
Lessons Learned Implementing the ISO/IEEE11073
Standard into Wearable Personal Devices

Miguel Martı́nez-Espronceda, Student Member, IEEE, Ignacio Martı́nez,
Luis Serrano, Senior Member, IEEE, Santiago Led, Jesús Daniel Trigo, Asier Marzo,

Javier Escayola, Gilberto Barrón and José Garcı́a, Member, IEEE

Abstract— In this paper several approaches to implement the
ISO/IEEE11073 interoperability standard into personal health
devices using low-voltage low-power (LV-LP) microcontrollers
are proposed. The patterns methodology previously suggested
by the authors is followed in all of the approaches which include
an 1-process implementation using non-blocking functions, mul-
tiprocess within an operating system, an specific multithread
framework, and a code compression based interpreter. Finally,
a qualitative comparison between the different approaches is
provided.

I. INTRODUCTION

The fast development of Information and Communication
Technologies applied to the Health System is fostering the
appearing of new technological solutions and services cen-
tred in the patient. The so-called patient empowerment [1]
enables the patient to manage its health and, furthermore,
improves its quality of life. Indeed, these solutions con-
tribute to the reduction of waiting queues and consequently
to the improvement of public health services. From the
company point of view, these new services suppose a new
market that can lead to a new economical growing motor
[2]. Nevertheless these patient centred services should be
implanted in a consensual and ordered way [3]. As a response
some standards are being evolved or even created from
scratch to cover the new scenarios. In the case of health
information standards one important field of development
in the last years is being the interoperability standard for
medical device communications ISO/IEEE11073 (X73) [4],
[5]. This standard has recently evolved from scenarios of
Point of Care (PoC) and Intensive Care Unit (ICU) (X73PoC)
[6] to Personal Health environments (X73PHD) [7]. A double
aim must be overcome in this evolution: on one hand the

This research work has been partially supported by projects TIN-2009-
08414 and TIN-2008-00933/TSI from Comisión Interministerial de Ciencia
y Tecnologı́a (CICYT) and European Regional Development Fund (ERDF),
TSI-020302-2009-89 and TSI-020302-2009-7/Plan Avanza I+D from Min-
isterio de Industria, Turismo y Comercio, and FPI grant to M.Martı́nez-
Espronceda (Res.1342/2006 Public University of Navarre).

M.Martı́nez-Espronceda, L. Serrano, S. Led, and A. Marzo are with the
Electrical and Electronics Engineering Dept., Public University of Navarre
(UPNA), Campus de Arrosadı́a, s/n 31006 Pamplona, Spain (corresponding
e-mail: miguel.martinezdeespronceda@unavarra.es).

I. Martı́nez, J.D. Trigo, J. Escayola, and J. Garcı́a are with the Com-
munications Technologies Group (GTC), Aragón Institute of Engineering
Research (I3A), University of Zaragoza (UZ), c/Marı́a de Luna, 1 50018
Zaragoza, Spain.

G. Barrón is with the Coordination of Electronic and Communication
Engineering, Autonomy University of Nuevo León, University Avenue s/n,
University City, San Nicolás de Los Garza, NL66450, Mexico.

incorporation of new wireless (such as Bluetooth [8] and
ZigBee [9]) and wired technologies (such as USB); on the
other hand the reduction of X73 complexity in order to
decrease processor usage and memory needs. The resulting
standard defines point to point communications between the
so-called agents and managers. Agents, usually wearable,
are the sensors, sources where measurements are taken.
Managers corresponds to gateways or sinks that gather the
measurements.

Due to the new in-home healthcare paradigm using low-
voltage low-power (LV-LP) personal devices, it is common
to have constrains in design of hardware and software. For
example in most common System-on-Chip (SoC) devices
used in ZigBee applications, the Random Access Memory
(RAM) for the application, shared with the ZigBee stack,
is less than a few Kilobytes. Depending on the X73 spe-
cialisation implemented, the size of incoming and outgoing
Application Protocol Data Units (APDUs) can require as
much as 63KB and 8KB, respectively. In these conditions
it is hard for developers to implement X73 into embedded
devices [10], [11]. In order to optimise the use of resources
in agents, and having in mind to reduce power consumption,
a methodology to implement X73-conforming agents was
proposed and showed in [12]. Using it, the processing of
X73 results very efficient in terms of memory and processor.
As an example, the generation of an outgoing X73 APDU
using some patterns and a few variables in RAM is shown
in Fig. 1. A proof-of-concept of implementation was made
in INTENSA project [13]. There are different approaches to
implement the standard according to the patterns method-
ology. Each one of these alternatives can be better in one
situations than in others depending on several factors such
as memory space, cpu resources, type of Operating System
(OS), communication technology stack, etc. The proposal of
new implementation alternatives to the development of LV-
LP agents is fundamental.

The paper is organised as follows. Section II introduces
the modular architecture employed to, then, propose four
implementation approaches which include a 1-process im-
plementation using non-blocking functions, a multiprocess
system within an OS, an specific multithread implementa-
tion, and a pseudocode-based environment. In Section III
a discussion about other possible approaches as well as a
qualitative comparison of Section II approaches are given.
Conclusions are drawn in Section IV.

978-1-4244-6561-3/10/$26.00 ©2010 IEEE

II. METHODOLOGY

The architecture follows the division of conceptual blocks
proposed by X73PHD (see Fig. 2). It includes the transport
layer, the exchange layer, and the application layer. The
transport layer corresponds to the communication technology
stack, such as Bluetooth (using the Health Device Profile –
HDP), USB (using the Personal Healthcare Device Class –
PHDC) or ZigBee (using the Health Care Profile – HCP).
Internally the exchange layer is divided into the patterns
library, which contains the content of the patterns to be
used in a X73 communication, and the kernel X73 that
contains the algorithms to generate the messages extracted
from the patterns. The kernel X73 and the pattern library can
be implemented in different ways. In the remaining of this
section some of them are described.

A. 1-process implementation using non-blocking functions

In this solution the APDUs are passed from and to the
transport layer in one piece to the exchange layer. The
system is programmed using non-blocking functions and
callbacks. APDUs are stored and passed between functions
in RAM buffers. Depending on the device’s configuration,
the size of the transmission buffer for one APDU can reach
as much as 63KB while the reception buffer can require as
much as 8KB (using a specialisation, the maximum size
appears in the specific X73-104xx document). When the
exchange layer receives an X73 APDU, it processes the
APDU using the patterns methodology. The exchange layer
analyses the APDUs using patterns and returns the result
to the application layer when the code encounters that the
APDU matches a sequence of pattern with an valid APDU.
At the same time, depending on the APDU received, the
exchange layer changes the state of the Finite State Machine
(FSM), informs to the application layer, and generates other
APDU to transmit in response when it is appropriate. The
response APDU generated in this way is buffered in the
transmission queue of the transport layer. The entire process
can be seen in Fig. 3.

Most of the X73 agents can be implemented following the
ideas given here if they are featured with reasonable RAM

P7P4 P2 P8a b

Event report

P7P4 P2 P8

a b

Volatile Memory
(RAM)

X73-Agent

P8 P9 P10

P5 P6 P7

P1 P2 P3 P4

Patterns Library
X73-

manager

Fig. 1. Concept of pattern

USBZigBeeBluetooth

X
73

-1
04

04

X
73

-1
04

06

X
73

-1
04

07

X
73

-1
04

08

X
73

-1
04

15

Fig. 2. Conceptual building blocks

capacity or if its functionality is very reduced due to the
fact that in these cases the APDU sizes are limited. The
limitation in buffer sizes has to be taken into account by
the device designer as the possibility to run out of memory
exists. This technique was used in [14].

B. Multiprocess within an OS

In this case, the exchange layer is divided into several
processes. Each transmission channel has two processes: the
writer, intended for formatting and transmission of APDUs,
and the reader, intended for reception and matching of
APDUs (see Fig. 4). Each time the reader process a complete
APDU, it updates the state of the FSM, optionally sends
a command to any of the writers (e.g. transmit a response
to the received message), and generates an event to alert
the application layer (e.g. sending a command like ‘STA-
TUS OPERATING’ when X73 association and configuration
procedures have been concluded).

The advantage of this strategy with respect to the 1-process
is that the incoming or outgoing APDUs are processed part

const byte_t pttrn_assoc_req[] = {
0xE2 0x00 // APDU CHOICE Type (AarqApdu)
0x00 0x32 // CHOICE.length = 50
0x80 0x00 0x00 0x00 // assoc-version
...

}
const byte_t pttrn_assoc_rsp_0[] = {

0x00, 0x2C // CHOICE.length = 44
}
...
matchAssocResp(APDU_buff * apdu) {

x73_memcmp(apdu->buff,pttrn_assoc_rsp_0,
sizeof(pttrn_assoc_rsp_0));

...
x73_recv16(result);
x73_ready(ST_RECV_ASSOC_RESP, result);
return result;

}

Fig. 3. 1-process implementation

by part thus reducing the buffering and the needs of RAM
memory (only a small buffer for transport layer needs). The
drawbacks are the possible increase of the footprint of the
overall program (because of the OS needs) and the power
consumption (because possibly the OS has background ac-
tivities). Depending on the implementation of the OS, these
can be specially crucial in idle devices (e.g. weigh scale is
used a few times a day and the rest of the time is slept).

The X73 transport specification imposes that changes due
to an APDU must be transactional (it is an all or nothing).
For this reason, readers and writers must be programmed
in a specific way. In the case of readers, they must commit
all the operations and changes in status variables when they
have finished matching the complete APDU. In the case of
writers, they must not carry out any operation that affects to
other readers or writers.

C. Multithread implementation

The drawbacks of the previous solution (OS based one)
are solved in the next strategy (see Fig. 5). It consist on a
threaded application, with the peculiarity that the threading
algorithm is optimum for implementing the X73PHD. This
threading algorithm is implemented in a specific threading
environment which contains basic code to enable basic
services as interprocess communication as well as access to
application and transport layers.

Traditionally two types of multitasking have been preva-
lent: preemptive multitasking (used in modern OS) and
collaborative multitasking (used in batch-based systems).
This strategy is based on collaborative multitasking where
each task owns the processor until it decides to give it up
to other tasks. This briefly consist on an abstraction layer
that implements threading. This scheme is chosen because
of two reasons: first one is that the overhead due to context
switching is lower with this alternative; second one is that
tasks require short time-slots and therefore there is no need
for the OS to remove any task from the processor (indeed,
it is expected that a task does not leave the processor until
it has finished its work). Moreover, high responsiveness and
preemption were not needed but low footprint and memory
usage are desirable.

This approach uses the same separation of tasks as the
approach based on OS. There are reader tasks, which match
and process incoming APDUs from the channel, and writer
tasks, which build APDUs and send them to the channel.
The difference is that the scheduling algorithm is of non-
preemptive round robin type and gives priority to the readers.

Operating Sytem

Tr
an

sp
or

t
ta

sk

Reader
task

Writer
task A
pp

lic
at

io
n

ta
sk

s

C
or

e
Fu

nc
tio

na
lit

ie
s

Fig. 4. Multiprocess within an Operating System

The threaded environment can be easily integrated in a real
OS or with the transport stack facilities.

D. Pseudocode-based implementation

Some improvements can be done with respect to the foot-
print and memory usage. Previous proposed solutions make
use of a general purpose language and, after compilation,
executed in machine language. These strategies are very
optimised in terms of processor efficiency. However, there is
a way to reduce the footprint that the algorithm employs. The
idea is to use a set of high level instructions (pseudocode)
that represent blocking operations. Each blocking operation
is encoded as a instruction in the pseudocode. In this way
it is possible to save the status of the program written in
pseudocode when it is executing a blocking instruction, and
resume the program later, thus emulating multithreading.
The architecture used is similar to the multithreads strategy.
Again, readers play the role of matching and processing
incoming messages while writers the role of building and
sending outgoing messages. The tasks are implemented par-
tially in pseudocode and executed by the pseudocode ad-hoc
Virtual Machine (VM) (See Fig. 6). The VM, as it is very
specialised, takes up a few lines of native code.

There is a tradeoff between size and speed; for that
reason, some parts of the tasks are coded natively (that is
compiled to machine code). In this way, the exchange layer
is scattered between the pseudocode and the native code.
The high level instructions codified in pseudocode include
stream management (pattern and variable transmission as
well as reception and matching of buffers), and FSM state
management. The code implemented in a native way include
loop encoding, jumps, math operations, access to variables,
and calls to external functions, among others.

In order to reduce the programming complexity an as-
sembler must be used to generate the pseudocode. As the
pseudocode is specific of this implementation, the assembler
shall be developed ad hoc (see Fig. 6).

III. DISCUSSION
A qualitative comparison between the different approaches

proposed in this paper is given in Table I. The four ap-

Threading module

Transport layer

Reader
task

Writer
task

Application layer

Core Functionalities

O
S

 /
Fa

ci
lit

ie
s

/ T
ra

ns
po

rt
S

ta
ck

Communication interface

P
at

te
rn

s
lib

ra
ry

Fig. 5. Multithread implementation

SEND_PAT

CNFreq_10

CALL

f_goto_3

CALL

send_datetime

SEND_PAT

CNFreq_11

0x0014

0x0013

0x0016

0x0018

0x001A

0x001C

VM dir. VM pseudocode
void send_pat(vm_t* vm, u8 id) {

vm.i = 0;
vm.buff = PAT_START_POS(id);
vm.size = PAT_SIZE(id);
vm.func = send_buff;
vm.state = VM_PROCESS;

}

void send_buff(vm_t* vm) {
while (vm.i < vm.size)

&& send(vm.buff[vm.i])){
vm.i++;

}
if (vm.i == vm.size) {

vm.state = VM_IDLE;
}

}

void f_goto_3(vm_t* vm) {
vm.pc = *(vm.pc+1);

}

Pseudocode VM & exchange layer

Fig. 6. Pseudocode-based implementation example

proaches appear in the same order that they have been
exposed during the paper. In the table, more crosses means
that the implementation consumes more resources (memory,
processor, development time or power consumption). The
values of this table are the result of some implementation
experiences but, as the authors do not have quantitative
results yet, the results have to be taken as illustrative.

Table I shows the differences between the possible im-
plementations. As it is shown, the approach that requires
less memory is the pseudocode-based approach. Neverthe-
less this approach is the most expensive with respect to
development time. Processor usage and power consumption
is inferior in both multithread and 1-process. This last
approach, 1-process, is the easiest technique to develop. The
most versatile between the four approaches seems to be the
multithread. Some studies are being done by our group to
reduce development time of this solution.

The alternatives exposed here have been chosen as the
most feasible from a collection that includes both techniques
that have been studied from projects that the group has
gained access and individual proposals from the members of
the group. Although these techniques cover most common
applications, there can be other different approaches in
special situations to deal with implementations in LV-LP
microcontroller-based platforms that can be more suitable.
Hence, each case must be studied thoroughly by the device
developer.

TABLE I
COMPARISON BETWEEN THE DIFFERENT APPROACHES

Implementation Memory Processor Time to Power
technic needs needs develop consumption

A. 1-process ++++ + + +
B. OS-based +++ ++ ++ ++

C. Multithread ++ + +++ +
D. Pseudocode + ++ ++++ ++

IV. CONCLUSION

Four different approaches to implement the X73 stan-
dard in LV-LP systems based on microcontrollers using the
patterns methodology are presented in this paper. A de-
tailed description of the different approaches has been given
by showing the techniques used in every implementation.
The discussion shows the differences between them in a
qualitative way and remarks that there are compromises
between memory needs, processor usage, development time
and power consumption, which indicates that the suitableness
of each one for a specific device depends on the features of
this device.

REFERENCES

[1] J. L. Monteagudo and O. Moreno, “ehealth for patient
empowerment in europe,” World Wide Web electronic publication,
2009. [Online]. Available: http://ec.europa.eu/information society/
newsroom/cf/itemdetail.cfm?item id=3448.Lastaccess:04/10

[2] R. Carroll, R. Cnossen, M. Schnell, and D. Simons, “Continua:
An interoperable personal healthcare ecosystem,” IEEE Pervasive
Computing, vol. 6, no. 4, pp. 90–94, 2007.

[3] F. Wartena, J. Muskens, and L. Schmitt, “Continua: The impact of a
personal telehealth ecosystem,” in Proceedings - International Con-
ference on eHealth, Telemedicine, and Social Medicine, eTELEMED,
2009, pp. 13–18.

[4] M. Galarraga, L. Serrano, I. Martinez, P. D. Toledo, and M. Reynolds,
“Telemonitoring systems interoperability challenge: An updated re-
view of the applicability of iso/ieee 11073 standards for interoperabil-
ity in telemonitoring,” in Annual Int Conf IEEE EMB - Proceedings,
2007, pp. 6161–6165.

[5] M. Clarke, D. Bogia, K. Hassing, L. Steubesand, T. Chan, and
D. Ayyagari, “Developing a standard for personal health devices based
on 11073,” in Annual Int Conf IEEE Eng in Medicine and Biology
(EMBC) - Proceedings, 2007, pp. 6174–6176.

[6] N. Lutter, T. Norgall, J. Mell, C. Weigan, and J. Schuettler, “Point of
care: New connectivity standards and novel technologies in intensive
care,” International Journal of Intensive Care, vol. 12, no. 4, pp. 175–
185, 2005.

[7] L. Schmitt, T. Falck, F. Wartena, and D. Simons, “Novel iso/ieee
11073 standards for personal telehealth systems interoperability,” in
2007 Joint Workshop on High Confidence Medical Devices, Software,
and Systems and Medical Device Plug-and-Play Interoperability -
HCMDSS-MD PnP ’07. IEEE, 25-27 June 2007 2008, pp. 146–8.

[8] W. S. Wang, “Bluetooth: A new era of connectivity,” IEEE Microwave
Magazine, vol. 3, no. 3, pp. 38–42, 2002.

[9] P. Kinney, “Zigbee technology: Wireless control that simply works,”
in Communications Design Conference, 2003.

[10] S. Warren, J. Lebak, and J. Yao, “Lessons learned from applying inter-
operability and information exchange standards to a wearable point-
of-care system,” in 1st Transdisciplinary Conference on Distributed
Diagnosis and Home Healthcare, vol. 2006, 2006, pp. 101–104.

[11] M. Martı́nez-Espronceda, L. Serrano, I. Martı́nez, J. Escayola, S. Led,
J. Trigo, and J. Garcı́a, “Implementing iso/ieee 11073: Proposal of
two different strategic approaches,” in Annual Int Conf IEEE Eng in
Medicine and Biology (EMBC) - Proceedings, 2008, pp. 1805–1808.

[12] M. Martı́nez-Espronceda, I. Martı́nez, J. Escayola, L. Serrano, J. Trigo,
S. Led, and J. Garcı́a, Standard-Based Homecare Challenge: Advances
of ISO/IEEE11073 for u-Health. Handbook of Digital Homecare,
2009, pp. 179–202, doi:10.1007/978-3-642-01387-4.

[13] M. Martı́nez-Espronceda, I. Martı́nez, S. Led, J. D. Trigo, I. Oss,
J. Escayola, L. Serrano, J. Garcı́a, and A. Garcı́a, “Intensa: Heart
failure patient’s follow-up system using the iso/ieee11073 standard,”
in Final Program and Abstract Book - 9th International Conference
on Information Technology and Applications in Biomedicine, ITAB,
2009.

[14] “X73 agent and manager implementation source-code,” World
Wide Web electronic publication, 2009, last visit: July 2010.
[Online]. Available: http://www.freescale.com/webapp/sps/site/prod
summary.jsp?code=MEDICALUSB

	MAIN MENU
	Technical Program

