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Abstract—T-wave alternans (TWA) is a cardiac phenomenon
associated with the mechanisms leading to sudden cardiac death
(SCD). Several methods exist to automatically detect and estimate
TWA in the electrocardiogram (ECG) on a single-lead basis, and
their main drawback is their poor sensitivity to low amplitude
TWA. In this work we propose a multilead analysis scheme
to improve the detection and estimation of TWA. It combines
Principal Component Analysis (PCA) with a single-lead method
based on the Generalized Likelihood Ratio Test (GLRT). The
proposed scheme is evaluated and compared to a single-lead
scheme by means of a simulation study, in which different types of
simulated and physiological noise are considered under realistic
conditions. Simulation results show that the multilead scheme can
detect TWA with a signal-to-noise ratio (SNR) 30 dB lower, and
allows the estimation of TWA with a SNR 25 dB lower than the
single-lead scheme. The two analysis schemes are also applied to
stress test ECG records. Results show that the multilead scheme
provides a higher detection power, and that TWA detections
obtained with this scheme are significantly different in healthy
volunteers and ischemic patients, whereas they are not with the
single-lead scheme.

Index Terms—ECG, T-wave alternans (TWA), multilead anal-
ysis, principal component analysis (PCA).

I. Introduction

T -WAVE alternans (TWA) is a cardiac phenomenon ex-
tensively studied as an index of high risk of malignant

arrhythmias and sudden cardiac death (SCD) [1], [2]. This
work presents a multilead analysis scheme that improves the
detection and estimation of TWA in the electrocardiogram
(ECG).

ECG signals are measured by placing electrodes on the body
surface and recording the electrical activity of the heart. The
simultaneous recording of the ECG on different chest locations
(channels or leads) provides a spatial perception of cardiac
events. The standard 12-lead system is the most widely used
in clinical practice, and consists of eight independent leads,
named V1 to V6, I and II, and four additional leads that
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Fig. 1. (a) ECG signal with visible TWA. (b) Superposition of two
consecutive beats. (c) Alternans waveform: difference between odd and even
beats.

can be derived from the independent ones. The ECG usually
presents three characteristic waves on each beat: P wave, QRS
complex and T wave (Fig. 1(a)). The interval between the end
of the QRS complex and the end of the T wave is known as
ST-T complex, and reflects the repolarization activity of the
ventricles.

TWA is defined as a consistent fluctuation in the repolariza-
tion morphology on an every-other-beat basis (Fig. 1(b) and
(c)). TWA amplitude is in the range of microvolts, and can
be even below the noise level, making its detection a difficult
task. Several signal processing methods exist to detect and
estimate TWA. A comprehensive review can be found in [3].
The most widely used techniques are the spectral method [1],
[4] and the modified moving average method [5]. Alternative
techniques are the complex demodulation method [6] and the
recently proposed Laplacian likelihood ratio method (LLR)
[7], [8]. The main drawback of existing techniques is either
their sensitivity to the presence of nonalternant components
with high amplitude, or their poor sensitivity to low-level
TWA [2], [3]. Furthermore, some of those techniques measure
TWA amplitude, but do not estimate the TWA waveform. An
accurate waveform estimation is desirable because, in addition
to the presence and magnitude of TWA, the distribution of
TWA within the ST-T complex has been shown to indicate
arrhythmic risk [9].

To date, TWA analysis techniques have been mostly ap-
plied to each lead individually. In commercial TWA analysis
systems, only basic multilead strategies are performed, such
as analyzing the vector-magnitude lead (CH2000 and Heart-
wave systems, Cambridge Heart Inc, Bedford, MA). However,
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ECG signals present a high spatial redundancy that can be
better exploited with techniques based on the eigenanalysis
of input data, such as principal component analysis (PCA) or
Karhunen-Loève transform (KLT) [10]. These techniques have
been applied to ECG data compression and noise reduction
[11]–[14], characterization and diagnosis of ischemia [15],
[16], repolarization heterogeneity [17]–[19], atrial fibrillation
[20], [21] and separation of maternal and fetal ECG [22]. The
hypothesis of this work is that TWA analysis can be improved
by exploiting the spatial redundancy of ECG signals with PCA.

In this work we propose a multilead TWA analysis scheme
that combines PCA with the LLR method [7], [8]. As stated
in [3], methodological evaluation of a new technique (i.e.
the quantification of its detection power and its estimation
accuracy) is a prior step to clinical validation (which quantifies
the adequateness of the TWA test as a risk stratifier). In this
work we present a complete methodological evaluation of
the proposed scheme by means of a simulation study, where
the proposed scheme is compared to a single-lead scheme,
which is the usual approach to TWA analysis. We also provide
an example of application to real signals, to show that the
performance improvement observed in simulation can also be
obtained in real datasets.

II. Methods for TWA Analysis

A. Laplacian likelihood ratio method

The LLR method computes beat-to-beat the maximum like-
lihood estimation (MLE) of the TWA under the assumption
of Laplacian noise, and applies a generalized likelihood ratio
test (GLRT) to decide whether TWA is present or not.

Let K be the number of beats under analysis, N the number
of samples of each ST-T complex, and L the number of leads.
The ST-T complex of the kth beat and the lth lead is denoted
as

xk,l =
[
xk,l(0) . . . xk,l(N − 1)

]T
. (1)

The LLR method assumes the following model for each
complex

xk,l(n) = sl(n) +
1
2

al(n)(−1)k + vk,l(n), n = 0 . . . N − 1 (2)

which in vector notation is

xk,l = sl +
1
2

al(−1)k + vk,l (3)

where sl is the background ST-T complex, which is periodi-
cally repeated in every beat, al is the TWA waveform (defined
as the difference between odd and even beats), and vk,l is
additive random noise (vectors in (3) are defined as in (1)).

Background ST-T complexes can be canceled with a de-
trending filter that computes the difference between each
complex and the previous one

x
′

k,l = xk,l − xk−1,l, k = 1 . . . K − 1 (4)

The noise present in x′k,l is assumed to be independent and
identically distributed Laplacian with zero mean and unknown

standard deviation σl. The MLE of al for this model is given
by [7], [8]

âl(n) = median
({

x
′

k,l(n)(−1)k
}K−1

k=1

)
n = 0 . . . N − 1 (5)

TWA amplitude is calculated as the root mean square (RMS)
value across the TWA waveform

Vl =

√√√
1
N

N−1∑
n=0

â2
l (n) (µV). (6)

The GLRT statistic can be expressed as

Zl =

√
2

σ̂l

N−1∑
n=0

K−1∑
k=1

∣∣∣x′k,l(n)
∣∣∣ − K−1∑

k=1

∣∣∣x′k,l(n) − âl(n)(−1)k
∣∣∣ (7)

where σ̂l is the MLE of the standard deviation of the noise

σ̂l =

√
2

2NK

K−1∑
k=1

∥∥∥x
′

k,l − âl(−1)k
∥∥∥

1. (8)

Details of the derivation of the MLE and GLRT can be
found in [7], [8], and are beyond the scope of this paper.
To decide whether TWA is present or not, the GLRT statistic
Zl is compared to a threshold γ. TWA detection is positive if
Zl > γ, and negative otherwise. Since the detection statistic
(7) is invariant to amplitude scaling of x′k,l (i.e. is a constant
false alarm rate (CFAR) detector), the value of γ can be set
to obtain a fixed probability of false alarm (PFA) regardless of
the noise level.

B. Spectral Method

The spectral method (SM) [1], [4] is based on Fourier anal-
ysis of each beat-to-beat series of synchronized samples within
the ST-T complex. The TWA component is obtained by evalu-
ating the short-time Fourier transform (STFT) at the alternans
frequency, i.e. 0.5 cycles per beat (cpb). According to [3], the
detection statistic can be expressed as Zl = (1/N)

∑N−1
n=0 zl(n)

, where zl(n) = (1/K)
∣∣∣STFT

{
xk,l(n)

}∣∣∣2
f =0.5 is the 0.5 cpb bin

of the short-time periodogram computed from the beat-to-beat
series of the nth sample. A significance measure called TWA
ratio (TWAR) is defined as

TWAR(l) =
Zl − ml

sl
(9)

where ml and sl are the mean and the standard deviation of
the spectral noise measured in the spectral window [0.33 -
0.48 cpb]. To evaluate whether TWA is significant, TWAR is
compared to a fixed threshold (typically γ = 3). Finally, TWA
amplitude is estimated as

Vl =
√

Zl − ml (µV) . (10)

C. Multilead scheme

The block diagram of the proposed multilead scheme is
shown in Fig. 2(a). It consists of five stages: signal preprocess-
ing, signal transformation with PCA, TWA detection, signal
reconstruction, and TWA estimation.
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Fig. 2. (a) Block diagram of the multilead scheme. The blocks in bold line are the ones used in the single-lead scheme. Note that in the single-lead
scheme � = � = �̃. (b) Simulated input signal with SNR = −20 dB. (c) Transformed signal after PCA. Asterisks indicate the leads where TWA is detected
(d5 = d6 = d7 = 1). (d) Reconstructed signal after truncated inverse PCA. (e) Estimated TWA waveform. Note that TWA is visible in T5 and V5 in the
reconstructed signal.

1) Signal preprocessing: The ECG signal is preprocessed
as follows. QRS positions are determined using a wavelet-
based algorithm [23]. Baseline wander is removed with a cubic
splines interpolation technique. The signal is then decimated
to obtain a sampling frequency of Fs = 125 Hz, and low-
pass filtered with a cut-off frequency of 15 Hz. Fig. 2(b)
shows a simulated example of multilead ECG signal after the
preprocessing stage.

A fixed interval of 350 ms after each QRS fiducial point is
selected for TWA analysis (ST-T complexes). For each beat k,
complexes from all leads are put together into a matrix Xk

Xk =
[
xk,1 . . . xk,L

]T
(11)

The nth column of Xk contains the amplitudes of the L leads
at a given sample n of the kth beat. The Xk matrices are then
concatenated to form the data matrix �

� =
[
X0 X1 . . . XK−1

]
(12)

The lth row of � contains the concatenated ST-T complexes
corresponding to the lth lead.

2) Signal transformation with PCA: After the preprocess-
ing stage, a detrending filter is applied to � to cancel the
background ST-T complexes as in (4). The resulting matrix
�
′

has the same structure as � (this time with K − 1 beats),
that is, the lth row contains the concatenation of the detrended

complexes corresponding to the lth lead. PCA basis is then
calculated from matrix �

′

. The detrended signal �
′

is a
zero-mean random process with a spatial correlation matrix
R�′ = E{�

′

�
′T }. In practice, R�′ is replaced by the sample

correlation matrix, defined as

R̂�′ =
1

(K − 1)N
�
′

�
′T . (13)

To obtain the set of L principal components of �
′

, the
eigenvector equation for R̂�′ must be solved

R̂�′Ψ = ΨΛ (14)

where Λ denotes the diagonal eigenvalue matrix and Ψ denotes
the eigenvector matrix. Matrix Ψ defines an orthonormal
transformation, which is applied to the original data �

� = ΨT
�. (15)

The lth row of � contains the lth principal component of �,
and we will refer to it as the lth transformed lead (Tl) from
here on. Fig. 2(c) shows the transformed signal for the example
case.

3) TWA detection: After PCA transformation, TWA detec-
tion is performed in the transformed data. The GLRT is applied
to each transformed lead (rows in �) as shown in Section
II-A. The result of this lead-by-lead detection is denoted as
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dl: dl = 1 if TWA is detected in the lth transformed lead, and
dl = 0 otherwise. The overall TWA detection is positive if
TWA is detected at least in one transformed lead (‘OR’ block
in Fig. 2(a)).

4) Signal reconstruction with inverse PCA: After TWA
detection, a new signal in the original lead set is reconstructed.
This is necessary because TWA must be measured in the
original leads to be useful in clinical practice. A diagonal
matrix is defined from the lead-by-lead detection as

� =


d1 0

. . .

0 dL

 (16)

and the basis in Ψ is truncated as follows

ΨTR = Ψ�. (17)

Matrix ΨTR has zeros in columns corresponding to leads
without TWA. A reconstructed signal is then obtained from
the leads with detected TWA as

�̃ = ΨTR�. (18)

The reconstructed data matrix �̃ consists of the concatenation
of the multilead single-beat matrices X̃k:

�̃ =
[
X̃0 X̃1 . . . X̃K−1

]
(19)

where
X̃k =

[
x̃k,1 . . . x̃k,L

]T
(20)

with x̃k,l corresponding to the reconstructed ST-T complex of
the kth beat in the lth lead. Note that �̃ =

(
Ψ�ΨT

)
� is

equivalent to a spatially filtered version of �, where the aim
of the equivalent filter is to preserve the TWA content, not to
obtain a perfect signal reconstruction. When no detection is
obtained, �̃ = 0. Fig. 2(d) shows the reconstructed signal for
the example case.

5) TWA estimation: To estimate the TWA waveform and
amplitude, the MLE is applied to the reconstructed data as
described in Section II-A. Fig. 2(e) shows the estimated TWA
for the example case.

D. Single-lead scheme

The single-lead scheme handles each lead independently
throughout the process. It consists of the same signal pre-
processing, TWA estimation and TWA detection stages as
the multilead scheme, but without the intermediate PCA
processing. Detection and estimation are performed directly
in the original leads, that is, � = � = �̃. The stages of the
single-lead scheme are shown in bold in Fig. 2(a).

Both the multilead and the single-lead scheme can be easily
adapted to TWA analysis methods other than the LLR method.
For example, they can be combined with the SM method by
substituting the GLRT-based decision rule (Section II-A) by a
TWAR-based decision rule (Section II-B), and by substituting
the amplitude estimation in (6) by the estimation in (10).

III. Data Sets

A. Simulated data

Biomedical signal processing techniques are usually evalu-
ated on standard databases, where the output of the technique
is compared to reference annotations established by experts.
However, the main problem in the case of TWA analysis is
the lack of validation databases, mainly because TWA is often
non-visible due to its low amplitude (sometimes below the
noise level). Therefore, in this work a Monte Carlo simulation
approach was adopted. To evaluate the multilead scheme and
to compare it with the single-lead scheme, we designed a
simulation study where synthetic ECG signals were created
with a high degree of realism, and where TWA parameters
(amplitude, waveform) were known a priori.

Multilead ECG signals were generated adding noise and
TWA to a clean background ECG. Fig. 3 shows the simulation
setup. A standard beat from a 12-lead ECG record was selected
to create the background ECG. A TWA waveform was detected
and extracted from another 12-lead record, using the LLR
method as described in [8]. Both records belonged to the
STAFF-III database [8]. From the 12-lead set, we only selected
the independent leads (L = 8).

Four types of noise were considered: Gaussian (gs), Lapla-
cian (lp), electrode motion (em) and muscular activity (ma).
Noise types gs and lp were randomly generated. Types em
and ma, which are typical noises present in the ECG, were
extracted from two real noise records of the MIT-BIH Noise
Stress Test Database [24]. Those records were obtained using
a Holter recorder on an active subject with leads placed so
that the subject’s ECG was not visible. Record em contains
electrode motion artifact (usually the result of intermittent
mechanical forces acting on the electrodes), with significant
amounts of baseline wander and muscle noise as well. Record
ma contains primarily muscle noise, with a spectrum which
overlaps that of the ECG, but which extends to higher fre-
quencies.
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Fig. 3. Simulation of multilead ECG signals with TWA and noise. Signals
scale is not preserved for better visualization.
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Each Monte Carlo trial was generated as the sum of the
background ECG beat repeated K times, the TWA waveform
repeated K times with alternating sign, and a random real-
ization of noise. Each realization of noise was generated as
follows. First, L segments of K × N samples were simulated
(gs or lp noise) or extracted from the records beginning at
a random position (em or ma noise). Baseline wander was
removed from em and ma noises, because em and ma records
contain low frequency variations of high amplitude that can
distort the level of noise added to the simulated ECG. Noise
segments were normalized to a 1 µV RMS value and piled to
form a multilead matrix W

W =
[
w1 . . . wL

]T
(21)

Due to the noise generation setup, noise segments wl are
spatially uncorrelated (RW = �). However, in real signals
noise is spatially correlated. To correlate W in a realistic way,
we first estimated the spatial correlation of real ECG noise
using 10 multilead ECG records of the PTB Diagnostic ECG
database [25]. We selected 2000 segments of noise from each
independent lead by taking the 50 ms interval prior to a P wave
onset for each segment. DC level was removed, and segments
corresponding to each lead were concatenated. The resulting
noise leads were piled as in (21) to form a noise matrix N.
The spatial correlation of N was estimated as

R̂N =
1
M

NNT (22)

where M is the number of samples of each noise lead.
Applying the Cholesky decomposition [26] to the inverse of
the correlation matrix we obtained

R̂−1
N = DT D (23)

where D is an upper triangular matrix with strictly positive
diagonal entries. The inverse of D was used to correlate
spatially the generated noise W

W′ = D−1W (24)

thus obtaining a correlated noise matrix W′ with a spatial
correlation RW′ = R̂N . Finally, the correlated noise W′ was
scaled so that the RMS value of the least noisy lead was
200 µV . TWA was then scaled to obtain a desired SNR level,
defined as the maximum ratio between TWA power and noise
power in the L leads.

We simulated multilead ECG signals with SNR levels rang-
ing from -60 to 10 dB, and also without TWA. For each type
of noise, we generated 104 realizations of noise to simulate
signals without TWA, and 104 realizations for each SNR level
to generate signals with TWA.

B. Stress test data

As an example of application to real data, TWA analysis was
performed on set of stress test ECG records. The ECGs of 136
patients referred to treadmill exercise test (following Bruce
Protocol) were recorded in the University Hospital Lozano
Blesa of Zaragoza (Spain) [27]. Standard leads (V1, V3-V6,
I, II, III, aVR, aVL and aVF) and RV4 were digitally recorded

at 1-KHz sampling rate with an amplitude resolution of 0.6
µV. Patients were classified in two groups:

Ischemic group: this group was composed of 79 patients
with significant stenoses in at least one major coronary artery
as shown by coronary angiography (gold standard).

Volunteer group: this group comprised 66 asymptomatic
volunteers from the Spanish Army, who underwent an exercise
test with negative results for coronary artery disease.

IV. Results

A. Simulated data

Simulated signals were processed with the two schemes
based on the LLR method using a 32-beat analysis window;
for both schemes, we studied the detection performance and
the accuracy of the estimation. Furthermore, simulated signals
with ma noise were processed combining the two analysis
schemes with LLR and SM methods, with a 128-beat analysis
window.
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1) Detection performance: Detection performance was
evaluated with receiver operating characteristic (ROC) curves,
which show the relationship between probability of detection
(PD) and probability of false alarm (PFA) as a function of the
detection threshold γ. For every type of noise and SNR level,
the area under the ROC curve of the multilead scheme was
greater than the area under the single-lead curve. Fig. 4 shows
the ROC curves corresponding to SNR= −45 dB.

To analyze the behavior of the schemes for different SNR
levels, we selected a fixed value for γ so that PFA= 0.01, and
compared the resulting PD. Fig. 5 shows PD of the two schemes
vs. SNR for all types of noise. The SNR level where PD starts
decreasing is 30 dB lower with the multilead scheme than with
the single-lead scheme for gs and lp noises, 28 dB lower for
em noise, and 27 dB lower for ma noise.

2) Estimation accuracy: The estimation performance of the
two schemes was evaluated in terms of bias, variance and
mean square error. Let us denote by âl (n) the nth sample of
the estimated TWA waveform in the lth lead, and by al (n)
the same sample of the true TWA waveform. For each SNR
level, the expected value of the estimation E {âl (n)} and the
standard deviation σâl (n) were estimated as the average and the
standard deviation of âl (n) in the 104 realizations respectively.
Fig. 6 shows the expected value and the standard deviation of
the estimation for gs noise and two SNR levels. The bias of
the multilead estimation is higher than the bias of the single-
lead estimation in both cases, but the standard deviation of the
multilead estimation is lower. For each SNR level and lead l,
bias and mean square error of the estimation were calculated
as

bl(n) = E {âl(n)} − al(n), n = 0 . . . N − 1 (25)

e2
l (n) = E

{
(âl(n) − al(n))2

}
, n = 0 . . . N − 1 (26)

where the expected values were estimated as the average of
the 104 realizations. Then, two performance parameters, Rbl

and Rel , were defined as

Rbl (%) =

√√
1
N

N−1∑
n=0

b2
l (n)√√

1
N

N−1∑
n=0

a2
l (n)

× 100 (27)

Rel (%) =

√√
1
N

N−1∑
n=0

e2
l (n)√√

1
N

N−1∑
n=0

a2
l (n)

× 100 (28)

Parameter Rbl measures the relative bias of the estimation in
the lth lead, and parameter Rel measures the relative error
caused by both the bias and the variance of the estimation.
Fig. 7 shows the evolution of Rbl and Rel vs. SNR for ma
noise. For SNR ≥ -15 dB, the bias of the multilead estimation
is higher than the bias of the single-lead estimation. For SNR
< -15 dB, the bias of the single-lead estimation tends to 100%
for all the leads. For high SNR levels, Rel is similar for both
schemes, and for low SNR levels it is lower for the multilead
scheme.

3) Comparison with the Spectral Method: Simulated sig-
nals with ma noise were processed with the two schemes
combined with LLR method (LLR single and LLR multi),
and also with the two schemes combined with SM method
(SM single and SM multi). A 128-beat analysis window was
used in all cases. To ensure an unbiased comparison, detection
thresholds were set so that the resulting PFA was 0.01 for every
technique. Detection curves for all techniques are shown in
Fig.8. Best results are obtained with the LLR multi technique.
The SNR level where PD starts decreasing is 8 dB lower for
LLR single than for SM single, 6 dB lower for LLR multi than
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Fig. 7. Relative error of the TWA estimation obtained with the LLR method combined with (a) the single-lead and (b) the multilead scheme vs. SNR, and
relative bias of the estimation with the (c) single-lead and (d) the multilead scheme vs. SNR for ma noise.

TABLE I
Results of TWA analysis in stress test data, calculated considering all episodes regardless of when they are detected. (PFA = 0.01 for the two schemes).

Data expressed as (mean ± one standard deviation). † indicates a significant difference between volunteer and ischemic groups; ‡ indicates a significant
difference between multilead and single-lead schemes.

MULTILEAD SINGLE-LEAD
volunteer ischemic volunteer ischemic

# records 66 70 66 70
Detection # records with TWA 26 27 19 20

% records with TWA 39.39 38.57 28.79 28.57
all episodes Vmax (µV) 85±114‡ 95±128 133±133‡ 135±146

detected D (s) 26±26 48±59 29±24 51±39
by each HRo (bpm) 124±30† 106±20† 121±30† 105±20†

TWA scheme # episodes 38 33 26 22
characteristics episodes detected Vmax (µV) 21±15†‡ 37±22† 52±35‡ 66±35

by one scheme D (s) 7±7 30±71 17±16 18±21
and not by HRo (bpm) 127±27† 107±19† 112±7 105±18
the other # episodes 17 18 5 7

TABLE II
Results of number of records with TWA in stress test data, calculated considering the episodes detected before heart rate reaches 110 bpm (first row) and

100 bpm (second row). PFA = 0.01 for the two schemes. † indicates a significant difference in the number of records with TWA in volunteer and ischemic
groups.

MULTILEAD SINGLE-LEAD
volunteer ischemic volunteer ischemic

Detections # records 66 70 66 70
with # records with TWA 6† 14† 6 12

HRo < 110 bpm % records with TWA 9.09† 20.00† 9.09 17.14
Detections # records 66 70 66 70

with # records with TWA 6† 14† 5 10
HRo < 100 bpm % records with TWA 9.09† 20.00† 7.58 14.29
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for SM multi, 30 dB lower for SM multi than for SM single,
and 28 dB lower for LLR multi than for LLR single.

LLR single

SM singleSM multi

LLR multi

Fig. 8. PD vs. SNR for single lead scheme combined with the LLR method
(LLR single) and with the spectral method (SM single), and for multilead
scheme combined with the LLR method (LLR multi) and with the SM method
(SM multi). PFA = 0.01 in all cases. Results obtained with an analysis window
of 128 beats.

B. Stress test data

Stress test records were processed using a sliding analysis
window of 128 beats with the two schemes combined with
the LLR method. Only the eight independent leads were
considered. TWA is a phenomenon partially related to heart
rate, so TWA arises in patients at risk for SCD but also
in healthy subjects at faster heart rates during stress tests.
Therefore, the assumption that no TWA should be found in
volunteer records at heart rates below a cut-off heart rate
HRc was made to set the same PFA = 0.01 for both analysis
schemes. Volunteer’s signals were processed, and for each
scheme a threshold was calculated so that it was exceeded
only by 1% of the Z values obtained before heart rate reached
the HRc (false detections). Then, all records from both groups
were processed with the resulting thresholds. Table I shows
results obtained considering HRc = 110 bpm to set the PFA. The
first row shows the total number of records of each group, and
the number of records where one or more TWA episodes were
detected. For each episode three parameters were calculated:
the maximum TWA amplitude in the episode Vmax (µV), the
duration D (s), and the onset heart rate HRo (bpm), that was
calculated as the mean heart rate of the analysis window in
which the episode begins. For each group, the mean value
and the standard deviation of these parameters were calculated
in two ways: considering all the episodes (second row), and
considering the episodes detected exclusively by one scheme
and not by the other (third row). Table II shows the number
of records where TWA episodes were detected before 110
bpm (PFA set with a HRc = 110 bpm), and the number of
records where TWA episodes were detected before 100 bpm
(PFA = 0.01 set with a HRc = 100 bpm).

Differences in the number of records with TWA were
evaluated with the Fisher’s exact test; differences in mean
values of Vmax, D and HRo were evaluated with the Mann-
Whitney U test. A p-value < 0.05 was considered significant.

As an illustrative example, Figs. 9, 10 and 11 show how
the schemes work with a signal belonging to the ischemic
group (Sig1). Fig. 9 shows the detection statistic Z obtained
with the two schemes. The maximum value of Z for the

multilead scheme appears at instant tmax = 24 minutes. At that
time, the maximum Z with the single-lead scheme is obtained
in lead V3, and with the multilead scheme in T6. Fig. 10
shows the superposition of even and odd beats in those leads.
Fig. 11 shows the estimated TWA waveform in Sig1 at tmax.
A detection threshold γ = 0.1 was used with the multilead
scheme, and therefore lead T6 was the only one considered in
the reconstruction stage.

V. Discussion

According to simulation results, the high detection perfor-
mance of the multilead scheme is similar for gs, lp and ma
noises, (Fig. 4). It is worse when facing em noise, because the
em bandwidth mostly overlaps the band of the TWA. Even
in this case, the multilead scheme performs better than the
single-lead scheme. Note that in Fig. 4 the single-lead scheme
is not capable of detecting anything due to the low SNR level.

As shown in Fig. 5, the multilead scheme surpasses widely
the performance of the single-lead scheme. The multilead
scheme detects TWA with a SNR from 27 to 30 dB lower
than the single-lead scheme for a fixed PD. The multilead
scheme performs better, specially at low SNR levels, because
it separates TWA from most of the noise. For instance, at SNR
= -20 dB, noise is mainly concentrated in leads T1 - T3, so
TWA becomes detectable in leads T5 - T7 (Fig. 2(c)).

In the example signal Sig1, the values of the detection
statistic Z are higher with the multilead scheme than with
the single-lead scheme (Fig.9). Since the detector is CFAR, a
higher PD can be obtained for a fixed threshold, or a lower
number of false detections for a given PD. The main effect
of PCA in this case is concentrating the noise in the first
transformed leads, making TWA detectable in lead T6 (note
that TWA is clearly visible in T6, but not in V3). With real
signals, PCA will work differently depending on the spatial
autocorrelation of noise and TWA, and the cross-correlation
between them. It may concentrate mainly the noise, the TWA,
or both. In the worst situation, when the correlations of noise
and TWA are similar, they won’t be separated at all. In that
case the multilead scheme will not improve the analysis, but
it will not make the result worse either.
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Fig. 9. Detection statistic Z of LLR method computed with a 128-beat
window in signal Sig1. Left panel: Z obtained with the single-lead scheme
in leads V1-V6, I and II after the preprocessing stage. Right panel: Z
obtained with the multilead scheme in transformed leads T1-T8 after PCA
transformation. Threshold γ = 0.1 is shown in dashed line.
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Fig. 10. Superposition of odd (black) and even (gray) beats of a 128-beat
analysis window centered on instant tmax = 24 min in signal Sig1. Top panel:
beats of lead V3 (left), which is the lead where the maximum Z appears
with the single-lead scheme, and a closer view of the ST-T complexes (right).
Bottom panel: same views for lead T6, where the maximum Z appears with
the multilead scheme. In this case, ST-T complex morphology is consistently
different in odd and even beats, making TWA visible to the naked eye.
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Fig. 11. TWA waveform estimated in Sig1 at tmax = 24 min with the single-
lead scheme (left), and the multilead scheme with γ = 0.1 (right).

Since the improvement obtained with the multilead scheme
is mainly due to the effect of PCA, similar detection gains
can be expected when combining the multilead scheme with
other TWA techniques. For example, in simulated data with ma
noise, applying the multilead scheme to the spectral method
yields an improvement of 30 dB over the single-lead approach,
which is similar to the improvement obtained by applying the
multilead scheme to the LLR method (28 dB) (Fig.8).

The multilead scheme also improves the estimation accu-
racy, although not so remarkably as the probability of detec-
tion. For high SNR levels, the bias of the multilead estimation
is higher than the bias of the single-lead estimation due to the
truncation carried out in the reconstruction stage. As only a
subset of transformed leads is used to reconstruct the signal,
the reconstructed TWA lacks the content of the truncated leads,
which may still contain a small alternant component. However,
the lower variance of the multilead estimation compensates the
bias, so the final relative error Rel is similar to the error of the
single-lead estimation for high SNR levels (Fig. 7).

For low SNR levels, on the other hand, the relative bias
of the single-lead estimation tends to 100% in all the leads,

that is, the estimation tends to zero. This is because as SNR
decreases, the PD of the single-lead scheme starts falling (see
Fig. 5), so the estimated value is zero in more and more
realizations. In this case the behavior of the multilead scheme
is better because the relative bias of the multilead estimation
varies differently for each lead, and for some of them it is
still lower than 50% at very low SNR levels. For example,
Rbl < 50 % in V1, V4, V5 and V6 until SNR = -45 dB for
ma noise (Fig. 7). When SNR < -25 dB, Rel > 100% in the
eight leads for the single-lead estimation, whereas with the
multilead estimation such degradation does not appear until
SNR < -50 dB.

In the example signal Sig1 (Fig. 11), the estimation obtained
with the multilead scheme may have bias, but is still useful
to study the TWA distribution along the ST-T complex. With
the single-lead scheme, this episode would not be detected
with γ = 0.1 (Fig. 9), and even with a low enough threshold,
the single-lead estimation would be much noisier, reducing its
clinical value.

In simulation, the multilead scheme yields an improvement
of the probability of detection, and a more accurate estimation;
results obtained in the real dataset prove that these benefits can
also be obtained with real signals. As shown in Table I, the
multilead scheme detects more episodes than the single-lead
scheme in both groups (26 vs. 19 in volunteers, 27 vs. 20 in
ischemics). Since the PFA of both schemes is the same, this
means that the detection power of this scheme is higher than
the detection power of the single-lead scheme.

When considering the episodes detected only by the multi-
lead scheme, episodes from volunteers have significantly lower
amplitude than episodes from ischemics (21±15 vs. 37±22
µV) and they appear at a higher HRo (127±27 vs. 107±19
bpm). This differences are not significant with the single-lead
scheme. In volunteers, episodes detected only by the multilead
scheme have a significantly lower amplitude than episodes
detected only by the single-lead scheme (21±15 vs. 52±35
µV), and a higher HRo (127±27 vs. 112±7 bpm); this suggests
that the multilead scheme detects low amplitude episodes near
the peak effort that the single-lead scheme cannot detect.

The percentage of records with TWA is similar in volunteer
and ischemic groups, both with the multilead scheme (39%
and 38%) and with the single-lead scheme (28% in both
groups). This can be due to the fact that volunteers reach a
higher peak heart rate during the test. To distinguish between
groups according to the risk of SCD, it is necessary to analyze
only the results obtained before the heart rate reaches a cut-off

point. When the multilead scheme is applied, the percentage
of records with TWA is significantly higher in the ischemic
group for any cut-off point between 100 and 110 bpm, whereas
this difference is not significant with the single-lead scheme
(Table II). This suggest that the multilead scheme can improve
the prognostic utility of the TWA test.

Several limitations of this study must be acknowledged.
Regarding simulated data, physiological features of ECG repo-
larization such as shape variation due to heart rate variability
or amplitude modulation due to the respiration have not been
included in the simulation setup. Moreover, the noise spatial
correlation and the TWA waveform used in the simulation are
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two particular cases, but strong differences can be found in
the lead distribution of noise and TWA in real ECG signals
[8]. Regarding stress test data, the use of Bruce protocol may
reduce the utility of the TWA test, because the increase in
heart rate from 100 to 110 bpm occurs too rapidly, and may
not permit enough time for TWA to develop. The use of Bruce
protocol does not pose a problem in this work, because the
study is aimed to compare detection and estimation of the two
schemes, but it should be avoided in future clinical studies
regarding TWA stress testing. Finally, results suggest that the
multilead scheme might improve the prognostic utility of the
test, but the follow-up information of the study population is
not available, and therefore the determination of a cut-off heart
rate to predict cardiovascular events, or the evaluation of the
prognostic value of detected episodes, are out of the scope of
this work.

VI. Conclusions

A novel multilead scheme to detect and estimate TWA in
the ECG was proposed. The proposed scheme was validated
in terms of detection performance and estimation accuracy,
and it was compared to a single-lead scheme. Simulation
results showed the advantages of using PCA to exploit the
spatial redundancy of multilead ECG signals. Combination
of the multilead scheme with the LLR method showed the
best improvement in the ability to detect low amplitude TWA,
outperforming the single-lead approach of the LLR method,
and both single and multilead approaches of the spectral
method.

Results in real stress test ECG records confirmed the higher
detection power of the multilead scheme, and showed that the
detections obtained with this scheme are significantly different
in healthy volunteers and ischemic patients, whereas they are
not with the single-lead scheme. The positive results of this
methodological evaluation suggest that the proposed multilead
approach can be highly useful in future clinical studies to
increase the prognostic value of TWA tests.
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