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ABSTRACT complex system, with a large shape variation among individu

Reai fint t (ROI vsis i als. Many morphometry studies isolate a single structam fr

egion of interest (ROI) analysis IS a very COmmon proCey,q rast of the brain and perform statistical inferencesaof p
dure for morphometry studies of brain structures, wheré ea ient groups regarding clinical categories after alligntne
structure is usually isolated from the rest of the brain and, .01 coordinate system. In this way, geometrical rela-
aligne_d toa rt_efergncg shape. In the allignment Process gy among neighbor structures can not be properly andlyze
pose mformathn IS disregarded. However, considering th?n order to overcome this limitation, multi-object shapedno
bhraln Ias_a multi-object s()ﬁ;em formed by several Str%‘:urle%ls have been recently proposed in the literature. The first
.t e relative pose among i erent structures may provide i and straightforward proposal to build a joint statistidahjse
|cqlly relevgqt information. - A methqdolpgy to bu!ld multi- el of a set of objects was to concatenate shape features
object statisticapose+ shape models is given in this work. in a long vector, and to apply standard multivariate stiatist
The pose features for each structure are given by the Para|s. some applications have been done in heart modeling

eters of a similarity transformation and the shape featureaSing point sets as shape features [4]. In a recent work, the

are given by the coordinates of corresponding landmarks 0Qhape of several subcortical nuclei was characterized by m-
the boundary. As pose and shape features do not live in

Euclid but | Ri X ifold har%ps and PGA was performed on the multi-object feature vec-
uclidean vector space but in a Riemmanian manifold, the, [5]. Later, a methodology to build multi-object pose mod

met.ho.dology is based on performing standard muItivariat%ls (MOPM) was introduced in [6], which can be applied in
statistical tools (such as PCA) on the tangent space. EXPelsmbination with any shape characterization. Very regentl

imental results are performed on brain structures sucheas t%jointpose+shapemodel was proposed in [7], where m-reps
subcortical nuclei (caudate nucleus, hippocampus, anhzygdawas used as shape descriptors and pose was characterized in

thalamus, putamen, pallidum) and lateral ventricles. a different way to the proposal given in [6].

The aim of this work is to build multiobjegiose+ shape
1. INTRODUCTION models using boundary point sets as shape features. This
work is an extension of the multiobject pose model introduce
Statistical shape analysis is being increasingly used &o-ch in [6] with shape features. In this work shape is described by
acterize brain anatomy either in control subjects as well ageans of point distribution models.
abnormalities of brain structures in patients with neuycps
atric disorders [1]. To name a few, volumetry and morphome- 2 JOINT POSE+SHAPE MODEL
try studies of hippocampus and amygdala in Alzheimer’s dis-
ease patients [2], volumetry and morphometry analysis®f tho,r proposal for joint modelingose+ shape consists on con-
thalamus in schizophrenic patients [3]. . catenating pose and shape features in a joint feature vector
Statistical shape analysis is an emerging field with many _ [wPE?  w*f*)T, wheref? andf* denote pose and shape
applications on medical imaging and computer vision. Printeature vectors respectively and’,w® € R* are weight-
cipal Component Analysis (PCA) is one of the most commong factors that balance the relative importance betweapesh
procedures for rank reduction and statistical analysisis Th g4 pose within the model. Very often these features live in a
technique should be only applied to multivariate data lyingrjemannian manifold;, and their description at the tangent

on an Euclidean space. However, most of pose and shape fegsace is required in order to be able to compute statistics.
tures live in a Riemannian manifold, and PCA should be re-

placed by its counterpart Principal Geodesic Analysis (PGA o , )
The main difficulty to be addressed in the analysis of hu21 Principal Geodesic Analysis (PGA)

man brain is that several anatomical structures form a yighlpga is based on computing statistics on the tangent space
This work was partially funded by research grants TEC20080Q- at the meanT“G' which is an Euclidean space of the same

C03-02, TEC2006-13966-C03-02, FIS PI04/1795 from Spain. Bssa ~ dimension as the manifolds, and it provides a local approx-
work was funded by DGA under the FPI grant B097/2004. imation to the manifold. Théog operator provides the map-




ping between the manifold and the tangent space with twoepresentation at the identity has the following férm
important properties: distances and angles on the manifold

can be computed on the tangent space. The distance between r—reomy
any two elements, y € G is: log T = T2 l Ty Y (6)

—Try —Ty l z

d(z,y) = |[log,(y)]l 1) o 0 00

Therefore, the pose of a given object is characterized by the
ose feature vectd? formed by the seven free parameters in
SeT,ie., fP = [z y zryry 7,1 € R7, wherel = logs.

exp (fP) will denote the matrix obtained by exponentiating

the matrix representation d? described in the right hand

In a similar way, the angle between geodesics in the man
fold passing through the mean can be computed as the an
between their corresponding initial vectorsiipG. The ex-
ponential mapping is the inverse operator that takes Eestid

points frorr} the tangent space to the manifold. side of (6), andkxpyy (£7) = M exp (£7).
The Fréchet mean of a set of elemefits}’, € G, can The relative magnitude of the different pose parameters
be computed iteratively as [8]: (rotation, translation and scaling) is sensitive to thenmof
the reference shag®. This value, was selected in order to get
- 1 1 _ > commensurable units and more details can be found in [6].
He =P | Z 08—, (i) @) Given a data set with instances of complex systems

formed by.J objects{S, ;} -, J_l, the pose transformation

A set of orthonormal principal vectore; are obtained by 77, thattakes thg-th reference objedR; to thej-th object
standard Principal Component Analysis of the logarits= ~ from thei-th instances; ;, is given by

log, (=;). The corresponding principal geodesics are given 9

by 7k(t) = exp, (tvi), which are also orthogonal at the Tij = arg 6%11172(3)[) (Siy, T (Ry)) - )

mean.
As the similarity transformations commute among different

objects, the Lie group that describes the whole set of trans-
2.2. Posefeaturesf? formations is the direct product of thé similarity groups:

J
A more detailed description of pose features was done in [6§i7(3)” = 1:[1 Sim(3) = Sim(3) x Sim(3) x ... x Sim(3).
and itis only reviewed here for brevity reasons. The feature vectof?; is extracted from the logarithm

Given the configuration matrices (landmark coordmates)f h idual ‘ M?) T dth
of an objectS; and a reference shaf® with known corre- the residual transformationkg (( j) ij) and the

spondence, pose is defined by the similarity transformatiomean transformatiod” is obtained using (2). The multi-

o : .
that minimizes the distance object pose feature vectorfis= {Oqfffl aoffy - ~anffJ} €

Ty =arg min D2(S;,T(R)), 3) R”,_Whe_reaj are scal?ng factors that take into account the.
TeSim(3) relative size of each object and are computed as the ge@metri
mean of thes;; running for all instances.
whereD? is the sum of square distances between correspond-
ing points andSim(3) is the Lie group of similarity transfor- 2.3, Shape featuresf?

mations. o . S In this work shape is characterized by configuration magrice
A general similarity transformatiofl of a 3D pointx is: S €R3™, or equivalently by its corresponding configuration
) vectors = vec (S). The set of configuration matrices that are
x' =T(x) =sRx+d, (4)  Procrustes aligned to a reference shape= 7-(s) forms
the Procrustes shape space, denoteéd’adeingn the num-
whereR € SO(3) (3 x 3 orthogonal matrix with determinant per of landmarks. It has been shown in [9] thzt behaves
one),s € R*, andx’,x,d € R®. A matrix representation of |ocally as a Riemannian manifold and its exponential map-
Sim(3) is given by ping is given by

sR d - [ b (B[ ]
T = ) 5 § =exp, (h) =co ( r + sin —-h (8)
o] © el [EPAL]
INote that[z y z]T in the 4-th column in the r.h.s of (6) is different from

T operates on a 3D point in the following way’; 1] = din (4): actually, [z y 2|7 depends oR, s andd.

T[x; 1]. Thelog and exp mapping§ are computed as the 2y this work 23 is a sphere of radiugr||, while a unity radius was used
standardog andexp functions of matrices. The tangent spacein [9] without loss of generality.




whereh lies in the tangent spacg. >3 and||s|| = ||r||. Ac-
cordingly,h is a3nx1 vector with seven linear constraints that
only depend on the reference shapd”r = 0 and six extra
linear constraints that takes into account translationratet
tion invariance of the shape. Even though the dimension of
T,X3 is 3n — 7, the number of instancdsis usually the lim-
iting factor of the number of degrees of freedom and a smaller
dimension subspace can be computed from the observed d
after pose alignmerit; = log, (5;). P € R™in(3n-7.0).3n
will denote an orthonormal basis of the subspace spanned by
{h;}. In order to compute statistics, the referemds often
selected as the mean shap€, which is iteratively computed ,
using (2) and (3). The shape feature vector of a single objec?tl' Data set and preprocessing
will be Experiments were performed on a data seft=if8 brain MRI
©) studies from normal subjects from Internet Brain Segmenta-
tion Repository [10]. Seven brain structures from both hemi
The multi-object residual shape feature vector is given b){spheres 1_1.4 objects in total) were selected for this study:
ateral ventricle, thalamus, caudate nucleus, putamel, pa

S S S S T i . . N
ff = [aaf?; cof}y - ayf} ;] where the scaling factors; g, hippocampus and amygdala. The total number of land-
are the same as for the pose feature vector. Note that eagh, | o S n;, was 10459
3 7 .

object may have a different number of landmatksind their
correspondingd;; might have different dimension in the case
of n; < 1.

%t%. 1. Brain structures: Left) front view; Right) lateral view.

3. RESULTS

£5 — hTPT c Rmin(3nf771) )

The preprocessing (global allignment and correspondence
estimation) was done as in [6]. In a nutshell, Procrustes al-
lignment and correspondence estimation is performed inde-
pendently for each object by means of an iterative non-rigid
registration procedure applied to a template structuredes
the Robust Point Matching (RPM) algorithm [11]. The mean
After extracting pose and shape features from all instanceshape of each structure with its corresponding mean pose is
and objects in the training set, any multivariate stattiech- illustrated in Fig. 1.
nigue can be used on the set of features

2.4. Joint statistical poset+shape model

3.2. Experiments
F=[w?[ff £ £7]; w[f7 5 £7]] . The first experiment was to compute the relative importance
of pose and shape within our training set. The total energy
The weighting factor?(w*) was chosen such that the en- (TE) is defined as the variance of corresponding points after
ergy of pose(shape) features is equal to the correspondiigiobal alignment. The residual variance when each stractur
pose(shape)-driven boundary displacement energy. is independently alligned to its mean shape at the mean pose

The most common multivariate statistical technique is PC&.named shape enerdgSH). The pose energy is defined as the

The principal vectors oF are denoted asy, and can be differencePE = TE — SE. Fig. 2 shows the rati®E /T E

object-wise splitted as for each structure.

0.95

vi=[(v2) e () i) 020) ] - o)

The principal geodesics are also splitted into thebjects.
The j-th object generated by thie-th principal geodesic is
given by

Dy (Vec_1 (expm; (¢ P;‘-szﬁj/aj/ws)) ;t) ,  (11)

where®,, ;(-;t) denotes the similarity transformation defined
by the matrixM¥ exp (t vﬁﬂj/a‘j/wl’) andt € R. Shape
instances are first generated by means of the exponential map

of the shape principal vectors and later on transformed &y th
corresponding principal pose.

Pose Energy / Total Energy
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Fig. 2. Relative pose energy in the training set
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Fig. 3. Reconstruction error versus model size.

The second experiment was to compare reconstruction er-

ror performance betwegaose+ shapeversus only shape mod-

els. Reconstruction error was measured as the RMS distance
between original and reconstructed instances at correspon

size tharpose+shapemodels in order to characterize the anatom-
ical variability for the same reconstruction error.

The proposed model splits the anatomical variability of a
set of objects into pose and shape parameters. Pose parame-
ters are very compact and have a very natural understanding.
In our vision, these models can provide valuablariori in-
formation to segmentation and registration algorithmsnas i
tializations or regularizers.
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