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Abstract. There is an increasing interest on computing statistics of spa-
tial transformations, in particular diffeomorphisms. In the Log-Euclidean
framework proposed recently the group exponential and logarithm are
essential operators to map elements from the tangent space to the man-
ifold and vice versa. Currently, one of the main bottlenecks in the Log-
Fuclidean framework applied on diffeomorphisms is the large computa-
tion times required to estimate the logarithm. Up to now, the fastest ap-
proach to estimate the logarithm of diffeomorphisms is the Inverse Scal-
ing and Squaring (ISS) method. This paper presents a new method for
the estimation of the group logarithm of diffeomorphisms, based on a se-
ries in terms of the group exponential and the Baker-Campbell-Hausdorff
formula. The proposed method was tested on 3D MRI brain images as
well as on random diffeomorphisms. A performance comparison showed a
significant improvement in accuracy-speed trade-off vs. the ISS method.

1 Introduction

Computational Anatomy is an emerging research field in which anatomy are
characterized by means of large diffeomorphic deformation mappings of a given
template [1]. The transformation is obtained by non-rigid registration, minimiz-
ing a cost function that includes an image matching term, and a regularization
term that penalizes large and non-smooth deformations. Several approaches have
been proposed in order to analyze the information contained in the transforma-
tion. Some methods consist in introducing a right-invariant Riemannian distance
between diffeomorphisms, yielding methods with high computational load [2, 3].
Recently, an alternative framework was proposed [4] and consists in endowing
the group of transformations with a Log-Euclidean metric. Although this metric
is not translation invariant (with respect to the diffeomorphism composition),
geodesics are identified with one-parameter subgroups, which can be obtained
faster and more easily than the geodesics of a right-invariant Riemannian metric.

One-parameter subgroups of diffecomorphisms ¢; () are obtained as solutions
of the stationary Ordinary Differential Equation (ODE)

d(p;liw) =vop = v(gpt(x)). (1)
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A diffeomorphism ¢ = ¢(z) = ¢1(x) is defined as the value of the flow ¢; at
time one. Any velocity vector field can be written as a linear expansion v(z) =
Eil vi(x)e;, where {e;}2 | is an orthogonal basis of R”. If the components
v;(x) are analytic then the solution of Eq. (1) is also analytic, and is given by
the following formal power series (a.k.a. Grobner’s Lie Series) [5]:

& tn
oi(x) =eVa = Z aV”m, (2)
n=0

where V' = Zil vAx)% is a differential operator and V" denotes the n-fold
self-composition of V.

The Log-Euclidean framework to compute statistics on diffeomorphisms con-
sists in defining a distance between two diffeomorphisms ¢; and ¢ via a norm
|I-|| on vector fields: dist(¢1, ¢2) = ||v1 —v2]|, where ¢; = exp(v;). Assuming that
such a v; exists we call it the logarithm of ¢;, v; = log(¢;). This metric is equiva-
lent to a bi-invariant Riemannian metric defined on the (abelian) group with the
following composition rule: ¢ ® ¢o = exp(log(oy) + log(d2)). With such a group
structure, the distances in the space of diffeomorphisms is computed as the Eu-
clidean distance in the space of vector fields. This distance is inversion-invariant,
i.e. dist(¢r, ) = dist(¢7"', g5 1) since log(é7!) = —log(py) (in fact, it is in-
variant with respect to the exponentiation to any real power # 0), and invariant
with respect to the new group product, i.e. dist(¢1 © ¢3, pa @ ¢3) = dist(¢1, P2),
but is not invariant under the standard composition, i.e. dist(py o ¢3, d2 0 ¢3) =
dist(p1(p3(x)), d2(Ps(x))) # dist(¢1, ¢2). Assuming that the logarithm and ex-
ponential can be (fast and accurately) computed, any standard statistical anal-
ysis can be performed directly on vector fields v;. This provides a simple way of
computing statistics on transformations that avoids the problems of the small de-
formation frameworks, such as the likely occurrence of non-invertible mappings,
and the ones of a right-invariant Riemannian framework, such as the intensive
computation cost [6,7].

Regarding to the computation of the exponential, it was recently proposed to
extend the well known Scaling and Squaring (SS) method for computing the ma-
trix exponential to diffeomorphisms [4]. This method basically consist in squar-
ing (self-composing) recursively N times z + v/2V ~ exp(v/2V) = exp(v)~2"
In a recent study [8], we presented a detailed performance comparison of sev-
eral methods to compute the group exponential of diffeomorphisms, including
the SS method, the forward Euler method and the direct application of the Lie
series (2). The SS method achieved the best speed-accuracy trade-off, though
two main drawbacks were found: first, the transformation must be computed
in the whole domain, contrary to the forward Euler method and the Lie series
expansion, that can be computed at a single point; and secondly, there exists an
intrinsic lower bound in the accuracy due to the interpolation scheme and the
finite size of the sampling grid. Despite of this lower bound, the SS method seems
to be fast and accurate enough for most medical image analysis applications.

Regarding to the group logarithm of diffeomorphisms, it was proposed to
apply the Inverse Scaling and Squaring (ISS) method [4], based on the following



approximation v = 2N(exp(v)27N — x), where the square root of ¢ must be
recursively estimated N times. The ISS method is much slower (about 100 times)
than the SS method, as the computation of the square root involves an energy
functional minimization. In the cases where a diffeomorphism can be written
as a composition of two exponentials, ¢ = exp(v1) o exp(v2), the logarithm can
be estimated with the Baker-Campbell-Hausdorff (BCH) formula, which is a
series in terms of the Lie Bracket. In [7] it was tested the BCH formula applied
to diffeomorphisms and it was shown that it provides similar accuracy than
the ISS method, but with a much lower computational time. In a general case,
where the diffeomorphism is neither an exponential of a known vector field, nor
a composition of known exponentials, the ISS method seems to be the only
available method for estimating the logarithm.

In this work, we propose a new method of computing the logarithm of ar-
bitrary diffeomorphisms in any dimension based on a series involving the group
exponential and the BCH formula.

2 A series for the logarithm of diffeomorphisms

The Lie series of the diffeomorphism exponential in Eq. (2) is a generalization of
the Taylor expansion of the scalar exponential. However, to our knowledge, the
Taylor expansion of the scalar logarithm can not be generalized to the logarithm
of diffeomorphisms in the same way. In fact, there exist diffeomorphisms (even
infinitely closed to the identity) that cannot be written as the exponential of
any vector field in the tangent space [9], i.e. the exponential ¢ = exp(v) is not
a local diffeomorphism at v = 0, therefore a Lie series for the logarithm can not
exist. Nevertheless, we will talk about the logarithm v of a diffeomorphism ¢,
and define it as the vector field v whose exponential is closer to ¢.

The basic idea is that given an initial guess vy for v (being v the ’true’
logarithm of ¢), exp(—wp) is close to ¢!, therefore exp(—wvg) o ¢ is close to the
identity and can be approximated by exp(—wvg) o ¢ = exp(dvg) ~ x + dvg. Then
dvg ~ Svo = exp(—vp) 0 ¢ — x and vy can be corrected with S’U() in order to get
a better estimation of v:

b = exp(v) = exp(vo) o (exp(—to) © )
= exp(vp) © eXp((EUo)
~ exp(vg) o exp(dvg)

Recalling that the set of diffeomorphisms is a noncommutative group, v can
be approximated by the BCH formula [7]: v = vg + dvg + 1/2[vg, dvg] + -+ =~
vo + dvo + 1/2[wvo, Svo] + -+, where [v,w] = >, w;0;v — v;0;w is the Lie bracket.
Finally, we will show that the sequence v; = v;_1 +ov; 1+ 1/2[v;—1, gvi,ﬂ + e
with v, = exp(—v;—1) o ¢ — z, quickly converges to v. Before going to the
more general case of diffeomorphisms, a convergence analysis is presented for the
scalar case.



Proposition 1. Let be f = €Y, v € R, and let v,(f) be defined by
Vo = 0
Up = VUp_1 + fe "1 —1 (3)

then the sequence® v, converges to lim,_ .o vn(f) = v and the error in the n-th

term, 6, = v — v, decreases with n as
S o O([If = 1)) (4)

Proof. Replacing f = e" in (3) and expanding the exponential in its power series
we get

Uy =Vp_1+e " —1=u0,_ 1+ 1 —1

=vp1+14+0—vn1+ Y k!l -1
k=2
(%) 5k_1 )
—0n = kz 7 < O(16n11) (5)
=2

Recalling that 6; = v —v; = v — (f — 1), and expanding v in its power series
) _1\k

v =log(f) = 332, Y5 (- 1P we have 61 = (f = 1)~ 1/2(f = 1>+ O(|If -

1]]3) = (f — 1), and with (5) we get (4). O

In fact, the reader can check that the expansion of v,, in power series of f is

vy =f—-1
_1)2 —1)3 —1)4 —1)°
U2:(f—1)—(f21) Y 31> e 81) +(f301) +0O((f - 1)°)
T o(f_ 1)k
R Yol = B =+ (=1 + 07 - 1))
2" —1 1\k "
=) %(—1)’”1 +O((f=1*)
k=1

Note that the first 28 — 1 terms of the Taylor expansion of the k-th element of
the sequence are equal to the Taylor expansion of the logarithm.

Of course it is not practical to compute the logarithm of a scalar number
as the limit of a sequence where an exponential must be computed for each
term. However, in the case of diffeomorphisms there is no Taylor expansion (or
an alternative method except for the ISS) available for the logarithm, and the

! Or equivalently the series v, = >.7"'(¢"(f) — 1), where g(f) = '~/ f and ¢"(f)
is the n-fold self-composition of g(f), i.e. ¢°(f) = f, ¢"(f) = g(f) and g"(f) =
9(g" ()



exponential is not very expensive to compute for the usual numerical accuracy
required in medical image analysis.

Diffeomorphism logarithm. Let’s assume that a diffeomorphisms ¢ can be written
as ¢ = exp(v), for some v, in the sense of the formal power series (2). And let’s
also assume that, for a given vector field dv,, close enough to 0, the BCH formula
can be applied to compute v, 41 = log(exp(v,,) o exp(dvy, ),

V1 = Up + Oy + 1/2 [vn,gvn} +1/12 |:Un, [vn,gvn” +1/12 an,gvn} 751)”} +
+1/48 an, [vn,gvn” ,Svn} +1/48 [’un, an,gvn] ,Svn” + O((||vn|| + ||Svn\|)5)

where [v,w] = (w;0v/0x; — v;0w/0x;) is the Lie bracket, then the following
proposition can be stated:

Proposition 2. The sequence
v =10
Vp = Un_1+ 0Un_1 + 1/2 [vn_l, Svn_l} 4 (6)
with dv,_1 = exp(—v,—1) 0 ¢ — x, converges to v with error
8, = log (exp(v) o exp(—vn)) o< O([|¢ — z||*"). (7)
Proof. Eq. (6) is equivalent to

eXp(”n) = eXp(’U’nfl) o eXp(Svnfl)

exp(vn) = exp(vn1) 0 exp (exp(—vq_1) o exp(v) — )

where we used ¢ = exp(v). Now, multiplying on the right by ¢! = exp(—v)
and expanding exp(exp(—v,_1) o exp(v) — x) in its power series we have

exp(vn) 0 exp(—v) = exp(vn-1) 0 exp(exp(—vn-1) © exp(v) — x) © exp(—v)

exp(~0n) = exp(va-1) (7 + (exp(~vn-1) o exp(v) — 7) +

> —VUp_1) oexp(v) —x F
+Z(exp( ) o exp(v) — ) )Oexp(_v)

k!
k=2

=+ exp(vp—1) o (exp(—vy—1) o exp(v) — m)2 o exp(—v)/2

430 Pl (exp<—vn_13€ : exp(v) — )" o exp(—v)
k=3

It is not difficult to see that the last term of r.h.s. is of order O(63_;) and

(exp(—v,_1)oexp(v) —z)? = (exp(—v,_1)oexp(v) —z) o (exp(—v,_1) oexp(v) —
x) = exp(—vy_1)oexp(v)oexp(—v,_1)oexp(v) — 2 exp(—v,_1) oexp(v) +z, and
left multiplying by exp(v,_1) and right multiplying by exp(—v) gives exp(v) o



exp(—vp—1) — 2 + exp(v,—1) o exp(—v) = exp(dn_1) — 22 + exp(—0p_1) =
§2_1 4+ O(8%_,), therefore

exp(—6p) =z +6,_1/2+ 00 _))
v b OB =+ 822+ O _y)
b o< O(67%_1) (8)

Recalling (7) the initial error §; = log(exp(v) o exp(—wv1)), where v; = §y =

B

p—z =3 1, %, and v commutes with v¥ for all k, therefore §; = v—)"77 ;| % o
O(v?) < O((¢ — x)?). Together with (8) we get (7). O

In the estimation of the error (7) it was assumed that an infinite number
of terms in the BCH formula was used. It can be argued that when a finite
number NBCH of terms is used, §,, (’)(||(;5—:U||NBCH+1)7 as far as 2" > NBCH,
Therefore, in practice, NP¢H will limit the accuracy of the estimation.

3 Implementation details

The algorithm is initialized with v1 = ¢ — x and then updated following (6),
where only 1 or 2 terms of the BCH formula are used. The computation of the
Lie Bracket [ -, - ] involves first order partial derivatives with respect to the
spatial coordinates x; that was implemented as centered finite differences after
Gaussian filtering. The filtering is required because the noise in dvy is quickly
magnified after successive derivations. The filter width can be estimated using
the following rule [8]: vy < v, exp(max(dv/dz)), where vy (v,) is the cut-off
frequency of ¢ (v). In our implementation there were still some isolated points
in v where the second derivative blown up, and a median filter was applied to
these points. The exponential followed by a composition exp(—uvy) o ¢ present
in dvi, was not computed with the SS method because, as explained in [8], both
the composition and the SS methods introduce errors due to interpolation and
the finite grid size. Insteed, an integration scheme such as the Forward Euler
method, starting at the locations defined by ¢(z;), being x; the grid points, is
much more accurate.

The gradient descent method required to compute the square roots in the ISS
method was based in a simpler gradient than in [4], in particular avoiding the
estimation of the inverse diffeomorphism. This implementation provided a faster
and more accurate convergence. It might be possible that the original proposal
could provide more stable results for large diffeomorphisms.

4 Results

Firstly, a 60x60x60 smoothed random vector field v was exponentiated with
the forward Euler method (step size 1/500) providing a diffeomorphism ¢. We
computed the logarithm o = log(¢) using (6) (NPYH = 0, 1 and 2), and the



ISS method. Accuracy was assessed by velocity vector field error e = (v — 0)
and its corresponding diffeomorphism error £ = (¢ — exp(?)). Computations
were performed using a 1.83GHz Core 2 Duo processor within a 2GB mem-
ory standard computer running Matlab 7.2 under Linux. Linear interpolation
was implemented as C source mex files. Computation time was assessed with
‘cputime’ Matlab function. Figure 1 illustrates the accuracy-speed trade-off and
a slice of the corresponding deformed grid. Each estimation method is described
by two curves: a dashed/solid line corresponding to error in v and ¢ respectively.
Note the large amplitud of the deformation. Figure 2 shows a zoom detail of the
error distributions and vector fields.
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Fig. 1. Left: Error vs. CPU time in the estimation of the logarithm corresponding
to a random simulation. Solid/dashed lines correspond to E and e respectively. The
horizontal lines correspond to the small deformation approximation: v(z) = ¢(z) — =.
Right and bottom: Illustration of the deformation grid. Fig. 2 will show the error
distribution inside the red square.

Regarding to the accuracy in the estimation of the logarithm v, which is
actually our target, the ISS method only provided a midway accuracy between
small deformation approximation and the proposed method for NBCH =1 2.
However, the corresponding diffeomorphism had similar accuracy for all meth-
ods. Regarding computation time, the proposed method with NBCH = 1 was
about 10 times faster than ISS method. From Fig. 2 it can be seen that the
error was not due to outliers but in spatialy correlated regions and far from the
boudary.

A second set of experiments were performed on 3D MRI brain data sets.
Two 181 x 217 x 181 brain images with isotropic 1mm resolution were randomly
selected from LPBA40 database from LONI UCLA [10]. Two non-rigid registra-



Fig. 2. Detail of the spatial distribution of E (left) and e (center) within the red square
in Fig. 1. Black/red arrows denote proposed (N?# =1, n = 15) and ISS method (n =
6) respectively. Right: Velocity vector fields divided by 10 (black: proposed method;
red: ISS; blue: ground truth).

tion methods were used: a diffeomorphic non-rigid registration [11] that provided
a vector field v as outcome; and Elastix [12] which is a registration method that
provides a deformation field parameterized with B-Splines. In the later there is
no warranty of the existence of v.

Left panels in Figures 3 and 4 show the error vs. computation time for the
case of diffeomorphic and Elastix registration, respectively. In figure 4 only errors
in ¢ are available. Additionally, a representative axial slice of the source image
and the corresponding deformed grid is shown at right panel in both figures.
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Fig. 3. Left: Error vs. CPU time in the estimation of the logarithm corresponding to
a diffeomorphism computed with stationary LDDMM. Solid/dashed lines correspond
to E and e respectively. The horizontal lines correspond to the small deformation
approximation. Right: Illustration of the deformation grid superimposed on the brain
image.
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Fig. 4. Left: Error E vs. CPU time in the estimation of the logarithm for a transforma-
tion computed with Elastix. The horizontal line corresponds to the small deformation
approximation. Right: Illustration of deformation grids superimposed on the brain im-
age.

It is worthy to note that the error e curve of the ISS method in Figures 1
and 3 are very different from the curve shown in [4]. We hypothesized that
this behaviour could be explained by the large amplitude of the deformations.
In order to verify this possibility the same experiment was performed on the
same vector field v divided by a factor of 10. Left panel of Figure 5 shows
the error curves and right panel shows a detail of the deformed grid and the
corresponding vector field. For this particular case of very small deformations,
the ISS method was much more accurate than the logarithm series. Now the
shape of the error curve was similar to the one in [4], with smaller error values.
Note that all the error values, even for the small deformation approximation,
are negligible for medical image analysis applications. When deformations are
so small, v & ¢(z) — x is accurate enough for standard statistical analysis.
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In our opinion, the accuracy of the ISS method for large diffeomorphisms
was limited by the fact that the right way to interpolate diffeomorphisms is
unknown. Interpolation of diffeomorphisms is performed in the squaring (self-
composition) operation. The composition of diffeomorphisms using a kernel inter-
polation scheme can provide non-diffeomorphic mappings. In contrast, velocity
vector fields belong to a linear vector space, therefore they can be summed or
interpolated without leaving the space.

5 Conclusion

We presented a new algorithm for the estimation of the group logarithm of
arbitrary diffeomorphisms based on a series in terms of the Lie bracket and the
group exponential. This method provided a much better accuracy-speed trade-
off than the ISS method to estimate the vector field v defining a diffeomorphism.
In particular, at least one term of the BCH formula was essential for the series
to provide a significant improvement vs. the ISS method.

Once a fast algorithm to compute the logarithm is available, statistics of the
spatial transformations mapping image instances to a given atlas can be easily
computed by means of standard multivariate statistics on the tangent space
assuming the Log-Euclidean framework. This will be the topic of future studies.
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