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Abstract
Passengers communication inside a car can be improved by

using a speech reinforcement system. This system picks up
the speech of each passenger, amplifies it and plays it back
into the cabin through the loudspeakers of the car. Due to
the electro-acoustic coupling between loudspeakers and micro-
phones, a closed-loop system is created. To avoid the risk of
instability due to the acoustic feedback, acoustic echo cancella-
tion must be performed. Using the Minimum Mean Square Er-
ror (MMSE) criterion to adapt the filter, what is very common
in acoustic echo cancellation, leads to inaccurate estimates of
the Loudspeaker-Enclosure-Microphone (LEM) path due to the
closed-loop operation of the system. In this paper, the solution
obtained with the MMSE criterion for a Finite-length Impulse
Response (FIR) causal adaptive filter is derived, showing that
the identification error depends on the amplification factor of
the system, the delay of the loop and the spectral characteristics
of the excitation signal. The use of whitening filters is pro-
posed and justified to improve the acoustic echo cancellation in
speech reinforcemtent systems for cars. Results obtained for a
one-channel speech reinforcement system are presented.

1. Introduction
Inside a car, intelligibility can be degraded due to the high level
of noise, the use of sound absorbing materials and the lack of
visual contact between speakers. A speech reinforcement sys-
tem for vehicles helps to improve passengers communications
inside the car. It is composed of a set of microphones placed on
the ceiling of the car, an amplification stage and a set of loud-
speakers that delivers the voice of each speaker to the rest of
the passengers in order to improve intelligibility [1]. As the
distance between loudspeakers and microphones is relatively
small, the signal radiated by the loudspeakers is picked up by
the microphones creating a closed loop that can make the sys-
tem becoming unstable and limits the maximum gain than can
be used. To prevent this, acoustic echo cancellation is needed.
An acoustic echo canceller uses an adaptive filter, parallel to
the Loudspeaker-Enclosure-Microphone (LEM) path. This fil-
ter must identify the impulse response of this path in order to
obtain a replica of the echo signal and subtract it from the micro-
phone signal. In acoustic echo cancellation, the minimization of
the Mean Square Error (MMSE) is widely used, defining the er-
ror signal as the difference between the microphone signal and
the output of the adaptive filter. Nevertheless, due to the closed-
loop operation of the speech reinforcement system, the input
of the adaptive filter is a delayed and amplified version of the
error signal. Because of this, the MMSE solution depends on
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Figure 1: Diagram of a one-channel car cabin communication
system

the characteristics of the input signal and in many cases it does
not correspond to the desired solution. In this paper, the solu-
tion obtained with the MMSE criterion for a causal FIR filter
is discussed. In order to improve the identification of the LEM
path in a speech reinforcement system, the use of whitening fil-
ters is proposed and justified. The use of these decorrelation
algorithms has the goal of avoiding the bias term in the identi-
fication of the LEM path since the use of the MMSE criterion
without using withening filters leads to a set of non-linear equa-
tions. The solution of these non linear equations may not be the
identification of the LEM path and may be not unique.

This paper is organized as follows: a brief description of
the system is given in Section 2. A study about the MMSE
criterion in closed-loop systems is presented in Section 3. The
proposed modification of the cost function is considered in Sec-
tion 4. Some simulation results are presented in Section 5 and
finally, the conclusions in Section 6.

2. One-Channel speech reinforcement
system

In a one-channel speech-reinforcement system, the speech sig-
nal of the speaker s(n) is picked up by the microphones along
with the background noise b(n) and the echo signal v(n). The
echo canceller filter ĥ(n) must model the LEM path impulse
response h(n), and obtain an echo replica v̂(n) by filtering the
output signal x(n). This echo replica is subtracted from the mi-
crophone signal d(n) creating the error signal e(n). The error
signal is amplified, multiplying it by a gain factor K, to obtain
the output signal of the system, x′(n).

Due to the propagation delay, the LEM path can be mod-
eled as a delay block of ∆ samples followed by a linear filter
h′(n). Fig. 1 shows the simplified block diagram of the speech
reinforcement system with this decomposition, where ĥ′(n) is
the adaptive filter without the first ∆ coefficients that are set to
zero to compensate for the propagation delay.



3. MMSE Criterion in a Closed-Loop
System

3.1. Time Domain Analysis of the MMSE Solution in a
Closed-Loop System

The minimum mean square error criterion is widely used to per-
form system identification in echo cancellation [2]. Classical
optimal filtering theory applied to open loop systems states that
the necessary and sufficient condition for the cost function to
attain its minimum value is, for the corresponding value of the
error signal e(n), to be orthogonal to each input sample, x′(n),
that enters to the linear filter

E[x′(n − k)e(n)] = 0, k = 0, 1, 2, ... , (1)

where E[·] denotes the expectation of the quantity between the
brackets.

Due to the closed-loop operation of the proposed system,
the input signal to the adaptive filter x′(n) is a delayed and
amplified version of the error signal e(n), so the orthogonal-
ity principle is no more the necessary and sufficient condition
to attain the minimum value of the cost function.

According to Fig. 1, we obtain the gradient vector of the
mean squared error with respect to the coefficients of the adap-
tive filter and set it equal to zero for the cost function to attain
its minimum value.

In the proposed system, the input signal to the adaptive filter
is not independent from its coefficients since it is a delayed and
amplified version of the error signal. Thus, the condition for the
cost function to attain its minimum in this closed-loop system
can be expressed as [3]

∞
X

i=0

K
i
h̃
′(∗i)(n) ∗ E [e(n)e (n − (i + 1)∆ − k)] = 0,

k = 0, 1, 2, ... ,
(2)

where h̃′(n) = h′(n)− ĥ′(n) is the weight misadjustment, and

h̃
′(∗i)(n) = F−1



“

H̃
′(ejω)

”i
ff

. (3)

That is, h̃′(n) convolved with itself i times. Thus, h̃′(∗i)(n) is
equal to δ(n) when i = 0.

It can be shown that, [3], perfect identification of the LEM
path is the solution of (2), if and only if the excitation signal
satisfies

E [s(n)s(n − k − ∆)] = 0, k = 0, 1, 2, ... , (4)

To allow this, the length of the autocorrelation function of
the input signal must be less than the delay ∆ with ∆ > 0. This
means that for a delay ∆ equal to 1, the only signal that allows
perfect identification of the LEM path is a white noise process.

3.2. Frequency Domain Analysis of the MMSE Solution in
a Closed-Loop System

3.2.1. Unconstrained Adaptive Filter

We can express the optimization criterion for the adaptive filter
in the frequency domain as

ĥ
′

opt = arg min
ĥ′

1

2π

Z 2π

0

Se(e
jω)dω (5)

where Se(e
jω) is the Power Spectral Density (PSD) of e(n).

According to Fig. 1 and assuming that no background noise
is present, the error signal PSD can be expressed as

Se(e
jω) =

˛

˛

˛

˛

1

1 − KH̃ ′(ejω)e−jω∆

˛

˛

˛

˛

2

Ss(e
jω) (6)

where Ss(e
jω) is the PSD of the speech signal and H̃ ′(ejω)

is the difference between the LEM path transfer function,
H ′(ejω), and the adaptive filter transfer function, Ĥ ′(ejω).

In order to obtain a solution to (5), the excitation signal is
modeled as a random process generated by applying a white
noise process, w(n), with variance σ2

w to a linear invertible and
monic filter whose transfer function is A(ejω). After modeling
s(n) as described before, it can be shown that the filter that
minimizes the power of the error signal is [4]

Ĥ
′(ejω) = H

′(ejω) +
A(ejω) − 1

Ke−jω∆
, (7)

which depends on the LEM path transfer function and the model
of the excitation signal. According to (7), the only solution that
achieves perfect identification of the LEM path can be found
when the excitation signal is a white noise process, that is, when
A(ejω) = 1.

3.2.2. Causal FIR Adaptive Filter

Depending on the LEM path transfer function and the input sig-
nal model, (7) can not be met when constraining the echo can-
celler to use a causal FIR filter. Thus, assuming that ĥ′(n) is
an FIR causal filter of length N, we will obtain the value for the
transfer function that minimizes the power of the error signal
under certain assumptions.

First of all, we consider that the LEM path transfer function
is composed of two parts

H
′(ejω) = H

′

1(e
jω) + H

′

2(e
jω), (8)

where H ′

1(e
jω) refers to the first N coefficients of the LEM path

impulse response and H ′

2(e
jω) refers to the rest. The model of

the excitation signal can be also divided into two parts

A(z) =
∞

X

l=0

alz
−l = A1(z)z−∆ + A2(z), (9)

defining A1(z) as

A1(z) =

N−1
X

l=0

a(l+∆)z
−l

. (10)

According to these definitions, the error signal in the fre-
quency domain, can be expressed as

E(ejω) =
h

F1(e
jω)e−jω∆ + F2(e

jω) + 1
i

σw, (11)

where

F1(e
jω) =

A1(e
jω) + K

h

H ′

1(e
jω) − Ĥ ′(ejω)

i

1 − Ke−jω∆H̃ ′(ejω)
, (12)

F2(e
jω) =

A2(e
jω) − 1 + Ke−jω∆H ′

2(e
jω)

1 − Ke−jω∆H̃ ′(ejω)
, (13)



and the cost function to minimize

J = E[|e(n)|2] = E[|eA(n)|2]

+E[|eB(n)|2] + 2E[|eA(n)eB(n)|2] + σ2
w,

(14)

with

eA(n) = F−1
n

F1(e
jω)e−jω∆

σ
2
w

o

(15)

eB(n) = F−1
n

F2(e
jω)σ2

w

o

. (16)

The exact value for the third term in (14) can be difficult to
find, but under the assumption that the system is far from insta-
bility, K � 1

H̃′(ejω)
, this term is almost zero, [3], and the value

for the transfer function of the adaptive filter that minimizes the
mean squared error is

Ĥ
′

opt(e
jω) = H

′

1(e
jω) +

A1(e
jω)

K
, (17)

wich depends on the first N coefficients of the LEM path im-
pulse response, the value of K and the part of the input signal
model from coefficient ∆ to coefficient N + ∆.

4. Minimization of the Mean Squared
Filtered Error

4.1. Minimum Mean Squared Filtered Error Condition in
the Time Domain

Since the solution of the MMSE criterion in a closed-loop sys-
tem does not achieve perfect identification of the LEM path,
residual echo and distortion will be present in the error signal.
To avoid this, the cost function must be modified, defining it as

Jf = E[|ef (n)|2] = E[|e(n) ∗ p(n)|2], (18)

where p(n) is the impulse response of a linear filter applied to
the error signal. This filter must be chosen to force the iden-
tification of the LEM path to be the solution of the proposed
minimization problem. Differentiating the cost function we can
find the optimal filter as the solution to

E[ef (n)

∞
X

j=0

h̃
′(j)

∂ef (n − ∆ − j)

∂ĥ′(k)
]

−E[ef (n)ef (n − ∆ − k)] = 0, k = 0, 1, 2, ... ,
(19)

According to (19), in order to allow h̃′(n) = 0 be a solution
of the minimization problem, the filter p(n) should be designed
to achieve a correlation function of ef (n) equal to zero for a
time lag greater than ∆.

4.2. Minimum Mean Squared Filtered Error Condition in
the Frequency Domain

The criterion in (18) can be expressed in the frequency domain
as

ĥ
′

opt(n) = arg min
ĥ′(n)

1

2π

Z 2π

0

Sef
(ejω)dω , (20)

where Sef
(ejω) is the PSD of the filterd error, which according

to Fig.1 and the definition of ef (n) is

Sef
(ejω) =

˛

˛

˛

˛

P (ejω)A(ejω)

1 − KH̃ ′(ejω)e−jω∆

˛

˛

˛

˛

2

σ
2
w. (21)

Using the definitions (8), (9) and (10), the value of the trans-
fer function for a causal finite-duration impulse response filter
that minimizes the mean squared filtered error is
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Figure 2: Diagram of a one-channel speech reinforcement sys-
tem with adaptive linear prediction in the error path
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Figure 3: Impulse Response of the artificial LEM path
.

Ĥ
′(ejω) = H

′

1(e
jω) −

1 − P (ejω)A(ejω)

K
(22)

where P (ejω) must satisfy

P (ejω) = A
−1(ejω) (23)

to allow H̃(ejω) = 0 be the solution of (20), with A−1(ejω)
the inverse filter of A(ejω).

4.3. Adaptive Linear Prediction and Echo Cancellation

As described before, the use of a witheninig filter p(n) is nece-
sary to ensure that the minimization of the power of the filtered
error leads to the identification of the LEM path.

In order to find a practical solution to the problem of acous-
tic echo cancellation in a speech reinforcement system for ve-
hicles, adaptive linear prediction must be used since neither the
error signal nor the speech signal are time-invariant.

The adaptive minimization of the mean squared filtered er-
ror leads to the well-known FX-LMS algorithm [5] if the instan-
taneous gradient is used as an approximation to the exact one.
The resulting system is presented in Fig. 2.

5. Simulation Results
Several simulations have been carried out to illustrate the de-
pendency on the identification error of the gain factor K, the
loop delay ∆ and the characteristics of the excitation signal,
with a simple artifitial LEM path, shown in Fig. 3. The exci-
tation signal consists of a first order autoregressive stationary
process with power spectral density

S(ejω) =
1

(1 − αe−jω)(1 − αejω)
. (24)

The estimation error can be measured by using the normal-
ized l2 norm of the weight misadjustment vector defined as
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Figure 4: ‖ε‖2 evolution with the loop delay ∆ for different
values of the parameter α.
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Figure 5: ‖ε‖2 evolution with the Gain Factor K for different
values of the parameter α.

‖ε‖2 =

L
X

k=0

˛

˛

˛
h
′

k − ĥ
′

k

˛

˛

˛

2

L
X

k=0

˛

˛h
′

k

˛

˛

2

. (25)

Fig. 4 shows the evolution of ‖ε‖2 with ∆ for different val-
ues of the parameter α that controls the bandwith of the excita-
tion signal in a system with a gain factor K = 0.5. The value
of ‖ε‖2 that would be obtained, under the same circumstances,
in an open loop system is presented in dotted line.

It can be seen that, the identification mismatch does not
depend on ∆ for a white noise excitation (α = 0) as pre-
dicted (17), and for higher values of α, ‖ε‖2 decreases as ∆
increases. This evolution agrees with the theoretical result of
section (3.2.2). Equation (17) states that the identification error
depends only on the values of the input signal model from ∆ to
N + ∆ and the autocorrelation function of the first order AR
process decreases exponentially as the time lag increases.

The evolution of ‖ε‖2 with K is depicted in Fig. 5 in a
system with a delay loop ∆ of 50 samples. According to (17),
the identification error decreases as K increases for every value
of α. For a white noise input, where the identification bias is
always zero, the decrease of ‖ε‖2 for values of K < 0.6 is
due to the increase in the echo to excitation signal ratio that
improves the identification accuracy.

Simulations with the proposed system were performed to
compare the estimates of the LEM path impulse response, ob-
tained with and without the adaptive linear prediction, using a
real LEM path and speech as input signal.

A 600 coefficient LEM path impulse response measured in
a medium size car was used. The length of the adaptive pre-
dictor was 8 coefficients and the length of the echo canceller
adaptive filter was 350 coefficients with ∆ = 50 samples. Sev-
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Figure 6: ‖ε‖2 versus the gain factor K. With (dashed red) and
without (solid blue) the adaptive linear predictor.

eral sentences were used with a sampling rate of 8 kHz. Real
car noise, recorded while driving in a highway, was added to the
noise free speech signals. The input SNR was around 10 dB.

Fig. 6 shows the evolution of the mean l2 norm with
(dashed red line) and without (solid blue line) the adaptive lin-
ear prediction. It can be seen that the error in the estimation
process decreases while increasing K, as predicted in (22), and
the estimate obtained using the whitening filter is alway smaller
than the one obtained without using the linear prediction filter.

6. Conclusions
In this paper, the aplication of the minimum mean square er-
ror criterion for the feedback cancellation problem in a speech
reinforcement system for cars has been studied. The solution
obtained for a causal FIR filter has been derived and compared
to the solution for an unconstrained identification filter. The use
of adaptive whitening filters has been proposed and justified for
reducing the error in the identification of the LEM path. This
identification mismatch can be reduced by modifying the cost
function. This modification consists of the filtering of the error
signal berfore minimizing its variance using a whitening filter.
The use of the modified cost function leads to the use of the
FX-LMS algorithm in its adaptive implementation. Simulation
results confirm the theoretical study presented here. The com-
parison between the weight misadjustment obtained with and
without adaptive linear prediction shows that the minimization
of the mean squared whitenened error produces more accurate
estimates of the LEM path than the use of the classical LMS
algorithm for speech reinforcement systems for vehicles.
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