doi.org/10.1109/DDHH.2006.1624807

[22] M. Clarke, D. Bogia, K. Hassing, L. Steubesand, T. Chan, and D. Ayya-
gari, “Developing a standard for Personal Health Devices based on
11073,” in Conf Proc IEEE Eng Med Biol Soc., pp. 6174–6176, 2007.

[23] “Health informatics-personal health device communication part
10415: Device specialization-weighing scale,” IEEE Std 11073-
10415-2010, dec. 2010. [Online]. Available: http://standards.ieee.org/
findstds/standard/11073-10415-2010.html

[24] “ISO/IEEE Health Informatics Personal Health Device communication
Part 10407: Device specialization - Blood pressure monitor,”
ISO/IEEE 11073-10407:2010(E), pp. 1–52, 1 2010. [Online]. Available:
http://standards.ieee.org/findstds/standard/11073-10407-2010.html

[25] “Health Informatics-Personal Health Device communication Part 10408:
Device specialization-Thermometer,” IEEE Std 11073-10408-2010, dec.
2010. [Online]. Available: http://standards.ieee.org/findstds/standard/
11073-10408-2010.html

[26] I. Martı́nez, J. Escayola, M. Martı́nez-Espronceda, P. Muñoz, J. Trigo,
A. Muñoz, S. Led, L. Serrano, and J. Garcı́a, “Seamless integration of
ISO/IEEE11073 personal health devices and ISO/EN13606 electronic
health records into an end-to-end interoperable solution,” Telemedicine
and e-Health, vol. 16, no. 10, pp. 993–1004, 2010.

[27] “Freescale medical bus implementation,” 2009, last visit: June
2010. [Online]. Available: http://www.freescale.com/webapp/sps/site/
prod summary.jsp?code=MEDICALUSB

[28] C. Park, J. H. Lim, H. Y. Jung, and S. Park, “ISO/IEEE 11073 PHD
standardization of weighing scale using Nintendo’s Wii balance board
for healthcare services,” Las Vegas, NV, United states, 2010, pp. 195–
196. [Online]. Available: http://dx.doi.org/10.1109/ICCE.2010.5418874

[29] National Institute of Standards and Technology. Last visit: 02/11.
[Online]. Available: www.nist.gov

[30] S. Carot-Nemesio, J. Santos-Cadenas, P. De-Las-Heras-Quirs, and
J. Bustos, “OpenHealth the OpenHealth FLOSS implementation of
the ISO/IEEE 11073-20601 standard,” in HEALTHINF 2010 - 3rd
International Conference on Health Informatics, Proceedings, pp. 505–
511, 2010.

TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE 11

Miguel Martı́nez-Espronceda was born in Men-
davia, Spain, in 1981. He received the MS degree
in Telecommunication Engineering from the Public
University of Navarra (UPNa), Spain, in 2005. Since
then, he has developed his research within the Signal
Theory and Communications Group, Department of
Electrical and Electronic (UPNa). In 2009, he was
a visiting student at the Department of Biomedical
Engineering, University of Applied Sciences Tech-
nikum Wien, Austria. His current research interests
include wearable and wireless personal health solu-

tions based on standards and medical devices interoperability. He is Student
Member of both IEEE and IEEE-EMBS, and collaborator in national and in-
ternational standardization associations (AENOR/CTN139-SC4, CEN/TC251-
WGIV, and PHD-WG).

Ignacio Martı́nez was born in Zaragoza (Spain) in
1976. He received MS (2000), DEA (2002), and
PhD (2006) degrees in telecommunication engineer-
ing and bioengineering doctoral program from the
Aragon Research Engineering Institute (I3A) in the
University of Zaragoza (UZ), Spain. He received
Best Thesis Award (2007) in Multimedia Environ-
ments from Telecommunication Engineering Official
College (COIT), Spain. His research interests in-
clude telemedicine, QoS on multimedia services and
interoperability & standardization, where he is coor-

dinator of standard-based solutions for e-Health services with more than 30
published papers. He currently works in the development and implementation
of ISO/IEEE11073 standard for medical devices interoperability within the
Spanish Association for Standardization and Certification (AENOR/CTN139)
and European Normalization Committee (CEN/TC251).

Luis Serrano (S’92, M’97, SM’06) was born in
Andosilla, Spain, in 1966. He received the M.Sc.
degree in Physics from the University of Zaragoza,
Spain, in 1989, and Ph.D. degree in Electrical Engi-
neering from Public University of Navarra, Spain, in
1995. From 1990 to 1993 he was a Researcher Assis-
tant with Physics Faculty at University of Zaragoza
where he worked in the field of analogue electronic
design. In 1994 he moved to Public University of
Navarra as Lecturer at Electrical and Electronic En-
gineering Faculty and worked as analogue electronic

designer. Since 1997, he has been working in Bio inspired VLSI electronic
systems for biomedical analogue signal processing, medical instrumentation,
Wireless Communications, eHealth services and Medical Devices Standariza-
tion in the Biomedical Engineering Research Group of the Public University
of Navarra.

Santiago Led holds a Telecommunication Engineer-
ing Degree from the Public University of Navarra,
Pamplona (Spain) in 2003. Front 2004 to 2008 he
was Teaching Assistant at the Public University of
Navarra, and currently a part-time instructor at the
same university. Since 2003, he has been engaged
in research on analog biomedical signal acquisition
and processing, wireless communications, wearable
medical devices, eHealth services and medical de-
vices standardization at the Biomedical Engineering
Research Group, Public University of Navarra. He

has also been researcher in several projects for deploying wireless technology
in eHealth Services for Chronic Disease Management.

Jesús D. Trigo was born in Zaragoza, Spain, in
1981. He received the MS in Telecommunication En-
gineering from the University of Zaragoza in 2005.
He is currently enrolled in a Doctoral Programme
from the I3A in the Department of Electronics Engi-
neering and Communications (CPS/UZ). He has un-
dergone a research stage at the Biomedical Informat-
ics Laboratory of the Foundation for Research and
Technology - Hellas (FORTH) located in Heraklion,
Crete (Greece). His main research interests include
e-health applications and architectures, biomedical

informatics or medical device interoperability and standardization among
others.

Javiar Escayola received the MS (2005) in
Telecommunication Engineering and Master in
Biomedical Engineering (2008) from the Aragon Re-
search Engineering Institute (I3A) in the University
of Zaragoza (UZ), Spain. Since then he has been
working at the I3A of the University of Zaragoza.
His research interests include e-health, mobile ap-
plications, multimedia services, wireless communi-
cations, biomedical applications, and interoperability
and standardisation, where he has developed several
research projects within the I3A research line of

telemedicine. He currently works in the development and implementation
of ISO/IEEE11073 standard for medical devices interoperability within
AENOR/CTN139 and CEN/TC251.

Asier Marzo was born in Pamplona, Spain, in
1986. He received the MS in Computer Engineering
from the Public University of Navarra, Spain, in
2009. Since then, he has been working at Electrical
and Electronic Department of Public University of
Navarra as project assistant. He has worked in the
software development industry and also as a teacher
of programming languages in ESNE private school.
He is the co-founder of InfinityK, a company aimed
at software development for mobile platforms. His
interests are real-time signal processing and simula-

tions, game based learning, GCGPU and mobile e-health solutions.

José Garcı́a (IEEE Member 2007) was born in
Zaragoza, Spain, in 1971. He received the M.S. de-
gree in physics and the Ph.D. degree “with Honors”
from the University of Zaragoza, Spain, in 1994 and
1998, respectively. He is with the Department of
Electronics Engineering and Communications in the
Polytechnic Center, where he is currently the Head
of the Department. He is an Associate Professor in
the Telematics Engineering area and member of the
Aragn Institute of Engineering Research (I3A). He is
also the founder and responsible of the Telemedicine

research group in the I3A. He is recipient, investigator and co-investigator
of research grants in the area of telemedicine applications and networks.
He has undergone several research stages on USA, Sweden and Austria
and published more than 90-refereed international journal and conference
papers. His research interests are in telemedicine, biomedical signal processing
for transmission, wireless communications, network management and other
related topics. (IEEE Member Number: 80637442).

