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Abstract

The significance of the surface states in isolated AlxGa1�xN/GaN heterostructures is investigated. A model based on a self-con-

sistent solution of the Schrödinger, Poisson and charge balance equations is presented. The singular value decomposition is used to

calculate the eigenstates of the real non-symmetric matrix which is obtained when a non-uniform mesh is used. The discontinuity of

the spontaneous and piezoelectric polarization at the interface is taken into account. The results obtained for the 2DEG density and

the surface potential agree well with theoretical and experimental data already published.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Two dimensional electron gas (2DEG) concentrations

higher than 1013 cm�2 have been calculated and

measured in heterostructures based on the AlGaN/GaN

system [1–5]. This fact along with the good electron trans-
port properties and good thermal conductivity of GaN,

has resulted in the application of such heterostructure

to the development of the electronics for high tempera-

ture and high power at microwave frequencies [6–8]. In

the references mentioned above, the source of the

2DEG was supposed to be the donor doping (intentional

or not) in the AlGaN layer or the donor surface states

created at the AlGaN edge opposite the heterostructure.
In this article, the analyzed structure is assumed to be

an AlxGa1�xN layer pseudomorphically grown on a

thick GaN buffer, at thermal equilibrium. The signifi-
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cance of the donor surface states is theoretically studied

using a charge control model based on the self-consistent

solution of the Schrödinger, Poisson and charge balance

equations. A non-uniform mesh is used to discretize the

equations and the singular value decomposition is used

to calculate the eigenstates of the real non-symmetric
matrix obtained. In Appendix A, a simple method to ob-

tain an initial approximate solution of these equations is

described. The calculated 2DEG density and surface po-

tential are compared with simulated and experimental re-

sults recently published. Finally, Appendix B describes a

method to estimate the minimum barrier width necessary

to get a 2DEG density minimum [9]. This method is

based on the equations of Appendix A.
2. Mathematical model

In the effective mass approximation, assuming the z

axis to be along the [0001] direction and without
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considering the coupling between the electron motions

along and perpendicular to the z axis, due to the posi-

tion dependent effective mass m(z); the Schrödinger

equation for the conduction band becomes [10]

� �h2

2

d

dz
1

mðzÞ
dvnðzÞ
dz

� �
þ ECðzÞ � vnðzÞ ¼ en � vnðzÞ ð1Þ

where EC(z) = Ecr � qw(z) + DEC(z) + qVxc(z) is the

band conduction energy, Ecr is a reference constant,

DEC(z) is the conduction band discontinuity, w(z) is

the self-consistent electrostatic potential solution of the

Poisson equation and Vxc(z) is the exchange-correlation
potential [11]. The finite difference method has been used

to solve the Schrödinger equation. In the AlxGa1�xN,

�LSLG 6 z 6 0 (Length Semiconductor Large Gap),

the discretization is uniform, with a step denoted by

h_uni; but in the GaN, 0 < z 6 LSSG (Length Semicon-

ductor Small Gap), the jth and (j + 1)th steps are related

by hj+1 = hj(1 + f), being f a constant much smaller than

one [12]. If the ith node corresponds to z = 0, at the
interface between the AlxGa1�xN and GaN, from Eq.

(1) it follows that

vn;iþ1

1

hi þ h uni

� �
� 1
hi
ð1þ dmÞ � vn;i

1

hi þ h uni

� �

� 1

hi
ð1þ dmÞ þ

2

h uni
� dm

� �
þ vn;i�1

1

hi þ h uni

� �

� 2

h uni
� dm þ 2mA

�h2
½�EC;i þ en� � vn;i ¼ 0 ð2Þ

where dm = mGaN/mAlGaN = mA/mB(x) and x is the com-

position of the AlxGa1�xN. Using this discretization, the

step size in the GaN region near to z = 0, where the
2DEG takes significant values and the electrostatic po-

tential varies quickly, can be made very small; while in

the GaN region far away from z = 0, where the potential

varies slowly, the step size can be made higher. So, the

following matrix equation can be obtained

S1 � �vn ¼ kn � �vn ð3Þ
in which, because of the non-uniform discretization, the

NX · NX square matrix S1 is tridiagonal and non-sym-

metric, NX is the number of nodes considered in

�LSLG 6 z 6 LSSG and �vn is the normalized wave

function with respect to LSSG. The node i = 1 corre-

sponds to z = �LSLG, and i = NX with z = LSSG;

and it has been considered that vn,i=0 = vn,i=(NX+1) = 0,

hi=0 = hi=1 and hi=NX = hi=(NX�1). First, using numerical
recipes given in [13] the eigenvalues of S1 kn,
n = 1,2, . . .,NX, are computed. For the eigenvalue in

which we are interested, the following homogeneous lin-

ear system is formed

ðS1� kn � IÞ � �vn ¼ S2n � �vn ¼ 0 ð4Þ
where I is the unity matrix. By construction, S2n is sin-
gular for every n. Now, the singular value decomposi-
tion of S2n is computed, so that S2n can be written as

[13]

S2n ¼ Un �

wn;1 0 . . . 0 0

0 wn;2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . . . . 0

0 0 . . . 0 wn;NX

0
BBBBBB@

1
CCCCCCA

� V T
n ð5Þ

where only one of the wn,k, k = 1,2, . . .,NX, is equal to

zero; say wn,k0 = 0 (non-degenerate eigenvalues are as-

sumed). Also by construction, the k0th column of the

matrix Vn constitutes an orthonormal vector belonging

to the nullspace of the matrix S2n; that is, the nth eigen-
vector corresponding to the eigenvalue kn. Since the

wave function v(z) is normalized to unityZ LSSG

�LSLG

½vnðzÞ�
2 � dz ¼

Z 1:0

�LSLG

½�vnðzÞ�
2 � d�z ¼ 1:0

¼
XðNX�1Þ

i¼1

½�vn;i�
2 � �hi ¼

XNX

i¼1

ðV n;i;k0Þ2 ð6Þ

Therefore,

�vn;i ¼
V n;i;k0ffiffiffiffi

�hi
p ; i ¼ 1; 2; . . . ; ðNX� 1Þ

�vn;NX ¼ V n;NX;k0 ¼ 0

ð7Þ

The quantum electronic concentration is given by

n2DðzÞ ¼
mAkT

p�h2
�
X1
n¼1

½vnðzÞ�
2 � ln 1þ exp

EF � en
kT

� �� �

ð8Þ
with EF the Fermi level. The Poisson equation is written

as

d

dz
eðzÞ dwðzÞ

dz

� �
¼ �qðzÞ þ dP

dz
ð9Þ

where the e(z) = eB(x) for the AlxGa1�xN and e(z) = eA
for the GaN, P(z) is the spontaneous and piezoelectric

polarization and

qðzÞ ¼ q � Nþ
d ðzÞ � N�

a ðzÞ � n3DðzÞ � n2DðzÞ þ p3DðzÞ
� 	

;

� LSLG 6 z 6 LSSG ð10Þ

The discretized Poisson equation at z = 0 (ith node), is

expressed as

eA
wiþ1 � wi

hi

� �
� eB

wi � wi�1

h uni

� �

¼ � h uni
2

� qi�1=2 þ
hi
2
� qiþ1=2

� �

þ PðGaNÞ � P ðAlGaNÞ ð11Þ

p3D(z) is computed using the Fermi–Dirac integral F1/2

(gV(z)), with gV(z) = (EV(z)�EF)/kT. In order to calcu-

late n3D(z), the method exposed in [14,15] has been used;



Fig. 1. Calculated 2DEG density as a function of the barrier width

with x = 0.2 (dashed), 0.3 (solid), 0.35 (·) and 0.4 (s). Also the curve

with x = 0.3, and ESD = 1.5 eV is shown (dotted line).
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in which the GaN is divided in two regions: in the first

one, EC(z) 6 Eb being Eb an energy level which has to

be carefully chosen, so that

n3DðzÞ ¼
2NGaN

Cffiffiffi
p

p
� kT

Z 1

Eb

ffiffiffiffiffiffiffiffiffiffiffiffi
E�ECðzÞ

kT

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb�ECðzÞ

kT

q
1þ exp E�EF

kT


 � dE ð12Þ

and in the second one, EC(z) P Eb, so that n3D(z) is gi-
ven by the familiar Fermi–Dirac integral F1/2(gC(z)),
with gC(z) = (EF � EC(z))/kT. Eb has been made equal

to the quantum level En=4. Therefore, only the first three

bound states have been taken into account. Also, Eb has

been assumed to be a few times kT above EF;

consequently, the classical electrons in GaN have been

considered non-degenerated. Then, Eq. (12) can be sim-

plified; in particular, the first term in Eq. (12) can be
written as

2NGaN
Cffiffiffi

p
p

� kT �
Z 1

Eb

ffiffiffiffiffiffiffiffiffiffiffiffi
E�ECðzÞ

kT

q
1þ exp E�EF

kT


 � dE ¼ NGaN
C � 2ffiffiffi

p
p

�
Z 1

xbðzÞ
x1=2 � exp½�xþ gCðzÞ�dx ð13Þ

where xb(z) = (Eb � EC(z))/kT. The AlxGa1�xN has

been supposed to be undoped, and the GaN with a

non-intentional acceptor doping NGaN
A ¼ 1:0� 1016 cm�3

and an ionization energy of 50 meV. The source of the

2DEG has been assumed to be the existence of surface
donor states in the edge z = �LSLG of the AlxGa1�xN;

with a concentration NSD = 1.5 · 1013 cm�2 and an ion-

ization energy ESD = 1.4 or 1.5 eV [1,3,16–18]. Using

Fermi–Dirac statistics, the ionized surface donor con-

centration Nþ
sd can be expressed as

Nþ
sd ¼

N SD

1þ gD exp EF�Esd

kT


 � ð14Þ

with Esd = EC(z = �LSLG)�ESD and gD = 2. In this

article, the heterostructure at thermal equilibrium has

been studied. Therefore, the charge balance equation

has been solved simultaneously with the Poisson and

Schrödinger equations. Such an equation is

Nþ
sdðwðz¼�LSLGÞÞ �mAkT

p�h2
X3

n¼1

ln 1þ exp
EF � en
kT

� �� �

�
Z LSSG

0

½N�
a ðzÞ þ n3DðzÞ � p3DðzÞ� � dz¼ 0

ð15Þ

The Fermi level has been taken as reference, EF = 0. The

boundary condition EC(z = LSSG) = ECA, where ECA is

the conduction band level in the neutral GaN, has been

forced; then, ECA = Ecr � qw(z = LSSG). As a reference
for the potential, w(z = LSSG) = 0.0 has been chosen,

and the boundary condition dw/dzjz=LSSG = 0.0 has been

imposed. With these conditions the electrostatic poten-

tial at z = �LSLG is an unknown to be determined by
the self-consistent solution of the Poisson, Schrödinger

and charge balance equations.

The equations that determine the physical parameters

of the GaN together with mB(x), eB(x), EgB(x),

Pspon,B(x), Ppiez,B(x) and DEC(x), have been taken from

Refs. [2,4,19].
The method based on a predictor–corrector approach

reported in [20], has been used. An initial solution ob-

tained from the simplified equations shown in Appendix

A is used to begin the iterative scheme, until conver-

gence is reached.
3. Results and discussion

Fig. 1 shows the 2DEG density calculated as a func-

tion of the AlxGa1�xN barrier width, with x as a param-

eter and T = 300 K. For a fixed x, these graphs show

that there exits a threshold barrier thickness below

which the 2DEG is not formed. For high LSLG, the

majority of the surface states are ionized and, because

of the charge conservation, the 2DEG density reaches
its saturation value nS,sat, given by NSD = nS,sat + Ndep,

where Ndep is a 2D equivalent acceptor doping in the

channel (see Appendix A). Unlike Refs. [5,18], in these

simulations NSD and ESD are fixed and the surface po-

tential EC(�LSLG) is determined once the iterative

scheme has converged to the solution. So, with

LSLG = 300 Å and x = 0.3, a value of 1.497 eV for

EC(�LSLG) has been reached after convergence. This
value is in agreement with the 1.46 eV supposed in

Ref. [5], when an approximate value of 1.5 · 1013 cm�2

is reached for NSD after convergence. The results shown

in Fig. 1 match both, the theoretical [1,2,5,17,18] and the

experimental [3,16,21] results, recently published. For

x = 0.4 and x = 0.35 and in all figures, the only results

shown are those in which EC(�LSLG) is less than or



Fig. 3. Calculated EC(�LSLG) as a function of the barrier width with

ESD = 1.4 eV and, x = 0.2 (dashed line), 0.3 (solid), 0.35 (·) and 0.4

(s).
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equal to 3.65 eV; therefore the effect of the holes in the

AlxGa1�xN can be ignored. These simulations are essen-

tially different from those shown in Refs. [5,18], because

when NSD remains fixed in every simulation; for (a)

x = 0.4 and LSLG P 110 Å and, (b) x = 0.35 and

LSLG P 190 Å; the 2DEG density takes its value of sat-
uration nS,sat � 1.494 · 1013 cm�2, the electric field in the

AlxGa1�xN is constant, independent of LSLG and

approximately given by (from Eqs. in Appendix A):

F ð0�Þ ¼ ð1=eBÞ � ½N SD � PðAlxGa1�xNÞ þ P ðGaNÞ�
ð16Þ

Consequently, for LSLG beyond those values, the

2DEG density and its energetic distribution remain

invariable and, an increase in LSLG only produces a

proportional increase in EC(�LSLG). A simulation with

x = 0.3 and ESD = 1.5 eV is included in Fig. 1 (dotted

line), showing a slight decrease in the 2DEG density;

the higher LSLG is the lower this decrease is. Also, sim-

ulations with an acceptor doping in the GaN higher
than the initial value of 1.0 · 1016 cm�3 and equal to

1018 cm�3 were performed, producing a important de-

crease in the 2DEG density of 0.56 · 1012 cm�2, practi-

cally independent of the value of LSLG and x

considered [22].

In Fig. 2, the conduction band edge, the quantum

electron concentration and the first three wave functions

are shown for LSLG = 300 Å and x = 0.3. In this case,
Eb = e4 is 2.8 times kT, so that the assumption of

non-degenerate 3D electrons in GaN is reasonable.

The calculated 2DEG density is 1.39 · 1013 cm�2 and

the energy levels are e1 = �125 meV, e2 = 1.0 meV and

e3 = 46 meV; as a result, the 85.3% of the electrons are

in the first level, the 12.0% in the second and the 2.7%

in the third. In [5] a 2DEG density equal to

1.5 · 1013 cm�2 is obtained for these values of LSLG
and x; the difference between the two values being
Fig. 2. Calculated conduction band edge (thick solid line), quantum

electron concentration n2D(z) (dot line) and the first wave function

(solid), second (dashed) and third (dot-dashed); with LSLG = 300 Å

and x = 0.3. The scale for the wave functions is arbitrary.
caused by the use of material parameters slightly differ-

ent, mainly in the polarization.

From Fig. 3, for a fixed x, it can be seen that the sur-

face potential increases very slowly with LSLG if the

barrier width remains below the value for which the

2DEG reaches saturation. For example, with x = 0.3
EC(�LSLG) varies from 1.41 eV to 1.48 eV when LSLG

goes from 60 Å to 250 Å. Such variation corresponds

with an important increase in the 2DEG density which

varies from 0.54 · 1013 cm�2 to 1.35 · 1013 cm�2. The

curves with x = 0.35 and x = 0.4 clearly show that, once

the 2DEG density is saturated, EC(�LSLG) increase lin-

early with LSLG; and the slope, i.e., the electric field at

the AlxGa1�xN is higher, the higher x is; as can be de-
duced from Eq. (16). This behaviour is more easily

appreciated in Fig. 4 where the 2DEG density versus

EC(�LSLG) is presented for x = 0.2 (+), 0.3 (�) and
Fig. 4. Calculated 2DEG density versus EC(�LSLG) for an undoped

AlxGa1�xN/GaN structure with x = 0.2 (+), 0.3 (d) and 0.4 (s). Also

the curve with x = 0.3 and ESD = 1.5 eV (d, right) is shown.
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0.4 (s) and; for every x, LSLG varies from 40 Å to

400 Å. This curve is completely different from the one

shown in [18], since in our simulations, nS increases

due to the fact that the barrier width increases with fixed

NSD and ESD. With ESD fixed, when the 2DEG density

varies significantly, the surface potential remains near
but below ESD, and a small increase in EC(�LSLG) pro-

duces a remarkable increase in the 2DEG density. It is

clear that the points of the three curves x = 0.2, 0.3

and 0.4, are located on different overlapping sections

of a specific curve; and the value of x only determines

the section which is going to be obtained. The graph

with x = 0.3 and ESD = 1.5 eV is also shown (�, right),

clearly indicating that, while the 2DEG density is
not saturated, EC(�LSLG) is pinned by the donor

surface states. Also from Fig. 3, a linear relationship

EC(�LSLG) = a Æ x + b eV between the surface potential

and the composition x can be obtained. However, typi-

cal values of a and b are 0.44 and 1.28 respectively;

which differ significantly from those given in [2] for a

Ni Schottky barrier, where q/B = 1.3 Æ x + 0.84. This

discrepancy indicates that the metal work function play
a main role in the formation of the Schottky barrier; and

the Fermi level in a Schottky union is not pinned by the

surface states of the AlxGa1�xN.
4. Conclusions

To sum up, the significance of the donor surface
states in the AlxGa1�xN/GaN heterostructure has been

investigated. Since the heterostructure is assumed to be

isolated, the Schrödinger, Poisson and charge balance

equations have to be solved simultaneously. A method

based on the singular value decomposition to calculate

the eigenvectors of the Schrödinger equation has been

used. The influence of different physical parameters such

as the barrier width, the composition x, the ionization
energy of the surface states, and an acceptor doping in

the GaN on the 2DEG density and the surface potential

has been exposed; and the results obtained are com-

pared with those published in the technical literature.
Appendix A

The approximate solution considers that part of the

electrons transferred to the GaN occupy acceptors impu-

rity states in the interval 0 6 z 6 la, with la given in [10];

and for z < la the GaN remains neutral. Therefore, the

integral in Eq. (15) is reduced to N dep ¼ NGaN
A � la. Then,

the charge balance equation simplifies to

N SD

1þ gD exp �Ecrþqwð�LSLGÞ�DECþESD

kT

h i� ðnS þ NdepÞ ¼ 0

ðA:1Þ
where nS is the bidimensional electron density. From the

Poisson equation and the boundary conditions, it is easy

to obtain the following equations:

eA � F ð0þÞ � eB � F ð0�Þ ¼ P ðAlGaNÞ � P ðGaNÞ ðA:2aÞ

F ð0þÞ ¼ ðq=eAÞ � ðnS þ NdepÞ ðA:2bÞ

wð�LSLGÞ ¼ wð0Þ þ F ð0�Þ � LSLG ðA:2cÞ

where F(0�) and F(0+) are the electric field at z = 0� and
z = 0+ respectively. As an approximate solution for the

Schrödinger equation, all the electrons are assumed to

be in the lowest energy level of the quantum well, whose

energy E1 is given by the infinite triangular quantum

well approximation, with an effective electric field

Feff = (q/eA) Æ (0.5 Æ nS + Ndep). Then (EF = 0),

nS ¼
mAkT

p�h2
� ln 1þ exp �Ecr � qwð0Þ þ E1

kT

� �� �
ðA:3Þ

The last five equations with the five unknowns nS, w(0),
w(�LSLG), F(0�) and F(0+), can be reduced to one non-
linear equation in nS, which is solved numerically. The

wave function of the lowest state is assumed to be

the first function of Fang and Howard [10]. With the

n2D(z) obtained using Eq. (8), the Poisson equation is

solved again analytically to obtain an initial solution

for the electrostatic potential w(z).
Appendix B

The five equations in Appendix A can be used to ob-

tain the minimum width of AlxGa1�xN necessary to

make the quantum well exist with a minimum 2DEG

density, specified by nS,min. On quantitative terms, such

nS,min can be defined by the condition that the lowest en-

ergy level is equal to the Fermi level, i.e., e1 = EF. As a
result, nS,min = (mAkT/p�h

2) Æ ln(2) m�2; which is approx-

imately equal to 1.7 · 1012 cm�2. From (A.1)–(A.3), the

following equation can be reached for the minimum

width

LSLGmin ¼
1

qF ð0�Þ DEC � ESD þ kT ln

�

� 1

gD

N SD

nS;min þ N dep

� 1:0

� �� �
� E1ðnS;minÞ

�

ðB:1Þ

Eq. (B.1) is similar to that published in [16] for the

critical barrier thickness, but more complete. An
analogous result can be obtained if the origin of the

2DEG is assumed to be the donor doping ND in the Alx-
Ga1�xN, and q/B is assumed to be a function of the

composition x, as in [9]. Then, the following equation

is reached
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0 ¼ � q
2eB

ND � LSLG2
min þ F ð0�Þ � LSLGmin þ /B

� DEC

q
þ E1ðnS;minÞ

q
ðB:2Þ

The results obtained from Eq. (B.2) are broadly in

agreement with those given in [9], obtained by self-con-

sistently solving of the Poisson and Schrödinger

equations.
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piezoelectric polarization effects on the output characteristics of

AlGaN/GaN heterojunction modulation doped FETs. IEEE

Trans Electron Dev 2001;ED-48:450–7.
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