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Novel FxLMS convergence condition with
deterministic reference
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Abstract— A novel analysis of FxLMS convergence when the
reference signal is deterministic is presented in this paper. The
simple case of a sinusoidal reference is considered first, to be
later extended to any combination of multiple sinusoids. In both
cases we derive an upper bound for the algorithm step size which
ensures convergence. In the derivation of this result there is no
need of any of the usual approximations, such as independence
between reference and weights or slow convergence, which are
not suitable for deterministic references. Instead, we consider
the common cases where the adaptive system shows linear time-
invariant behavior. The upper bound obtained for the step size
is in good agreement with empirical measurements.

Index Terms— Acoustic noise, active noise control, adaptive
control, adaptive filters, adaptive signal processing, feedforward
systems, least mean square methods, vibration control.

I. INTRODUCTION

PERIODIC and deterministic noises are very often the sub-
ject of cancellation in active noise and vibration control

applications. This is due to two reasons: these disturbances are
the most annoying and it is usually easier to find a good refer-
ence signal to cancel them. However, the adaptive algorithms
generally employed in these situations were originally derived
considering stochastic signals. This is the case of the filtered
reference LMS or FxLMS algorithm [1], [2], which is the
most widely used in this context. Therefore, when using this
algorithm with deterministic inputs, some behaviors arise that
stochastic-based convergence analyses [3], [4] cannot predict.
In the case of the LMS algorithm, these behaviors are known
as non-Wiener effects [5]–[7].

Moreover, FxLMS convergence analyses with stochastic
reference are always based on some assumptions, such as
slow convergence or independence between reference signal
and filter weights [8]. However, when the reference signal is
deterministic, such assumptions are questionable. Specifically,
the independence assumption is no longer applicable, whereas
the slow convergence assumption compromises the main result
we are looking for, that is, a strict upper bound for the
adaptation step size to ensure convergence.

In this paper we present a novel convergence analysis for the
FxLMS algorithm when the reference signal is deterministic.
This analysis is similar to the one made by Glover for the
LMS algorithm [5]. It is based on studying the common
cases where the adaptive system can be considered to be
linear and time-invariant, and applying root locus theory to
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Figure 1: Block diagram of FxLMS algorithm.

the system transfer function. Thus, without need of the usual
stochastic assumptions, this analysis leads to a reliable bound
for the greatest adaptation step size rendering convergence
of the FxLMS algorithm with deterministic input. In Section
II the simple case of a sinusoidal reference is considered
first. Portions of the work introduced in this section were
presented in [9]. The results obtained are contrasted with
previous analyses and are in good agreement with empirical
measurements. The analysis is then extended to simultaneous
cancellation of several frequencies: Section III considers the
case of multiple sinusoidal references, and Section IV deals
with the generic sum of sinusoids as a reference signal.
Obviously, this last case comprises any periodic noise as
reference, considering Fourier series representation.

II. SINUSOIDAL REFERENCE

The FxLMS algorithm is shown as a block diagram in
Fig. 1. In active noise and vibration control, S(z) represents
the so-called secondary path, which accounts for the transducer
response, the A/D and D/A converters, and the acoustical
or structural propagation. Ŝ(z) is a model of the secondary
path transfer function. The FxLMS algorithm is given by the
following set of equations:

y[n] = w
T [n]x[n], (1a)

ys[n] = s[n] ∗ y[n], (1b)
e[n] = d[n] + ys[n], (1c)

x
′[n] = ŝ[n] ∗ x[n], (1d)

w[n + 1] = w[n] − µe[n]x′[n], (1e)

where boldface characters represent column vectors.
When the reference signal is sinusoidal, each element of the

0000–0000/00$00.00 c© 2005 IEEE

Accepted for publication on IEEE Transactions on Signal Processing



2

G(z)

y0[n]

S(z)

yL−1[n]

y[n]d[n] ys[n]e[n] µ

x′

k
[n]
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Figure 2: Signal flow diagram for FxLMS algorithm with sinusoidal reference.

reference vector x[n] admits the following general expression,

xk[n] = C cos(ω0n + θk)

=
C

2

(
ejω0nejθk + e−jω0ne−jθk

)
, (2)

where k = 0, . . . , L − 1, and L is the total number of filter
weights. The FxLMS signal flow diagram, according to (1),
is shown in detail for one of these elements xk[n] in Fig. 2.
From this diagram, it is possible to obtain the z-transform of
the canceling signal or secondary noise, Ys(z), as a function
of the z-transform of the adaptation error signal or residual
noise, E(z). Thus, we can find the open-loop input-output
transformation for the feedback system shown in Fig. 2.

This result has already been obtained by Elliott and Nelson
[10], [11] for the case of a synchronously sampled sinusoid,
that is, ω0 = iπ/L, with integer i. However, we include
here the detailed derivation of the single-sinusoid input-output
transformation in order to facilitate the more complex deriva-
tions of the subsequent multiple-sinusoid cases.

A. Open-loop input-output transformation

Considering (2) and the exponential multiplication property
of the z-transform, the kth weight of the adaptive filter can be
expressed in the transform domain as

Wk(z) =
C

2
µ

[
Ŝ(ejω0)ejθkE(ze−jω0)

+ Ŝ(e−jω0)e−jθkE(zejω0)
]
U(z), (3)

where

U(z) =
−1

z − 1
(4)

is the transfer function of the inner dashed block in Fig. 2. The
contribution of this kth weight to the adaptive filter output is

given by

Yk(z) =
C

2

[
ejθkWk(ze−jω0) + e−jθkWk(zejω0)

]

=
C2

4
µ

[
Ŝ(e−jω0)U(ze−jω0)E(z)

+ Ŝ(ejω0)U(zejω0)E(z)

+ Ŝ(ejω0)ej2θkU(ze−jω0)E(ze−j2ω0)

+ Ŝ(e−jω0)e−j2θkU(zejω0)E(zej2ω0)
]
. (5)

Combining all of the Yk(z) components we get the control
signal output of the adaptive filter, Y (z). Eventually, the
secondary noise signal is obtained as filtering Y (z) by the
secondary path,

Ys(z) = S(z)Y (z) = S(z)
L−1∑

k=0

Yk(z). (6)

Substituting for Yk(z) and rearranging yields the open-loop
input-output transformation we were searching for,

Ys(z) =
C2

4
µL

[
Ŝ(e−jω0)U(ze−jω0)

+ Ŝ(ejω0)U(zejω0)
]
S(z)E(z)

+
C2

4
µ

[
Ŝ(ejω0)U(ze−jω0)E(ze−j2ω0)

L−1∑

k=0

ej2θk

+ Ŝ(e−jω0)U(zejω0)E(zej2ω0)
L−1∑

k=0

e−j2θk

]
S(z). (7)

The first two terms in (7) represent the time-invariant part
of the response from E(z) to Ys(z), since they fulfill the
convolution theorem, and, so, only frequencies of E(z) appear
at the output. On the contrary, the last two terms in (7) are
time-varying, since they introduce unwanted frequency shifted
components of E(z) at the output Ys(z).

Next, we comment on two special cases of sinusoidal refer-
ence, which are also very common and with great relevance.
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1) In-phase and quadrature (I/Q) sinusoidal components. In
this case, there are only two sinusoidal components in
the reference vector, with a phase shift between them of
π/2 rad:

x[n] =

(
x0[n]
x1[n]

)
=

(
C cos(ω0n + θ)
C sin(ω0n + θ)

)
. (8)

So, the filter length is L = 2, with θ0 = θ and θ1 =
θ−π/2, yielding

∑L−1
k=0 e±j2θk = 0. Thus, in this case,

the time-varying terms in (7) are exactly zero.
2) Transversal filter. When a tapped-delay line is used with

a sinusoidal reference input, the initial phase of each
component of the reference vector is given by θk =
θ − ω0k, and so

L−1∑

k=0

e±j2θk = e±j[2θ−ω0(L−1)] sin(ω0L)

sin(ω0)
. (9)

In this case, when the frequency of the sinusoid is
ω0 = iπ/L, with integer i, (9) is exactly zero and,
consequently, so again are the time-varying terms in (7).
In addition, for any frequency ω0, when the number of
filter weights of the transversal filter L is sufficiently
high, (9) approaches zero, and the time-varying terms
in (7) may be considered negligible, even though not
being exactly zero.

In the previous cases, and in any other case where the time-
varying terms in (7) are zero or negligible, the response from
E(z) to Ys(z) is linear and time-invariant (LTI). Therefore,
we can define the following open-loop transfer function,

G(z) =
Ys(z)

E(z)
= −

C2

4
µL

[
Ŝ(e−jω0)

ze−jω0 − 1
+

Ŝ(ejω0)

zejω0 − 1

]
S(z).

(10)
The secondary path model is regularly a real system, and
thus its frequency response is conjugate-symmetric, Ŝ(ejω) =
Ŝ∗(e−jω). Taking this into account, the open-loop transfer
function can be expressed [10] [1, p. 126] as follows ,

G(z) = −
C2

2
µL

∣∣∣Ŝω0

∣∣∣
[
cos(ω0 − φω0

)z − cos(φω0
)

z2 − 2 cos(ω0)z + 1

]
S(z),

(11)
where |Ŝω0

| = |Ŝ(ejω0)| and φω0
= ∠Ŝ(ejω0).

B. Root locus analysis of the closed-loop transfer function

The closed-loop transfer function, from the primary noise
D(z) to the residual noise E(z), is easily obtained from G(z),

H(z) =
E(z)

D(z)
=

1

1 − G(z)
. (12)

Therefore, in the special but very common cases where the
adaptive system exhibits LTI behavior, the upper bound for
the step size to ensure convergence can be obtained analyzing
the stability of this transfer function, H(z), without needing
any questionable assumption.

The analysis of the most general case, with any secondary
path S(z) and any model Ŝ(z), is so difficult that it is almost
impossible to extract any global conclusion. Therefore, in the
following, we consider the simple case where the secondary

path is composed of a pure delay1 and a gain factor, that is,
S(z) = Az−∆. We also consider perfect modeling of this
secondary path, Ŝ(z) = S(z). In this case, the open-loop
transfer function, from (11), is given by

G(z) = −Px′Lµ
cos[ω0(∆ + 1)]z − cos(ω0∆)

z∆[z2 − 2 cos(ω0)z + 1]
, (13)

where Px′ = C2A2/2 is the power of the filtered reference
signal, x′[n]. This function can be expressed as

G(z) = −µ̃
N(z)

D(z)
(14)

where the gain factor

µ̃ = Px′Lµ (15)

is the normalized step size, and N(z) = cos [ω0(∆ + 1)] z −
cos(ω0∆) and D(z) = z∆

[
z2 − 2 cos(ω0)z + 1

]
are polyno-

mials in z. So, from (12), the closed-loop transfer function
is

H(z) =
D(z)

D(z) + µ̃N(z)
. (16)

From (16), it is clear that the poles of G(z) are simultaneously
zeros of H(z). So, the adaptive system with sinusoidal refer-
ence behaves as a notch filter at the frequency of the reference,
since e±jω0 are the poles of G(z) and so, zeros of H(z). On
the other hand, the poles of H(z) are the ∆ + 2 roots of the
characteristic equation

D(zp) + µ̃N(zp) = 0. (17)

As long as the modulus of all of these roots is less than unity,
|zp| < 1, the adaptive system will be stable, that is to say, will
converge. Thus, root locus analysis [12] of the characteristic
equation (17) makes it possible to obtain the values for the
normalized step size µ̃ = Px′Lµ that ensures stability of the
system.

The following conclusions are extracted from this analysis:
• When µ̃ = 0, two of the roots from (17) are zp = e±jω0 ,

that is, they are on the unit circle, and all of the others are
zp = 0. In this trivial case, without adaptation, H(z) = 1.

• With negative µ̃, at least the two roots that were lying on
the unit circle go outside, turning the system unstable, as
could be expected.

• With positive and sufficiently small µ̃, all of the ∆ +
2 roots are inside the unit circle, and so, the system is
stable. An example of root loci is shown in Fig. 3 for
ω0 = π/4 and ∆ = 5, when the normalized step size µ̃
varies from 0 to 1. The arrows indicate the direction of
increasing values for µ̃.

• There is an upper bound for the normalized step size µ̃,
depending on both the frequency of the reference, ω0, and
the secondary path delay, ∆. When µ̃ > µ̃max(ω0,∆),
there is at least one root outside the unit circle, which
again turns the system unstable. In the example shown in
Fig. 3, µ̃max(π/4, 5) = 0.45. For this reason, some of the

1When the secondary path is just a pure delay, the FxLMS algorithm is
equivalent to the simpler delayed LMS or DLMS.
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Figure 3: Root loci for ω0 = π/4 and ∆ = 5, for 0 ≤ µ̃ ≤ 1.

branches in the root loci go across the unit circle, since
the normalized step size µ̃ varies from 0 to 1.

Therefore, the convergence condition for the adaptive system
is always 0 < µ̃ < µ̃max(ω0,∆). Fig. 4 displays the stability
upper bound for the normalized step size µ̃ as a function of
frequency for some particular values of the secondary path
delay.

Even though there seems to be a clear pattern in the curves
of µ̃max(ω0,∆), it is not simple at all to obtain a closed-
form analytical expression. In any case, the frequency of the
reference may be unknown before turning on the adaptive
system or could be varying. For this reason, it seems useful to
obtain an upper bound for the normalized step size to ensure
convergence for every possible frequency. It can be seen in
Fig. 4 that for a given delay ∆ in the secondary path, the
minimum value of the upper bound µ̃max, ensuring stability for
every frequency ω0 in the reference, is reached when ω0 → 0
or ω0 → π. In the first case, when ω0 → 0 , system stability
is lost because one of the poles of H(z) goes across the unit
circle through zp = 1. When ω0 → π, the crossing point is
zp = −1. The upper bound for µ̃ may be obtained from (17)
considering that ω0 → 0 and zp = 1, or alternatively, when
ω0 → π and zp = −1. Thus, we get

µ̃max(∆) = lim
ω0→0

−
D(1)

N(1)

= lim
ω0→π

−
D(−1)

N(−1)

=
2

2∆ + 1
. (18)

Since µ̃ = Px′Lµ, the convergence condition for the step size,
without normalization, as a function of secondary path delay,
but ensuring convergence for every frequency, is eventually
given by

0 < µ <
2

Px′L(2∆ + 1)
. (19)

C. Comparison with previous analyses
In the case of a white reference signal, the valid range

usually considered for the step size is [2], [13]

0 < µ <
2

Px′(L + ∆)
. (20)

Comparing (19) and (20), we note that the convergence condi-
tion in the sinusoidal reference case is much more restrictive
than in the white reference case. With a sinusoidal reference,
the upper bound for the step size is inversely proportional to
the product of the length of the filter and the delay in the
secondary path, whereas with a white reference signal we get
only the sum of these parameters, instead of their product.

In [3], Bjarnason analyzes FxLMS convergence with a
sinusoidal reference, but employs the habitual assumptions
made with stochastic signals, that is, independence theory. The
stability condition derived in that analysis is as follows,

0 < µ <
2

Px′L
sin

(
π

2(2∆ + 1)

)
. (21)

In the event of large delay ∆ in the secondary path, (21)
simplifies to

0 < µ <
π

Px′L(2∆ + 1)
. (22)

The similarity between this last convergence condition and the
one we have just derived in (19) is evident. Nevertheless, it
has to be pointed out that our analysis is exact, at least for
all the cases where the time-varying terms of the open-loop
response in (7) are negligible compared to the time-invariant
terms.

It is also interesting to note that the stability range (19) is
also valid for the LMS algorithm, since it can be seen as a
particular case of the FxLMS algorithm with ∆ = 0. Thus,
the upper bound for the LMS from (19) is exactly the same
as already obtained by Glover [5].

Some authors have considered DLMS convergence with a
sinusoidal reference, but only for the particular case where
ω0 = π/2. According to Elliott, Stothers, and Nelson [11, eq.
(29)], the optimum step size for a filter with two coefficients
and Px = 1/2 is µo ≈ 1/(1.35∆). For these authors, the
optimum step size is the greatest value for µ without oscil-
latory behavior in the learning curve, which will obviously
be lower than the stability upper bound. Also, Morgan and
Sandford [14] establish a stability upper bound for the step
size, µ . π/∆, for the same situation, L = 2 and Px = 1/2.

In order to facilitate comparison with these results, we
consider next in our analysis the stability when the reference
frequency is ω0 = π/2. Again applying root locus theory to the
characteristic equation (17), it can be shown that the maximum
value for the normalized step size µ̃ yielding a stable adaptive
system is

µ̃max|ω0=
π

2

= 2 sin

[
π

2 (2 b∆/2c + 1)

]
, (23)

where bac (“floor”) stands for the rounding function returning
the greatest integer less than or equal to a. For large delay ∆,
we can approximate this as

µ̃max|ω0=
π

2

≈
π

∆
. (24)
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Figure 4: Upper bound for the normalized step size µ̃ = Px′Lµ as a function of the reference frequency ω0, for several values
of secondary path delay. (a) ∆ = 1, (b) ∆ = 5, (c) ∆ = 10, (d) ∆ = 25.

Therefore, when ω0 = π/2, the stability bound for the step
size, without normalization, is

µmax|ω0=
π

2

=
2

Px′L
sin

[
π

2 (2 b∆/2c + 1)

]
≈

π

Px′L∆
.

(25)
Considering the particular case where L = 2 and Px′ = 1/2,
we see that the upper bound in (25) is in close agreement with
the ones already commented on from previous analyses [11],
[14] for sinusoidal references with frequency ω0 = π/2.

The convergence condition (19) could be seen as rather
conservative, due to the fact of being valid for every frequency.
In fact, inspecting the condition for the particular case of
ω0 = π/2, which is the mid-point in the curves in Fig. 4,
there is an approximate factor of π between both convergence
conditions, (19) and (25). However, we also see that in (25)
there is still a relation of inverse proportionality with the
product of the length of the filter L and the delay introduced
by the secondary path ∆.

In our analysis we have only considered the case of noise-
less sinusoidal references. Some authors have analyzed the
LMS algorithm with noisy sinusoidal reference [15], [16].
The main conclusion from these analyses is that the adaptive

system will no longer behave as a linear time-invariant system
due to the presence of noise in the reference. However, for
reasonable signal-to-noise ratios it seems that the effect of
this noise is insignificant.

D. Empirical validation

In order to check the validity of the upper bound for the
step size found in our analysis, several experiments have been
carried out. Fig. 5 shows some empirical results together
with the theoretical prediction obtained with root locus theory
and the LTI approximation. These results correspond to the
empirical upper bounds for the normalized step size when
transversal filters with L = 20 and L = 2 coefficients are
used. The different frequencies considered for the sinusoidal
reference are ω = iπ/50, with integer i ranging from 1 to 49.

When we consider the transversal filter with L = 20
coefficients, we can see that there is good agreement between
theoretical prediction and the empirical results. Of course, the
theoretical prediction is not exact, since it is based on the LTI
approximation. In fact, the approximation is exact only for
frequencies ω = iπ/50 with i being an integer multiple of
5. For these frequencies, we check that the empirical bound
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Figure 5: Upper bound for the normalized step size µ̃ = Px′Lµ as a function of the reference frequency ω0, for several values
of secondary path delay: theoretical prediction (solid), empirical results with L = 20 (circles) and L = 2 (asterisks), and
overall-frequency bound (dashed). (a) ∆ = 1, (b) ∆ = 5, (c) ∆ = 10, (d) ∆ = 25.

really lies on the theoretical curve. However, for the rest of the
frequencies, there is little difference between the theoretical
prediction and the empirical bound.

For the sake of comparison, we consider the case of
Fig. 5(d), with ∆ = 25 and L = 20. The upper bound we
have derived, that is, the minimum value of the theoretical
curve, is in this case µmax = 2/(Px′1020). If we make use
of the usual bound (20) derived for a white reference signal,
the upper bound would be µmax = 2/(Px′45), that is, more
than 22 times greater. Hence, the bound in (19) seems much
more appropriate, even though it may be considered a bit
conservative, as we have already commented.

When the transversal filter has only L = 2 coefficients, the
agreement between the empirical bounds and the theoretical
prediction is not so good. However, observe that this is the
worst case from the point of view of the LTI approximation,
since there is only one frequency, ω0 = π/2, for which we
can say that the adaptive system behaves as being LTI. At
all of the other frequencies, the time-varying terms in (7) are
not zero. This is the only reason for the differences found
between theoretical prediction and the empirical results. In

fact, if we consider the case of L = 2 filter weights but with
I/Q sinusoidal components (not shown in the graphics), where
the LTI approximation is valid for every frequency, the match
between predicted and empirical bounds is perfect.

Nevertheless, despite the differences caused by the ap-
plicability of the LTI approximation, as shown in Fig. 5,
the convergence condition (19) seems a really good one,
even in this worst case: the value of the minimum empirical
upper bound is, for every secondary delay, very close to the
theoretical one, although these minima do not really occur at
the same frequency.

III. MULTIPLE SINUSOIDAL REFERENCES

In this section, we consider the case of multiple reference
signals that are independently processed. That is to say, there
is an adaptive filter for each reference signal, and the outputs
of all of the filters are summed to form the control signal y[n].
Each of these reference signals is a sinusoid of frequency ωi.
We can think of using an in-phase and quadrature component
for each sinusoid or, alternatively, a transversal filter, with a
number of coefficients Li sufficiently high, to process each
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sinusoid. For both situations, the behavior of the open-loop
system for each frequency is assumed to be linear and time-
invariant, as discussed in the previous section. Therefore, we
can define the ith transfer function

Gi(z) = −Px′

i
Liµi

cos[ωi(∆ + 1)]z − cos(ωi∆)

z∆[z2 − 2 cos(ωi)z + 1]

= −µ̃i

Ni(z)

Di(z)
, (26)

where
µ̃i = Px′

i
Liµi, (27)

and Ni(z) and Di(z) are the polynomials in z from the
numerator and denominator, respectively. Due to the presence
of multiple reference signals, the global open-loop transfer
function is now the sum of all of these individual contributions,

G(z) =

Nref∑

i=1

Gi(z) = −

Nref∑

i=1

µ̃i

Ni(z)

Di(z)
, (28)

where Nref is the number of independent reference signals.
Using the relation (12) yields, also in this case, the closed-
loop transfer function,

H(z) =
1

1 +

Nref∑

i=1

µ̃i

Ni(z)

Di(z)

. (29)

Analyzing the stability of H(z), we can get an upper bound
for the algorithm step size. It should be pointed out that in
this case, we could use different step sizes, µi, for each of the
multiple-reference signals. However, it seems sensible that for
every reference signal, the maximum value for the normalized
step size µ̃i is the same. Thus, taking µ̃i,max = µ̃max makes
the analysis much simpler.

The maximum normalized step size µ̃max(∆), to en-
sure convergence for every possible set of sinusoidal ref-
erences, will be the real and positive minimum value
of −1/

∑Nref

i=1 Ni(e
jω)/Di(e

jω). For each of the terms
−Ni(e

jω)/Di(e
jω), the maximum positive and real value is

obtained when ω = 0 and ωi → 0, or alternatively, when
ω = π and ωi → π. Therefore, the worst case for the stability
of H(z) occurs also when one of the poles crosses the unit
circle through z = 1 when ωi → 0, or crosses through z = −1
when ωi → π. Thus, we eventually find the upper bound,

µ̃max(∆) = lim
ωi→0

−
1

Nref∑

i=1

Ni(1)

Di(1)

=
2

Nref(2∆ + 1)
. (30)

Therefore, stability is guaranteed for each of the reference
signals when

0 < µi <
2

NrefPx′

i
Li(2∆ + 1)

. (31)

Comparing this last result with the convergence condition
obtained for a single sinusoidal reference, (19), we note that
the maximum step size has been reduced by Nref , and the

only reason for this is having simultaneously several sinusoidal
signals as references.

IV. SINGLE MULTI-FREQUENCY REFERENCE

Our initial analysis for one sinusoidal reference can also be
easily extended to the case of a reference signal consisting of
the sum of several sinusoids [5]. Let Nsin be the total number
of sinusoids in the reference,

x[n] =

Nsin∑

i=1

Ci cos(ωin + θi). (32)

Now we consider only the case of a transversal filter. So, the
kth component of the reference signal vector is

xk[n] =

Nsin∑

i=1

Ci cos[ωi(n − k) + θi]. (33)

Proceeding in the same way as before for a single sinusoid,
we get the following expression for the secondary noise,

Ys(z) = −µL

Nsin∑

i=1

C2
i

2

∣∣∣Ŝ(ejωi)
∣∣∣ Qi(z)S(z)E(z)

+µ





Nsin∑

i=1

Nsin∑

j=1
j 6=i

CiCj

4

sin

(
ωi − ωj

2
L

)

sin

(
ωi − ωj

2

) [TV]

+

Nsin∑

i=1

Nsin∑

j=1

CiCj

4

sin

(
ωi + ωj

2
L

)

sin

(
ωi + ωj

2

) [TV]





S(z), (34)

where
Qi(z) =

cos(ωi − φωi
)z − cos(φωi

)

z2 − 2 cos(ωi)z + 1
, (35)

and φωi
= ∠Ŝ(ejωi). In (34), TV represents time-varying

frequency-shifted components of the error signal E(z). There-
fore, the first term in (34) is the time-invariant part of the
open-loop response and the last terms are the time-varying
part. For these last terms to be negligible when compared to
the time-invariant response, we must have

sin

(
ωi ± ωj

2
L

)

sin

(
ωi ± ωj

2

) � L. (36)

Consequently, the filter length required for achieving LTI
behavior from the adaptive system may be in this case quite
high. Specifically, large L will be required when some of the
frequencies of the different sinusoids are very close.

When we have LTI behavior and consider the simple sec-
ondary path S(z) = Az−∆, the open-loop transfer function
is

G(z) = −µLA2
Nsin∑

i=1

C2
i

2

cos[ωi(∆ + 1)]z − cos(ωi∆)

z∆[z2 − 2 cos(ωi)z + 1]
. (37)

So, in this case we find the same open-loop transfer function as
that of the multiple sinusoidal references (28). Nevertheless,
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in this situation the step size µ and the filter length L are
unique, since there is just one reference signal.

The worst case from the viewpoint of stability is again a
pole of the closed-loop transfer function going out of the unit
circle through z = 1 when ωi → 0. Thus, convergence of the
adaptive system is now guaranteed as long as

0 < µ <
2

L(2∆ + 1)A2

Nsin∑

i=1

C2
i /2

=
2

Px′L(2∆ + 1)
. (38)

Comparing (38) with (19), we see that when the reference
signal is a generic sum of sinusoids, the sinusoidal stability
upper bound is still valid.

V. CONCLUSIONS

The FxLMS convergence analysis presented in this paper
has obtained a strict upper bound on the algorithm step size
when the reference signal is deterministic. Several cases have
been considered in detail: single sinusoidal reference, multiple
sinusoidal references, and single multi-frequency reference.
The analysis is founded on considering the cases where,
with a deterministic reference, the adaptive system global
behavior is linear and time-invariant. Applying root locus
theory to the transfer function of the LTI adaptive system,
the maximum value of the algorithm step size for which the
system is stable is determined. Thus, the usual assumptions of
stochastic convergence analyses have been avoided, such as
independence between filter weights and reference signal or
slow convergence.

The upper bound obtained for deterministic references is
clearly much more restrictive than the one generally consid-
ered for stochastic wideband references. With a white refer-
ence, the maximum stable step size is inversely proportional
to the sum of the length of the filter and the delay in the
secondary path. However, when the reference is deterministic,
the upper bound is inversely proportional to the product of
these two parameters. Hence, this new upper bound is more
accurate and should be the one considered whenever the
reference is deterministic, since the stochastic reference bound
would easily lead to divergence.

The convergence condition derived for a deterministic refer-
ence is also in good agreement with special cases of previous
analyses. Furthermore, empirical observations clearly support
the theoretical results, even though the LTI approximation is
not always strictly applicable.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments, which undoubtedly served to
improve this paper.

REFERENCES

[1] S. M. Kuo and D. R. Morgan, Active Noise Control Systems: Algorithms
and DSP Implementations. New York: Wiley, 1996.

[2] S. J. Elliott, Signal Processing for Active Control. London: Academic
Press, 2001.

[3] E. Bjarnason, “Analysis of the filtered-x LMS algorithm,” IEEE Trans.
Speech Audio Processing, vol. 3, no. 6, pp. 504–514, Nov. 1995.

[4] S. M. Kuo, M. Tahernezhadi, and W. Hao, “Convergence analysis of
narrow-band active noise control system,” IEEE Trans. Circuits Syst. II,
vol. 46, no. 2, pp. 220–223, Feb. 1999.

[5] J. R. Glover, Jr., “Adaptive noise canceling applied to sinusoidal interfer-
ences,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 25, no. 6,
pp. 484–491, Dec. 1977.

[6] B. Widrow, K. M. Duvall, R. P. Gooch, and W. C. Newman, “Signal
cancellation phenomena in adaptive antennas: Causes and cures,” IEEE
Trans. Antennas Propagat., vol. 30, no. 3, pp. 469–478, May 1982.

[7] N. J. Bershad and P. L. Feintuch, “Non-Wiener solutions for the LMS
algorithm - a time domain approach,” IEEE Trans. Signal Processing,
vol. 43, no. 5, pp. 1273–1275, May 1995.

[8] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ:
Prentice Hall, 2002.

[9] L. Vicente and E. Masgrau, “Analysis of LMS algorithm with delayed
coefficient adaptation for sinusoidal reference,” in Proc. EUSIPCO,
2002, vol. I, pp. 360–363.

[10] S. J. Elliott and P. A. Nelson, “The application of adaptive filtering to
the active control of sound and vibration,” ISVR, Tech. Rep. 136, Sept.
1985.

[11] S. J. Elliott, I. M. Stothers, and P. A. Nelson, “A multiple error
LMS algorithm and its application to the active control of sound and
vibration,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 35,
no. 10, pp. 1423–1434, Oct. 1987.

[12] B. C. Kuo, Automatic control systems. Englewood Cliffs, NJ: Prentice-
Hall, 1962.

[13] S. J. Elliott and P. A. Nelson, “Multiple-point equalization in a room
using adaptive digital filters,” J. Audio Eng. Soc., vol. 37, no. 11, pp.
899–907, Nov. 1989.

[14] D. R. Morgan and C. Sanford, “A control theory approach to the stability
and transient analysis of the filtered-x LMS adaptive notch filter,” IEEE
Trans. Signal Processing, vol. 40, no. 9, pp. 2341–2346, Sept. 1992.

[15] M. J. Shensa, “Non-Wiener solutions of the adaptive noise canceller
with a noisy reference,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 28, no. 4, pp. 468–472, Aug. 1980.

[16] N. J. Bershad and J. C. M. Bermudez, “Sinusoidal interference rejection
analysis of an LMS adaptive feedforward controller with a noisy periodic
reference,” IEEE Trans. Signal Processing, vol. 46, no. 5, pp. 1298–
1313, May 1998.

Luis Vicente (M’05) was born in Zaragoza, Spain,
in 1972. He received the M.Eng. and Ph.D. degrees
in Telecommunication Engineering from the Engi-
neering Faculty, University of Zaragoza, Spain, in
1996 and 2005, respectively.

He is an Assistant Professor of Signal Processing
and Communications in the Department of Elec-
tronics Engineering and Communications at the En-
gineering Faculty, and Researcher of the Aragon
Institute for Engineering Research (I3A), both of the
University of Zaragoza, Spain. His current research

interests are in the field of adaptive signal processing, in particular, applied
to active noise and vibration control, and vehicular technologies.

Enrique Masgrau (M’84) received the M.S. and
Ph.D. degrees in electrical engineering from the
Polytechnic University of Catalonia (UPC), Spain,
in 1978 and 1983, respectively.

He was an Assistant Professor (1978 to 1992) at
UPC. He joined the University of Zaragoza, Spain,
in 1992, as a Full Professor with the Department
of Electronic Engineering and Communications. He
is also a Member of the Aragon Institute of Engi-
neering Research (I3A) where he is Manager of the
Communications Technologies Group. His research

interests include speech processing, acoustic noise cancellation, MIMO com-
munication techniques, and ICT applications in automotive (“telematics”). In
these areas, he has published over 100 technical papers in various international
journals and conferences. He has also been serving as Reviewer of several
international conferences and journals. He holds three international patents.


