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ABSTRACT

Region of interest (ROI) analysis is a very common proce-
dure for morphometry studies of brain structures, where each
structure is usually isolated from the rest of the brain and
aligned to a reference shape. In the allignment process all
pose information is disregarded. However, considering the
brain as a multi-object system formed by several structures,
the relative pose among different structures may provide clin-
ically relevant information. A methodology to build multi-
object statisticalpose+shape models is given in this work.
The pose features for each structure are given by the param-
eters of a similarity transformation and the shape features
are given by the coordinates of corresponding landmarks on
the boundary. As pose and shape features do not live in an
Euclidean vector space but in a Riemmanian manifold, the
methodology is based on performing standard multivariate
statistical tools (such as PCA) on the tangent space. Exper-
imental results are performed on brain structures such as the
subcortical nuclei (caudate nucleus, hippocampus, amygdala,
thalamus, putamen, pallidum) and lateral ventricles.

1. INTRODUCTION

Statistical shape analysis is being increasingly used to char-
acterize brain anatomy either in control subjects as well as
abnormalities of brain structures in patients with neuropsychi-
atric disorders [1]. To name a few, volumetry and morphome-
try studies of hippocampus and amygdala in Alzheimer’s dis-
ease patients [2], volumetry and morphometry analysis of the
thalamus in schizophrenic patients [3].

Statistical shape analysis is an emerging field with many
applications on medical imaging and computer vision. Prin-
cipal Component Analysis (PCA) is one of the most common
procedures for rank reduction and statistical analysis. This
technique should be only applied to multivariate data lying
on an Euclidean space. However, most of pose and shape fea-
tures live in a Riemannian manifold, and PCA should be re-
placed by its counterpart Principal Geodesic Analysis (PGA).

The main difficulty to be addressed in the analysis of hu-
man brain is that several anatomical structures form a highly

This work was partially funded by research grants TEC2005-07801-
C03-02, TEC2006-13966-C03-02, FIS PI04/1795 from Spain. M. Bossa
work was funded by DGA under the FPI grant B097/2004.

complex system, with a large shape variation among individu-
als. Many morphometry studies isolate a single structure from
the rest of the brain and perform statistical inferences of pa-
tient groups regarding clinical categories after allignment to
a common coordinate system. In this way, geometrical rela-
tions among neighbor structures can not be properly analyzed.
In order to overcome this limitation, multi-object shape mod-
els have been recently proposed in the literature. The first
and straightforward proposal to build a joint statistical shape
model of a set of objects was to concatenate shape features
in a long vector, and to apply standard multivariate statistical
tools. Some applications have been done in heart modeling
using point sets as shape features [4]. In a recent work, the
shape of several subcortical nuclei was characterized by m-
reps and PGA was performed on the multi-object feature vec-
tor [5]. Later, a methodology to build multi-object pose mod-
els (MOPM) was introduced in [6], which can be applied in
combination with any shape characterization. Very recently,
a jointpose+shape model was proposed in [7], where m-reps
was used as shape descriptors and pose was characterized in
a different way to the proposal given in [6].

The aim of this work is to build multiobjectpose+shape
models using boundary point sets as shape features. This
work is an extension of the multiobject pose model introduced
in [6] with shape features. In this work shape is described by
means of point distribution models.

2. JOINT POSE+SHAPE MODEL

Our proposal for joint modelingpose+shape consists on con-
catenating pose and shape features in a joint feature vector
f = [wp

f
p ws

f
s]T , wherefp andf

s denote pose and shape
feature vectors respectively andwp, ws ∈ R

+ are weight-
ing factors that balance the relative importance between shape
and pose within the model. Very often these features live in a
Riemannian manifold,G, and their description at the tangent
space is required in order to be able to compute statistics.

2.1. Principal Geodesic Analysis (PGA)

PGA is based on computing statistics on the tangent space
at the mean,TµG, which is an Euclidean space of the same
dimension as the manifold,G, and it provides a local approx-
imation to the manifold. Thelog operator provides the map-



ping between the manifold and the tangent space with two
important properties: distances and angles on the manifold
can be computed on the tangent space. The distance between
any two elementsx, y ∈ G is:

d(x, y) = ‖ logx(y)‖. (1)

In a similar way, the angle between geodesics in the mani-
fold passing through the mean can be computed as the angle
between their corresponding initial vectors inTµG. The ex-
ponential mapping is the inverse operator that takes Euclidean
points from the tangent space to the manifold.

The Fréchet mean of a set of elements{xi}
N
i=1 ∈ G, can

be computed iteratively as [8]:

µk = expµk−1

(

1

N

∑

i

logµk−1
(xi)

)

. (2)

A set of orthonormal principal vectorsvk are obtained by
standard Principal Component Analysis of the logarithmui =
logµ (xi). The corresponding principal geodesics are given
by γk(t) = expµ (tvk), which are also orthogonal at the
mean.

2.2. Pose features f
p

A more detailed description of pose features was done in [6]
and it is only reviewed here for brevity reasons.

Given the configuration matrices (landmark coordinates)
of an objectSi and a reference shapeR with known corre-
spondence, pose is defined by the similarity transformation
that minimizes the distance

Ti = arg min
T∈Sim(3)

D2 (Si, T (R)) , (3)

whereD2 is the sum of square distances between correspond-
ing points andSim(3) is the Lie group of similarity transfor-
mations.

A general similarity transformationT of a 3D pointx is:

x
′ = T (x) = sRx + d, (4)

whereR ∈ SO(3) (3× 3 orthogonal matrix with determinant
one),s ∈ R

+, andx
′,x,d ∈ R

3. A matrix representation of
Sim(3) is given by

T =

[

sR d

0
T 1

]

. (5)

T operates on a 3D point in the following way[x′; 1] =
T [x; 1]. The log and exp mappings are computed as the
standardlog andexp functions of matrices. The tangent space

representation at the identity has the following form1

logT =









l −rz ry x
rz l −rx y
−ry −rx l z
0 0 0 0









. (6)

Therefore, the pose of a given object is characterized by the
pose feature vectorfp formed by the seven free parameters in
logT, i.e., fp = [x y z rx ry rz l] ∈ R

7, wherel = log s.
exp (fp) will denote the matrix obtained by exponentiating
the matrix representation offp described in the right hand
side of (6), andexp

M
(fp) = M exp (fp).

The relative magnitude of the different pose parameters
(rotation, translation and scaling) is sensitive to the norm of
the reference shapeR. This value, was selected in order to get
commensurable units and more details can be found in [6].

Given a data set withI instances of complex systems
formed byJ objects{Si,j}

I, J
i=1,j=1, the pose transformation

Ti,j that takes thej-th reference objectRj to thej-th object
from thei-th instance,Si,j , is given by

Ti,j = arg min
T∈Sim(3)

D2 (Si,j , T (Rj)) . (7)

As the similarity transformations commute among different
objects, the Lie group that describes the whole set of trans-
formations is the direct product of theJ similarity groups:

Sim(3)J =
J
∏

i=1

Sim(3) = Sim(3)×Sim(3)× ...×Sim(3).

The feature vectorfp
i,j is extracted from the logarithm

of the residual transformations,log
(

(

M
p
j

)−1
Tij

)

and the

mean transformationMp
j is obtained using (2). The multi-

object pose feature vector isfp
i =
[

α1f
p
i,1 α2f

p
i,2 · · ·αJ f

p
i,J

]T

∈

R
7J , whereαj are scaling factors that take into account the

relative size of each object and are computed as the geometric
mean of thesij running for all instances.

2.3. Shape features f
s

In this work shape is characterized by configuration matrices
S ∈R

3,n, or equivalently by its corresponding configuration
vectors = vec (S). The set of configuration matrices that are
Procrustes aligned to a reference shaper, s̃ = T−1(s) forms
the Procrustes shape space, denoted asΣ3

n, beingn the num-
ber of landmarks. It has been shown in [9] thatΣ3

n behaves
locally as a Riemannian manifold and its exponential map-
ping is given by2

s̃ = exp
r
(h) = cos

(

‖h‖

‖r‖

)

r + sin

(

‖h‖

‖r‖

)

‖r‖

‖h‖
h (8)

1Note that[x y z]T in the 4-th column in the r.h.s of (6) is different from
d in (4); actually,[x y z]T depends onR, s andd.

2In this workΣ3
n is a sphere of radius‖r‖, while a unity radius was used

in [9] without loss of generality.



whereh lies in the tangent spaceTrΣ
3
n and‖s̃‖ = ‖r‖. Ac-

cordingly,h is a3n×1 vector with seven linear constraints that
only depend on the reference shaper: h

T
r = 0 and six extra

linear constraints that takes into account translation androta-
tion invariance of the shape. Even though the dimension of
TrΣ

3
n is 3n− 7, the number of instancesI is usually the lim-

iting factor of the number of degrees of freedom and a smaller
dimension subspace can be computed from the observed data
after pose alignmenthi = log

r
(̃si). P ∈ R

min(3n−7,I),3n

will denote an orthonormal basis of the subspace spanned by
{hi}. In order to compute statistics, the referencer is often
selected as the mean shape,m

s, which is iteratively computed
using (2) and (3). The shape feature vector of a single object
will be

f
s = h

T
P

T ∈ R
min(3n−7,I) . (9)

The multi-object residual shape feature vector is given by

f
s
i =

[

α1f
s
i,1 α2f

s
i,2 · · ·αJ f

s
i,J

]T
where the scaling factorsαj

are the same as for the pose feature vector. Note that each
object may have a different number of landmarksnj and their
correspondingfij might have different dimension in the case
of nj < I.

2.4. Joint statistical pose+shape model

After extracting pose and shape features from all instances
and objects in the training set, any multivariate statistical tech-
nique can be used on the set of features

F = [wp [fp
1 f

p
2 · · · f

p
I ] ; ws [fs

1 f
s
2 · · · f

s
I ]] .

The weighting factorwp(ws) was chosen such that the en-
ergy of pose(shape) features is equal to the corresponding
pose(shape)-driven boundary displacement energy.

The most common multivariate statistical technique is PCA.
The principal vectors ofF are denoted asvk, and can be
object-wise splitted as

v
T
k =

[

(

v
p
k,1

)T

· · ·
(

v
p
k,J

)T
(

v
s
k,1

)T
· · ·
(

v
s
k,J

)T

]

. (10)

The principal geodesics are also splitted into theJ objects.
The j-th object generated by thek-th principal geodesic is
given by

Φk,j

(

vec−1
(

exp
m

s
j

(

tPT
j v

s
k,j/αj/ws

)

)

; t
)

, (11)

whereΦk,j(·; t) denotes the similarity transformation defined

by the matrixMp
j exp

(

tvp
k,j/αj/wp

)

and t ∈ R. Shape

instances are first generated by means of the exponential map
of the shape principal vectors and later on transformed by the
corresponding principal pose.

Fig. 1. Brain structures: Left ) front view; Right ) lateral view.

3. RESULTS

3.1. Data set and preprocessing

Experiments were performed on a data set ofI=18 brain MRI
studies from normal subjects from Internet Brain Segmenta-
tion Repository [10]. Seven brain structures from both hemi-
spheres (J=14 objects in total) were selected for this study:
lateral ventricle, thalamus, caudate nucleus, putamen, pal-
lidum, hippocampus and amygdala. The total number of land-
marks,

∑

nj, was 10459.
The preprocessing (global allignment and correspondence

estimation) was done as in [6]. In a nutshell, Procrustes al-
lignment and correspondence estimation is performed inde-
pendently for each object by means of an iterative non-rigid
registration procedure applied to a template structure based on
the Robust Point Matching (RPM) algorithm [11]. The mean
shape of each structure with its corresponding mean pose is
illustrated in Fig. 1.

3.2. Experiments

The first experiment was to compute the relative importance
of pose and shape within our training set. The total energy
(TE) is defined as the variance of corresponding points after
global alignment. The residual variance when each structure
is independently alligned to its mean shape at the mean pose
is named shape energy (SE). The pose energy is defined as the
differencePE = TE − SE. Fig. 2 shows the ratioPE/TE
for each structure.
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Fig. 2. Relative pose energy in the training set
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Fig. 3. Reconstruction error versus model size.

The second experiment was to compare reconstruction er-
ror performance betweenpose+shape versus only shape mod-
els. Reconstruction error was measured as the RMS distance
between original and reconstructed instances at correspond-
ing points. Model size is defined as the amount of data re-
quired to reconstruct instances from the model for a given
number of modes. In the case of only shape model, the size is
(qos + 1)(3

∑

nj), with qos the number of modes andnj the
number of landmarks of objectj. In the case ofpose+shape
model, two data reduction strategies can be used: to recon-
struct instances using the firstqps modes,k = 1 . . . qps in
equation (10); and to perform data reduction of the matrixP
in (9) (by means of SVD and selecting the firstqf modes).
The model size in this case is((7J)+ qfJ)(qps + 1)+ (qf +
1)(3

∑

nj). Remember that the number of landmarks, in our
case 10459, is much larger than the total number of pose de-
grees of freedom and the number of instances.

Fig. 3 illustrates the reconstruction error vs. model size
obtained by running the parametersqf , qps andqos. Increas-
ing only the value ofqps produces a very small increase of
model size while a relevant decrease of reconstruction error.
This is seen as nearly vertical dotted lines. A zoom of one of
these lines is plotted at the rigth part of the figure.

4. DISCUSSION AND CONCLUSIONS

According to Fig. 2 most of the anatomical variability of sub-
cortical nuclei (after global alignment) can be explained by
pose transformations, which can be described by a multi-object
pose model with a very small set of parameters. This model
provides a coarse and compact representation of a the total
anatomical variability, modeling about 70% of the total en-
ergy in most of the structures. A more accurate model of the
shape boundary is obtained by adding shape features in the
joint statistical model. These shape features characterize the
residual anatomical variability after pose modeling.

In contrast, only shape models need a much larger model

size thanpose+shape models in order to characterize the anatom-
ical variability for the same reconstruction error.

The proposed model splits the anatomical variability of a
set of objects into pose and shape parameters. Pose parame-
ters are very compact and have a very natural understanding.
In our vision, these models can provide valuablea priori in-
formation to segmentation and registration algorithms as ini-
tializations or regularizers.
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