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A Feasible Application of Constrained Optimization
in the IMRT System

Juan M. Artacho Terrer*, Miguel A. Nasarre Benedé, Emiliano Bernués del Rio, and Santiago Cruz Llanas

Abstract—The planning of intensity modulated radiation
therapy cancer treatment poses an inverse problem and is usuvally
solved by optimization methods. Treatment planning, in a majority
of cases, requires restrictions to be imposed on the healthy organs,
sensitive to the radiation, which justifies the use of constrained
optimization. The application of these techniques in treatment
planning usually involves serious complications and limitations
due to the huge number of variables appearing in the planning
process. This leads to large computation times and memory
requirements. In this paper, strategies and algorithmic issues are
proposed in order to cope with these limitations. The proposed
methods have been applied and tested in real cases of prostate
cancer, obtaining satisfactory results regarding computational
limitations.

Index Terms—Biomedical applications of radiation, dosimetry,
optimization methods, radiation therapy.

[. INTRODUCTION

ADIATION therapy is the treatment of cancer with ion-
Rizing radiation, in such a way that radiation, when passing
through the tissue, damages tumor cells slowing or reversing the
growth of tumors. A relevant development in the last decade is
the intensity modulated radiotherapy (IMRT) system, where the
distribution of the dose can be controlled with spatial accuracy
using multileaf collimators (MLCs) [1], [2]. At the surface of a
collimator the radiation delivered by the corresponding beam
can be seen as a two-dimensional discrete pattern of beamlets.
Numerical values associated to these beamlets, corresponding
to fluence or energy fluence, are called beamlet weights. A
schematic diagram of the system is shown in Fig. 1.

Inverse planning of IMRT systems consists of automatically
determining the beamlet weights, so that a prescribed dose can
be attained at discrete volume locations (voxels). Other parame-
ters (such as the number of beams and their orientations) could
additionally be considered [3], [4], although this issue is not
taken into account here.

Several mathematical frameworks have been proposed in
order to solve this IMRT inverse planning. Most of them are
particular ways of analyzing large ill-conditioned systems of
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Fig. 1. A schematic diagram for IMRT (3 beams).

equations, where the beamlet weights are linearly related to the
data, which are the prescribed doses at voxels (see [2] or Sec-
tion II). Because of the nature of the problem, different types of
constraints should also be considered. Physical constraints arise
because of the limitations of the IMRT system (nonnegativeness
of the beamlet weights). Medical constraints are prescribed by
the oncologist (limits on the received dose for different organs).
The problem can be so hard that semi-automatic or interactive
solutions are sometimes regarded as practical trade-offs [5].
Fully automatic frameworks include, among others: algebraic
methods (constrained least squares [6]), stochastic optimization
methods (such as simulated annealing [7] and genetic or evolu-
tionary algorithms [4]) or backprojection-based methods [8].

It is important to keep in mind that, despite the number of
available theoretical frameworks mentioned so far, several ver-
sions of nonstochastic traditional gradient-search methods re-
main extensively applied. This basic idea can be expressed with
different names in IMRT planning: constrained optimization
[9], active set algorithms [10] or nonlinear programming [11].
For this kind of methods, mathematic definitions must be given
for the specific objective function and for the constraints of the
problem.

In IMRT planning, linear or quadratic objective functions
are the most usual choices [11], [12]. When the constraints
are also linear, these special objective functions can lead to
well-known optimization problems such as linear programming
(LP) [13]-[15] or quadratic programming (QP). LP and QP
have good theoretic properties, such as well-known conditions
for convexity. Moreover, an important advantage is that a great
number of practical algorithmic solutions are available for these
problems [16].

The election of quadratic objective functions, compared
to linear ones, has certain advantages. Least-squares emerge
as a natural solution for IMRT problems [6] and, moreover,
quadratic objective functions can be thought as more flexible
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models than linear ones. The price to be paid for this choice
is the increased complexity of the problem. It has been argued
that, for IMRT planning, this is specially critical, as it is a
large-scale problem which includes a high number of con-
straints [11].

One of the main concerns of this work is the proposal of spe-
cial strategies in order to reduce the computational cost when
nonlinear objective functions are used (see Section III). The ef-
fectiveness of the proposed techniques is shown on real cases of
prostate cancer,

Results in this paper confirm that a wise election of a par-
ticular algorithmic solution, exploiting all the available knowl-
edge, can have a great impact regarding practical concerns such
as the computation time. For the type of QP problem solved
here, significant differences have been found between two al-
gorithms (Lemke and Rosen Gradient Projection algorithms).
Lemke’s algorithm leads to reduced computational times, as it
fully exploits the nature of the QP problem, whereas Rosen’s
algorithm is more general (the objective function is not neces-
sarily quadratic).

The rest of the paper is organized as follows, First, in Sec-
tion II, the inverse planning problem for IMRT is posed and
the particular choices for its solution are described (QP frame-
work, Lemke and Rosen Gradient Projection algorithms). In
Section III, the new proposed techniques for reducing the di-
mension of the problem are explained. Finally, results and con-
clusions are given.

II. INVERSE PLANNING

The external beam radiation therapy with intensity modula-
tion poses a problem which can be represented by a mathemat-
ical model to relate the dose delivered by the linear accelerator
(linac) that generates the radiation beam and the dose absorbed
in the anatomy of the patient. The area affected by the tumour is
divided in small cubes called voxels, usually tens of thousands,
in order to obtain an accurate representation of the volume,

Likewise, radiation beams are discretized in beamlets [6]. The
radiation beam delivers a dose which is described in terms of
a matrix of weights (or fluence matrices), where each weight
determines the dose delivered by its corresponding beamlet (see
Fig. 1).

The dose delivered to each voxel is given by

n
Doi:Zfijwj i=1,...,m (1)
j=1

where n is the number of beamlet weights, m is the number of
voxels, wj is the value of the jth weight, and f;; is the contri-
bution of dose from the jth beamlet to the #th voxel.

The reordering of the weights w; of the fluence matrices in
a vector w allows the previous expression to be expressed as a
maltrix

D,=F w (2)
where F' is an m x n matrix whose elements are the coefficients

fi; and D, is an m dimensional vector where the doses corre-
sponding to all the voxels are grouped. Consequently, once the
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matrix /' is calculated, the dose obtained for a specific intensity
pattern can be found directly.

The inverse problem for radiotherapy treatment planning is
based on the knowledge of matrix F'. The goal is to find the
weighting vector w that approximates the dose D, prescribed
by the oncologist in each organ or structure. Usually, a distinc-
tion is made between clinical target volume (CTV) (or affected
organ), organs at risk (OARSs) (or healthy organs), and unspeci-
fied tissues (UTs).

For the formulation of the problem, an objective error func-
tion G(w) has to be defined. It has been built as the sum of
quadratic terms, measuring the difference between prescribed
and obtained doses. In the definition of the objective function,
a set S of organs or structures is considered (CTVs, OARs,
and UT). The kth structure comprises Ng, voxels. T}, is a set
of indexes for the voxels belonging to this structure. Nr, en-
ters a normalization term in the definition of the objective func-
tion preventing that big organs dominate its value. Moreover, a
weighting coefficient I is introduced, allowing the oncologist
to attach more relevance to one organ or another in the treat-
ment. Objective functions considering similar criteria than the
ones described have been proposed elsewhere [17], [18]. The
objective function used here is defined as follows:

Glw)y=>" ;—T" > (Doi = Dyi)?

kES K igeTy
Zi’k =1 0<P. <1
kesS
Z Nr,. =m
kES
= {CTV,0AR1,OAR2,...}. (3)

This function can be written as a quadratic function of the
weights as

1 » P
G(w) = Ew" Quw+ R"w+ ¢ (4)

being

2P, 2Py
Q=) - FF R=-) TFDu

res Tk res Tk
I)}r. T
¢= Y 5 Dp Dk (5)
kes k

where I, and Dy, are, respectively, submatrix/subvector of
and D taking only the parts related to the k structure.

As several structures of the volume (OARs) need to be partic-
ularly protected, when considering the rows of matrix F° which
belong to the voxels or structures whose dose must be con-
strained by an upper bound, matrix A is obtained, being by
a vector that contains the information of the maximum allowed
dose. We apply dose constraints by means of imposing

Apw < by
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myr being the number of rows in Ay and n the number of
beamlet weights w;.

Furthermore, given that the elements w; represent radiation
intensities, and these are positive quantities, to obtain a phys-
ically significant solution it is necessary to impose an addi-
tional restriction owing to the nonnegativity of the weightings
(w > 0). This is such that defining —A,,w < b,,, where A4,
is the identity matrix and b, is a n-sized vector with all its ele-
ments are null. Resulting in the matrices

_ 11(,’ _ {)U
‘41‘: - [_At(:} bf.’ - [_bw] . (6)

The whole set of restrictions can be expressed as

Acw < be. (7N

The number of dose constraints will be

Mme = mgy + n. (8)

This allows the planning process to be described by a condi-
tioned optimization problem

1 p
Minimize : E‘ml Quw+ RTw+¢

Subject to: A w < be.

The existence of inequality equations on constrained opti-
mization methods based on the Lagrange theory requires the use
of new slack variables for the conversion of inequality equations
into equality equations [19].

A. Slack Variables, Lagrange Multipliers, Lagrangian, and
KKT Conditions

The limitation of the dose in a voxel to a value by, corre-
sponding to an organ at risk is represented by

n

Z a; jw; < by, de=1,...,my (9)
i=1
or
"
hi (w) = Z ai jwj — by, <0 (10)
=1

where the coefficients a;_; are the elements of the matrix A..
Therefore, the upper condition in the voxels of OAR involves
the creation of these variables. This is such that introducing
slack variables (s7) the previous equation is transformed into
an equation of equality

n
E a; jw; — byic + 9‘2 =0 d.=1,...,my.

=1

(1)

As s? is a positive term, the dose received by the ith voxel
does not surpass the limit bgr;_ established.

In the same way, the condition of nonnegativity of the weight-
ings is solved using slack variables to translate

2 2
hi, (Wi, —my ) + 8;, = ~Wi,—my T 8], = 0

be =My + 1o M. (12)
The Lagrangian is formed as
e

L{w, A s)=G(w)+ Z Ai. (hi,(w) + si) (13)

=1

where A is the vector containing the Lagrange multipliers A;_
for the constraints and s is a vector with the slack variables s;_.

We finally express the Lagrangian function in matrix form for
this problem as

1
L(w, A s8)= ETUTQ‘HJ +RTw+ec

+/\%; (A[_.'TJJ — by + s%;) + /\i [—m + qf() (14)
Ap and sf are column vectors formed with the first my el-
ements of \; and s? respectively. Similarly, A,, and s% are
column vectors formed with the last n elements of A;, and 3?2
In a constrained optimization problem, the necessary condi-
tions for the existence of arelative minimum at a point w* means
that the Karush-Kuhn and Tucker (KKT) conditions must be
satisfied. Lemke and Rosen algorithms have been used in the
present work for the resolution of this equation system.

B. Lemke’s Algorithm

Lemke’s algorithm uses the simplex method as an effective
solution to the linear complementary problem [20]. Next, we
briefly show the Lemke’s algorithm,

From the KK'T conditions and (14), it is obtained

Quw+ R+ Al y = Ay =0
Apw + .s% = by
w' Ay + Al st =0
w=0, Ay

Aw 20, (15)

Grouping the variables as

e [w [ r [ @ Af
ol I M R T R A

(16)

we express the preceding conditions (15) as follows:
v—M-z=gq (17)
vl2 =0 (18)
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Lemke adds a new variable zy with the purpose of building
the next equation system

Tw— Mz —ezg = q. (19)

Being [ the identity matrix and e = [1 1 1]. This
system is described by a table where the method performs op-
erations in the columns and rows of the table until the optimal
solution is achieved subject to (18).

C. Rosen’s Algorithm

The Rosen’s method is based on the theory of feasible direc-
tions, such that the search for a solution is carried out within the
feasible region in a direction that reduces the desired function
and meets all the conditions [19]. This method obtains the solu-
tion with an iterative process in which the solution vector w”* in
the £th iteration is updated according to the expression

'wH'l = wk + ad.

(20)

The searching direction d is the most similar direction to the
opposite of the gradient vector of the objective function in w”,
which is expressed as

VG(w*) = (Qu* + R) . @21
The most similar direction is the one which minimizes the
expression

(-G W) -3)" - (-G () - 7).

In addition, the direction d has to meet the descendant and
feasibility conditions. For the direction to be descendant, so that
the value of the desired function is reduced, the following equa-
tion should be met

(22)

di(}(mk + aud) = d'VG(w) <0. (23)
ot

a=0

Whilst the feasibility condition, assuming that the point w¥ is
feasible, and since the constraints are linear, requires that for all
the active conditions in w* (conditions that are within the limit
of the equality of w*) meet

=dla' <0

a=(0)

(H.i(?ﬂk + cr(f) - ht;’,-) (24)

[#

dev
where a® are the rows of A, that, in w*, meet the condition
alw® — by, = 0. The coefficients of these different rows form a
vector with which the direction d has to observe the (24) to be a
feasible direction; this means that a differential movement from
a feasible point along this direction leads us to another feasible
point.

The parameter « represents the distance traveled along the
length of the normalized search direction d, and its value is ei-
ther the distance to the intersection of the closest active condi-
tion, or the distance «* that meets the condition

%C(’mk + ad)

=’

=d" (Q(w* + a*d) + R) = 0. (25)

The iterative process is repeated until it becomes impossible
to find a feasible descendant direction.

ITII. TECHNIQUES FOR THE DIMENSIONAL REDUCTION OF THE
PROBLEM

The constrained optimization methods are such that the exe-
cution times of the algorithms depend strongly on the number of
restrictions on the dose and the number of weights. The number
of these constraints for real cases can be so large that execution
times become unpractical (in the order of hours).

In a typical case of cancer, the volume is divided into tens of
thousands of voxels, of which several thousands make up the
OARs. In this context, a number of beamlet weights ranging
approximately from 200 to several thousands is obtained.

Three reduction techniques are next proposed in order to de-
crease the complexity and the number of variables in the IMRT
inverse planning system.

A. Dimensional Reduction of Constraints

Instead of applying dose constraints on the whole volume
of the OAR structures, dose limitations are only applied to the
boundary area of these OARs. Voxels belonging to the boundary
are defined as those having at least one neighbour not belonging
to the considered OAR. By considering only boundary voxels,
the number of constraints is highly reduced.

There are several reasons which justify that voxels belonging
to the boundary should be taken into account rather than voxels
inside the OAR.

First, the simple and nonrealistic case where there is only
one single beam is considered. It is known that the radiation is
attenuated along the distance, and so, the most radiated voxels
of the OAR would be the nearest ones to the source of the beam.
These voxels will always be on the OAR boundary area.

Second, in IMRT planning more than one beam is used.
Theoretically, the beams should converge on the CTV, so that
the maximum dose would be delivered there. At OAR, critical
voxels, under these assumptions, would be the closest ones to
CTYV, also belonging to the boundary as before.

When the region of convergence of the beams overlaps or-
gans at risk and these organs are between the beam sources and
the CTV, it could eventually happen that voxels inside the OAR
absorb more dose than the limit imposed on boundaries. In this
case, when two or more beams meet inside the OAR, the sum
of their contributions is a bit higher inside the organ (shorter
distance to the source beam) than on the boundary of the organ
(longer distance to the source). However, our claim is that the
dose inside the OAR hardly surpasses the limit that is imposed
on the boundary. From an informal and intuitive point of view,
this hypothesis can sound reasonable, because the dose on the
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CTV should be homogeneous and the region of convergence in-
cludes CTV. However, this can be difficult to prove theoretically
in a general case.

In this paper, in order to validate this assumption, the real case
of an U-shaped prostate tumor is considered (see Fig. 2). For
this case, the beam orientations have been intentionally chosen
so that the convergence of the beams overlaps OARs (rectum
and bladder). Figs. 3 and 4 show noncumulative histograms of
the dose on OARI1 (rectum) for two regions: boundary (left) and
internal (right). In Fig. 3, constraints are not applied. It can be
seen that the rectum receives high levels of dose, especially on
the boundary. When constraints are applied on the whole OAR1
volume [Fig. 4(top)] or only on the boundary [Fig. 4(bottom)]
the obtained histograms are very similar. In the second case
(constraints only on boundaries), there is an important reduction
in the number of constraints, and so in the computer execution
times. The final quality of the results is so comparable (o the
case when constraints are imposed to the whole OAR, although
the limits of the dose can be slightly exceeded at a few internal
voxels.

B. Reduction of Voxels

The proposed beam tracing system automatically adjusts
the aperture of the beams to the size of the tumor, even when
the volume containing the tumor is very large. Because of this
adjustment a significant reduction in the number of beamlet
weights or variables can be made.

This fact is reflected on the value of matrix F'. The ith row
of matrix F determines the contribution dose of the beamlet
weights on the ith voxel

F(i.j)=fi i=1....mj=1,...n  (26)

If there is a row 7 whose elements are null (FN: Null row),
it is obvious that the #th voxel will not be irradiated, so we can
remove that row from the matrix and assign a null value to the

ith voxel without modifying the results

i€FN& (fij=0,Vjj=1,....,n)= Dy =0. (27)

Likewise, a column 7 whose elements are all nulls (CN: Null
column), shows that the jth weight does not contribute to the

Fig. 2. Example for discussing the case where the region of convergence of the
beams overlaps OAR’s.

radiation of the volume, so the jth column can be removed and
a null value can be assigned to the jth weight

JECN & (fij=0,Yi~i=1,...,m)=w; =0. (28)

The reduced matrix I obtained is
F=F(i¢FN,j¢CN).

C. Reduction of Weights

The aim of the radiation therapy is to irradiate the tumor,
sparing the healthy tissue. For this reason, if there is a column
J on the F matrix whose elements do not provide any radiation
to the voxels of the tumor (CTV), this column may be removed
and a null value is assigned to the corresponding weight. The
physical meaning of that is that any positive value of the jth
weight could distribute radiation on healthy tissues and not on
the tumor. Taking this fact into account leads to a reduction in
the number of variables or beamlet weights. Mathematically

i€FNerv € (fij =0, Vj-j ¢ CNery)
j €CNerv < (fi; =0, Vioi € Tery) (29)
F = I”(’.-‘: ¢ l“NCT\.-',_',i ¢ CNCT‘\;)'H}'J; = 0} (S CNQT\! and
D,; = 0¢ € FNepv where Ty is the set of indexes of the
voxels belonging to the CTV.

The matrix F' shows an example where in the jth column, al-
though not all the elements are nulls, the elements correspondent
to the CTV are nulls, so the jth weight does not matter, it does

[ /1 Jig-n 0
: : 0
o | Jin o JiG-n 0
0 0 0
_erl er(j—l) er_j

Javn; 00

f ln 1
. voxels € CTV

f-m

voxels ¢ CTV

J‘Hl” -
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Fig. 3. Noncumulative dose histograms when constraints are not applied.
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not provide radiation to the CTV, see equation at the bottom of
the previous page.

Therefore, we could assign a null value to the jth weight and
remove the jth column from the matrix £,

D. Reduction of Weights and Voxels

It consists of the application of the reduction of weights and
the reduction of voxels in a sequential way. By removing the
jth column due to the reduction of weights, the (¢ + 1)th row
would have its elements nulls and could be eliminated from the
matrix in application of the preceding dimensional reduction of
voxels, see the equation at the bottom of the page.

IV. RESULTS

The proposed techniques and algorithms have been applied
to a case of study, consisting of the IMRT planning for a real
prostate tumor, The considered region is composed by prostate
(CTV), rectum (OARI), bladder (OAR2), and unspecified
healthy tissue (UT).

As it has been previously said, the number of imposed
constraints has a great impact on the cost of the optimization
problem. Table I shows numbers of constraints when the pro-
posed reduction techniques are applied to the case of study.
Two cases are considered regarding the discretization of the

100

L A R e MR 70 ) LN I S Y R T IR

10

20 30 40

Dose (Gy)

beams: beamlets of size (10 x 10) mm? and (10 x 5) mm?.
Next, the meaning of the columns of Table I is explained.

* n is the number of beamlet weights. Obviously, it is also
the number of constraints to be imposed because of their
nonnegativity.

« 7 is the whole number of voxels in the GG objective func-
tion.

¢ Noari and Noare are, respectively, the whole number
of considered voxels of rectum and bladder. When restric-
tions on the dose are applied only on OARs, the number of
constraints due to this fact are Noars = Noari +Noara.

* m, is the whole number of constraints (nonnegativity +
dosage constraints).

* MOARIB. MOAR2B> MOARsB, and m.p have the same
meaning that the variables described previously. The dif-
ference is that, for this new case, only boundary voxels for
OARs are taken into account for the constraints due to dose
restrictions.

Note that the value of all these variables can generally change
depending on the reductions explained in Sections III-B and
I1I-D.

The most significant values in Table I are these of variables
m. and m.p, because they correspond to the number of con-
straints and, so, they have an important influence on the com-
putational cost. For discussing the results, the case of beam-
lets of size (10 x 10) mm? can be taken as a reference. For
this case, when none of the reduction techniques proposed in

if‘ f'-ff-'-) U fl"i S Jﬁu 1 " ﬁn] |fi. f[s_:-:: ﬂul
Piobd 0 e i voxels € CTV - e PP L E
_ifn o S 00 j:n| ‘_'j:, S L __!f:-: o fon f:ﬂ;
!fml fm,r ! fw h f;mjl 'if*"' -fuu'—l} h fm] l,fql .l;n{j--ll . jamt
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Fig. 4. Noncumulative dose histograms when constraints are applied to the whole volume or only to the boundary region.

the paper are used, 8469 constraints have to be applied. When
only boundary voxels from OARs are considered for dosage re-
strictions, the whole number of constraints decreases to 3013.
As noted in Section III-A, when constraints are applied only
on boundaries, the limits can occasionally be exceeded at in-
ternal voxels. But, with the rest of the proposed reduction tech-
niques (Sections III-B-D), and keeping all the OAR voxels for
the dosage constraints, the original 8469 can still be reduced to
961. If all the reduction strategies are applied simultaneously
(constraints only at boundary voxels or Sections III-A-D) the
number of constraints is further reduced down to 467. From the

previous discussion and, in general, from a visual inspection of
the results in Table 1, it can be argued that with proposed reduc-
tion methods the number of constraints to be applied decreases
significantly.

In order to quantify the influence of the reduction of the
number of constraints in computation times, results are shown
in Table II. Computation times refer to a computer with Pentium
IV processor running at 2.4 GHz and with RAM of 1 GB. The
optimization algorithms were implemented in Matlab 5.3. It is
reminded that two optimization algorithms (Lemke and Rosen,
Sections II-B, C) had been chosen. All the computation times in
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TABLE I
NUMBER OF CONSTRAINTS IN THE CASE OF STUDY

Cell size Reduction Noari Noar2 Moarie Moarze  MoARsE

None 266 | 39744 | 2323 | 5880 | 8203 | 8469 | 982 | 1765 | 2747 | 3013

(10x10) mm’ Voxels 266 | 23578 | 1155 | 946 | 2101 | 2367 | 455 | 537 | 992 | 1258
Weights and

Voxels 126 | 17483 | 835 0 835 | 961 341 0 341 467

None 671 | 39744 | 2323 | 5880 | 8203 | 8874 982 1765 | 2747 | 3418

(10x5) mm’ Voxels 671 | 20416 | 943 | 230 | 1173 | 1844 | 377 | 230 | 607 | 1278
Weights and

gl 382 | 16021 | 786 0 786 | 1168 | 324 0 324 706

TABLE Il

COMPUTATION TIMES WITH THE PROPOSED REDUCTION STRATEGIES

Dose Reduction of Constraints
limitations in voxels and on the (10x10) mm2 (10x5) mm2

OARs weights boundary
[]ves [Jves

3 sec 25 sec

[“INo No
[es [/] Yes
No CINo 3sec 25 sec
[/] Yes []ves []ves
Cno No No Up to 10 hours | Up to 25 hours
[]ves [ves [/] Yes
Cno No CIno 4 hours Up to 10 hours
'l'es Yes DYES
DND DNO ND 3 min 11 min
[/] Yes [“]Yes [/]Yes
o o o 40 sec 3 min

Table II refer to Lemke algorithm. As expected, comparing in
this table values from rows 1 and 2 with respect to the values of
the third row, it is confirmed that it is the use of constraints what
makes the optimization problem time costly. This justifies the
focus of this paper on reducing the number of constraints. The
last three rows must be compared to the third one in order to
study the improvement in computation times with the proposed
strategies. Taking as a reference the case of (10 x 10) mm?
cells of radiation, it is seen that, combining all the strategies,
execution times in the order of 10 h are reduced down to 40
s. Computation times with Rosen Algorithm are not shown
because they were always longer. For instance, the mentioned
40-s case took 140 s with Rosen’s Algorithm. Moreover, it has
to be said that the times shown in the table are only optimization
times (the time needed to compute matrix F is not included).
Finally, it is important to check that, with all the reductions
considered, the obtained results can still match clinical specifi-
cations such as dose-volume histograms (DVH). Fig. 5 shows
the obtained DVH for a prostate tumor in several cases. For all
the cases the dose prescribed to the prostate (CTV) is 60 Gy.
Depending on the case, the upper bound limit on the dose for
the rectum (OAR1) is 10 Gy (16,6%), 20 Gy (33,3%), and 30

Gy (50%). The bladder is not considered because for this par-
ticular case it receives a very little amount of radiation. It can
be seen again that the imposed upper dose limits can be excep-
tionally exceeded, as a consequence of the reduction technique
from Section III-A (constraints only on boundaries).

Until now, the general idea of this paper regarding the con-
strained optimization problem has been to put constraints (upper
bounds) only on OARs (on the boundary or the whole volume).
However, the ideas and the mathematical formulation are gen-
eral and other situations could be envisaged. As an example, it
is possible to constrain only with lower limit on CTV instead of
upper limits on OARs. Fig. 6 shows a case where constraints
have been applied only on the boundary of CTV for a dose
higher than 60 Gy. It is observed that 100% of the CTV reaches
90% of its prescribed dose, and 60% is above 100%. Not all
the voxels of the CTV exceed 60 Gy because the conditions are
only applied on the boundary area of the CTV, however the re-
sults are satisfying.

V. CONCLUSION

The main focus of this paper has been to propose techniques
for reducing the computational requirements (memory and



ARTACHO TERRER et al.: FEASIBLE APPLICATION OF CONSTRAINED OPTIMIZATION IN THE IMRT SYSTEM 9

Fig. 6. DVH for lower bound on the boundary area of CTV.

time) for solving the constrained optimization problem which
arises in the IMRT planning. The constrained optimization
problem has been cast in a QP context and two particular
algorithms (Lemke and Rosen) have been explored. The cost of
these algorithms depends strongly on the number of imposed
constraints. In this paper, several strategies have been proposed
in order to decrease this number. Broadly, two main ideas are
behind these reductions. First, because of physical consider-
ations, the number of variables in the optimization problem
(weights and voxels) can be reduced without any decrease in
the quality of the results. Second, imposing constraints only
on voxels on boundaries reduces greatly the cost with a little
decrease in the obtained performances. The effectiveness of the
proposed strategies has been studied taking into account the
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value of several important parameters (number of constraints,
execution times, DVHs) in real cases of prostate cancer.
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