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1. INTRODUCTION

Signal processing today is performed in the vast majority
of systems for ECG analysis and interpretation. The
objective of ECG signal processing is manifold and com-
prises the improvement of measurement accuracy and
reproducibility (when compared with manual measure-
ments) and the extraction of information not readily
available from the signal through visual assessment. In
many situations, the ECG is recorded during ambulatory
or strenuous conditions such that the signal is corrupted
by different types of noise, sometimes originating from
another physiological process of the body. Hence, noise
reduction represents another important objective of ECG
signal processing; in fact, the waveforms of interest are
sometimes so heavily masked by noise that their presence
can only be revealed once appropriate signal processing
has first been applied.

Electrocardiographic signals may be recorded on a long
timescale (i.e., several days) for the purpose of identifying
intermittently occurring disturbances in the heart
rhythm. As a result, the produced ECG recording amounts
to huge data sizes that quickly fill up available storage
space. Transmission of signals across public telephone
networks is another application in which large amounts
of data are involved. For both situations, data compression
is an essential operation and, consequently, represents yet
another objective of ECG signal processing.

Signal processing has contributed significantly to a
new understanding of the ECG and its dynamic properties
as expressed by changes in rhythm and beat morphology.
For example, techniques have been developed that char-
acterize oscillations related to the cardiovascular system
and reflected by subtle variations in heart rate. The
detection of low-level, alternating changes in T wave
amplitude is another example of oscillatory behavior
that has been established as an indicator of increased
risk for sudden, life-threatening arrhythmias. Neither of
these two oscillatory signal properties can be perceived by
the naked eye from a standard ECG printout.

Common to all types of ECG analysis—whether it
concerns resting ECG interpretation, stress testing, am-
bulatory monitoring, or intensive care monitoring—is a
basic set of algorithms that condition the signal with
respect to different types of noise and artifacts, detect
heartbeats, extract basic ECG measurements of wave
amplitudes and durations, and compress the data for
efficient storage or transmission; the block diagram in
Fig. 1 presents this set of signal processing algorithms.
Although these algorithms are frequently implemented to

operate in sequential order, information on the occurrence
time of a heartbeat, as produced by the QRS detector, is
sometimes incorporated into the other algorithms to im-
prove performance. The complexity of each algorithm
varies from application to application so that, for example,
noise filtering performed in ambulatory monitoring is
much more sophisticated than that required in resting
ECG analysis.

Once the information produced by the basic set of
algorithms is available, a wide range of ECG applications
exist where it is of interest to use signal processing for
quantifying heart rhythm and beat morphology proper-
ties. The signal processing associated with two such
applications—high-resolution ECG and T wave alter-
nans—are briefly described at the end of this article.
The interested reader is referred to, for example, Ref. 1,
where a detailed description of other ECG applications
can be found.

2. ECG PREPROCESSING

Considerable attention has been paid to the design of
filters for the purpose of removing baseline wander and
powerline interference; both types of disturbance imply
the design of a narrowband filter. Removal of noise
because of muscle activity represents another important
filtering problem being much more difficult to handle
because of the substantial spectral overlap between the
ECG and muscle noise. Muscle noise present in the ECG
can, however, be reduced whenever it is appropriate to
employ techniques that benefit from the fact that the ECG
is a recurrent signal. For example, ensemble averaging
techniques can be successfully applied to time-aligned
heartbeats for reduction of muscle noise.

The filtering techniques are primarily used for prepro-
cessing of the signal and have as such been implemented
in a wide variety of systems for ECG analysis. It should be
remembered that filtering of the ECG is contextual and
should be performed only when the desired information
remains undistorted. This important insight may be ex-
emplified by filtering for the removal of powerline inter-
ference. Such filtering is suitable in a system for the
analysis of heart rate variability, whereas it is inappropri-
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Figure 1. Algorithms for basic ECG signal processing. The
timing information produced by the QRS detector may be fed to
the blocks for noise filtering and data compression (indicated by
gray arrows) to improve their respective performance. The output
of the upper branch is the conditioned ECG signal and related
temporal information, including the occurrence time of each
heartbeat and the onset and end of each wave.
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ate in a system for the analysis of micropotentials, as such
potentials spectrally overlap the powerline interference.

2.1. Baseline Wander

Removal of baseline wander is required in order to mini-
mize changes in beat morphology that do not have cardiac
origin, which is especially important when subtle changes
in the ‘‘low-frequency’’ ST segment are analyzed for the
diagnosis of ischemia, which may be observed, for exam-
ple, during the course of a stress test. The frequency
content of baseline wander is usually in the range below
0.5 Hz; however, increased movement of the body during
the latter stages of a stress test further increases the
frequency content of baseline wander (see Fig. 2). Patients
unable to perform a traditional treadmill or ergometer
stress test may still be able to perform a stress test by
either sitting, running an ergometer by hand, or using a
special rowing device. In such cases, baseline wander
related to motion of the arms severely distorts the ECG
signal.

The design of a linear, time-invariant, highpass filter
for removal of baseline wander involves several considera-
tions, of which the most crucial are the choice of filter cut-
off frequency and phase response characteristic. The cut-
off frequency should obviously be chosen so that the
clinical information in the ECG signal remains undis-
torted while as much as possible of the baseline wander
is removed. Hence, it is essential to find the lowest
frequency component of the ECG spectrum. In general,
the slowest heart rate is considered to define this parti-

cular frequency component; the PQRST waveform is at-
tributed to higher frequencies. During bradycardia, the
heart rate may drop to approximately 40 beats/minute,
implying that the lowest frequency contained in the ECG
is approximately 0.67 Hz (2). As the heart rate is not
perfectly regular but always fluctuates from one beat to
the next, it is necessary to choose a slightly lower cut-off
frequency such as 0.5 Hz. If too high a cut-off frequency is
employed, the output of the highpass filter contains an
unwanted, oscillatory component that is strongly corre-
lated to the heart rate.

In certain situations, baseline wander becomes parti-
cularly pronounced at higher heart rates such as during
the latter stages of a stress test when the workload
increases. Then, it may be advantageous to couple the
cut-off frequency to the prevailing heart rate, rather than
to the lowest possible heart rate, to further improve base-
line removal. Linear filtering with time-variable cut-off
frequency was initially suggested for offline processing of
ECG signals and later extended for online use (3,4).

The other crucial design consideration is related to the
properties of the phase response and, consequently, the
choice of filter structure. Linear phase filtering is highly
desirable in order to prevent phase distortion from alter-
ing various wave properties of the cardiac cycle such as
the duration of the QRS complex, the ST–T segment level,
or the endpoint of the T wave. It is well-known that FIR
filters can have an exact linear phase response, provided
that the impulse response is either symmetric or antisym-
metric; however, FIR designs result in high filter orders.
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Figure 2. (a) Electrocardiographic baseline wan-
der because of sudden body movements. The am-
plitude of the baseline wander is considerably
larger than that of the QRS complexes. (b) A
close-up in time (10 � ) of the ECG signal framed
in (a), the estimated baseline obtained by fitting a
cubic spline to the series of knots (indicated by
dots), and the corrected ECG signal.
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Forward-backward IIR filtering is a useful technique
that exhibits the linear phase property. Although an IIR
filter meets a magnitude specification more easily with a
much lower filter order than does an FIR filter, it comes
with a nonlinear phase response. The use of forward-
backward filtering remedies this disadvantage because
the overall result is filtering with a zero-phase transfer
function. Implementation of such a filtering scheme in-
volves three steps, namely, (1) processing of the input
signal x(n) with an IIR filter h(n), (2) time reversal of the
filter output, and repeated processing with h(n), followed
by (3) time reversal of the twice-filtered signal to produce
the baseline-corrected output signal.

A useful low-complexity implementation of linear fil-
tering involves sampling rate alteration (5). As the base-
line wander to be removed is a narrowband component,
filtering can be performed at a much lower sampling rate
than at the rate of the original ECG signal. The main steps
of this multirate approach are: (1) decimation of the
original signal, which includes antialising filtering, to a
lower sampling rate better suited to filtering, (2) lowpass
filtering to produce an estimate of the baseline wander, (3)
interpolation of the estimate back to the original sampling
rate, and (4) subtraction of the estimate from the original
ECG so as to produce the baseline-corrected signal. In
addition to offering low complexity, the sampling rate
alteration technique has the advantage of easily accom-
modating a time-variable cut-off frequency.

Yet another approach is to fit a polynomial to repre-
sentative samples (‘‘knots’’) of the ECG followed by sub-
traction of the polynomial. The fit is done by requiring the
polynomial to pass through knots usually being selected
within the isoelectric PQ segments. As the knots can only
be located once QRS detection has been performed, the
location of knots illustrates the feedback mechanism from
QRS detection to noise filtering displayed in Fig. 1. Poly-
nomial fitting can be interpreted as time-varying filtering
in which the heart rate is controlling the cut-off frequency.

2.2. Powerline Interference

Electromagnetic fields caused by a powerline represent a
common noise source in the ECG that is characterized by
50 or 60 Hz sinusoidal interference, possibly accompanied
by a number of harmonics. Such narrowband noise ren-
ders the analysis and interpretation of the ECG more
difficult, as the delineation of low-amplitude waveforms
becomes unreliable and spurious waveforms may be in-
troduced (6). Although various precautions can be taken to
reduce the effect of powerline interference, for example, by
selecting a recording location with few surrounding elec-
trical devices or by appropriately shielding and grounding
the location, it may still be necessary to perform signal
processing to remove such interference. Several techni-
ques have been presented for this purpose, ranging from
straightforward linear, bandstop filtering to more ad-
vanced techniques that handle variations in powerline
frequency and suppress the influence of transients man-
ifested by the occurrence of QRS complexes (5,7).

A major concern when filtering out powerline interfer-
ence is the degree to which the QRS complexes influence

the output of the filter. The QRS complex acts, in fact, as
an unwanted, large-amplitude impulse input to the filter.
As linear, time-invariant notch filters are generally more
sensitive to the presence of such impulses, powerline
filters with a nonlinear structure may be preferable (8).
In order to assure that a filter does not introduce unac-
ceptable distortion, its performance should be assessed by
means of simulated signals so that distortion can be
exactly quantified.

3. QRS DETECTION

The presence of a heartbeat and its occurrence time is
basic information required in all types of ECG signal
processing. As the QRS complex is that waveform that is
most easily discerned from the ECG, beat detection is
synonymous to the detection of QRS complexes. The de-
sign of a QRS detector is of crucial importance because
poor detection performance may propagate to subsequent
processing steps and, consequently, limit the overall per-
formance of the system. Beats that remain undetected
constitute a more severe error than do false detections; the
former type of error can be difficult to correct at a later
stage in the chain of processing algorithms, whereas,
hopefully, false detections can be eliminated by, for exam-
ple, performing classification of QRS morphologies.

A QRS detector must be able to detect a large number
of different QRS morphologies in order to be clinically
useful and able to follow sudden or gradual changes of the
prevailing QRS morphology. Furthermore, the detector
must not lock onto certain types of rhythm, but treat the
next possible event as if it could occur at almost any time
after the most recently detected beat. Several detector-
critical types of noise and artifacts exist depending on the
ECG application of interest. The noise may be highly
transient in nature or be of a more persistent nature, as
exemplified by the presence of powerline interference. In
the case of an ECG recording with episodes containing
excessive noise, it may be necessary to exclude such
episodes from further analysis. Figure 3 illustrates two
types of noise that are particularly problematic in QRS
detection.

Most detectors described in the literature have been
developed from ad hoc reasoning and experimental in-
sight. The general detector structure can be described by
the block diagram in Fig. 4 (9,10). Within such a detector
structure, the purpose of the preprocessor is to enhance
the QRS complexes while suppressing noise and artifacts;
the preprocessor is usually implemented as a linear filter
followed by a nonlinear transformation. The output of the
preprocessor is then fed to a decision rule for detection.
The purpose of each processing block is summarized
below.

The linear filter is designed to have bandpass charac-
teristics such that the essential spectral content of the
QRS complex is preserved, while unwanted ECG compo-
nents such as the P and the T waves are suppressed (see
Fig. 5). The center frequency of the filter varies from 10 to
25 Hz and the bandwidth from 5 to 10 Hz. In contrast to
other types of ECG filtering, waveform distortion is not a
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critical issue in QRS detection. The focus is instead on
improving the SNR to achieve good detector performance.

The nonlinear transformation further enhances the
QRS complex in relation to the background noise as well
as transforming each QRS complex into a single positive
peak better suited for threshold detection. The transfor-
mation may consist of a memoryless operation, such as
rectification or squaring of the bandpass-filtered signal, or
a more complex transformation with memory. Not all
preprocessors employ a nonlinear transformation, but
the filtered signal is instead fed directly to the decision
rule.

The decision rule takes the output of the preprocessor
and performs a test on whether a QRS complex is present
or not. The decision rule can be implemented as a simple
amplitude threshold procedure, but usually include addi-
tional tests, for example, on reasonable waveform dura-

tion, to assure better immunity against various types of
noise. The threshold is usually adapted to the most recent
waveform amplitudes so that gradual changes in ampli-
tude can be tracked.

It is interesting to note that the above detector struc-
ture can be derived from a model-based perspective by
applying maximum likelihood estimation to a statistical
model whose parameters describe the unknown occur-
rence time y and amplitude a (5),

xðnÞ¼asðn� yÞ þ vðnÞ: ð1Þ

In this model, the observed signal x(n) is assumed to be
composed of the waveform of interest, denoted s(n), and
additive noise v(n), being a stationary, white Gaussian
process. Although this model only accounts for a single
heartbeat, the resulting detector structure can still be
used to process successive intervals of the ECG signal.

Detector performance is commonly measured in terms
of the probability of a true beat being detected, denoted
PD, and the probability of a false beat being detected PF.
The probability of a missed beat PM is related to the
probability of detection through PD ¼ 1 � PM. These prob-
abilities are usually estimated from the performance
figures that results from analyzing a database of ECGs
containing a large variety of QRS morphologies and noise
types. The estimators are defined by ratios that include
the number of correctly detected QRS complexes ND, the
number of false alarms NF, and the number of missed
beats NM [i.e., P̂F ¼NF=ðND þNFÞ and
P̂D ¼ND=ðND þNMÞ]. As each probability is determined
for each of the ECG recordings in the database, it is
customary to compute a ‘‘gross’’ average of the estimates
in order to reflect the overall performance of the QRS
detector.

The numbers ND, NF, and NM can only be computed
once the database has been subjected to manual annota-
tion. Such annotation is typically a laborious process,
involving one or several skilled ECG readers, and leads
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Figure 5. Power spectrum of the P wave, QRS complex, and T
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x (n) �̂1 �̂2, . . ., Figure 4. Block diagram of a commonly used
QRS detector structure. The input is the ECG
signal, and the output ŷ1; ŷ2; . . . is a series of
occurrence times of the detected QRS complexes.

Figure 3. Examples of noise being proble-
matic in QRS detection caused by electrode
motion artifacts (top) and electromyographic
noise (bottom).
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to every QRS complex being assigned its correct occur-
rence time yi. A beat is said to have been detected when
the difference between the estimated occurrence time ŷj
and the annotation time yi is within a certain matching
window defined by Dy. A false detection is produced when
ŷj is located at a distance larger than Dy from any yi, and a
beat is considered to have been missed when no detection
occurs closer than Dy to yi (Fig. 6).

As indicated by its name, the QRS detector is designed
to detect heartbeats, while not producing occurrence times
of the QRS complexes with high temporal resolution.
Hence, it may be necessary to improve the resolution
using an algorithm that performs time alignment of the
detected beats. Such alignment reduces, for example, the
problem of smearing that may occur when computing the
ensemble average of several beats.

4. WAVE DELINEATION

Once the QRS complex has been detected, the T wave can
be analyzed because ventricular repolarization always
follows depolarization. Conversely, the P wave does not
lend itself as easily to analysis because atrial and ventri-
cular rhythms may be independent of each other. In the

vast majority of cases, however, atrial and ventricular
rhythms are associated so that P wave detection may be
based on a backward search in time, beginning at the QRS
complex and ending at the end of the preceding T wave.

A method of wave delineation determines the bound-
aries of each wave within the PQRST complex so that,
with the resulting time instants, different wave durations
can be computed (see Fig. 7). Once a wave has been
delineated, other measures characterizing the wave,
such as amplitude and morphology, can be easily com-
puted. Such a method must also be able to detect when a
certain wave is absent; this situation is commonly en-
countered because, for example, only the R wave or the S
wave is present in certain leads or pathologies.

The classic definition of a wave boundary is the time
instant at which the wave crosses a certain amplitude
threshold level. Unfortunately, this definition is not well-
suited for the common situation when the ECG contains
baseline wander, and, therefore, this definition is rarely
applied in practice. Instead, many methods for wave
delineation exploit the change in slope that occurs at a
boundary to avoid the problems because of low-frequency
noise. Hence, the first derivative of the signal is calculated
and analyzed with respect to zero crossings and extreme
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values. This type of delineation is illustrated by Fig. 8
where the aim is to find the end of the S wave; the other
wave boundaries of the PQRST complex can be found in a
similar way. In this example, the search for the endpoint
starts when the steepest upslope of the S wave occurs and
continues until the derivative of the signal falls below a
certain threshold value. The time instant at which the
level is crossed defines the QRS end. As the above search
procedure is based on the assumption that each of the
different waves is present, it is necessary to first establish
which waves are absent to ensure meaningful delineation.
Such wave detection is usually done by analyzing the
pattern of successive peak amplitudes and interpeak

distances of the differentiated signal in an interval posi-
tioned around the QRS complex.

The threshold level that determines the position of a
wave boundary may be fixed and chosen with reference to
a slope value that is representative of the boundary to be
determined. Alternatively, the threshold may be related to
signal morphology so that its level is set to a certain
percentage of the maximum slope (11). The latter type of
thresholding is more suggestive of a cardiologist’s ap-
proach to delineation because the boundaries of a large-
amplitude wave with steep slopes and a low-amplitude
wave with less steep slopes will occur at about the same
position.

In noisy signals, wave delineation from the differen-
tiated signal performs poorly because an already low
signal amplitude at the wave boundary is disturbed by
noise. The performance can, to a certain degree, be im-
proved by combining signal differentiation with lowpass
filtering to attenuate high-frequency noise. The cut-off
frequency of the lowpass filter may be fixed or, better,
adapted to the spectral content of the wave to be deli-
neated (12). For example, delineation of the QRS complex
should be based on a filter with a higher cut-off frequency
than the filter used to find the end of the T wave, reflecting
the fact that the T wave contains much less high-fre-
quency components (see Fig. 9).

The threshold levels, or the shapes of the waveform
templates, should be chosen such that the resulting
delineation agrees with those obtained by cardiological
expertise. Following training of the delineation method to
obtain suitable parameter values, its performance should
be evaluated on a database with P, QRS, and T wave
boundaries having been manually annotated (13,14). De-
lineation performance is described in terms of the mean
and standard deviation of the error between the bound-
aries produced by the method and the experts (15,16). It is
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Figure 8. Determination of the QRS end using slope informa-
tion. The QRS end is the time at which the differentiated signal
crosses a threshold after the maximum slope has occurred. The
threshold level is usually expressed as a percentage of the
maximum slope.
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important to realize that a zero value of the standard
deviation can never be attained because a certain disper-
sion will always exist even among experts. However, a
method’s performance is judged as satisfactory when the
dispersion is approximately on the same order as that
among experts (17).

Wave delineation is particularly problematic when
determining the end of the T wave, which is often char-
acterized by a very gradual transition to the isoelectric
line of the ECG, see, for example, the T wave in Fig. 9. In
fact, its delineation is problematic even among cardiolo-
gists, and differences between cardiologists may occasion-
ally approach as much as 100 ms (17). Despite these
difficulties, the end of the T wave is an extremely impor-
tant boundary, required when computing the total dura-
tion of ventricular depolarization and repolarization. As a
result of the importance of this measurement, several
techniques have been developed for the purpose of ro-
bustly determining the T wave end (18–20). Multiresolu-
tion signal analysis of the ECG using the dyadic wavelet
transform, in which the signal is analyzed at different
time resolutions, has proven to be well-suited for T wave
delineation. By first determining a robust, but prelimin-
ary, boundary position from a smooth approximation of
the original signal, the position can be refined by analyz-
ing the properties of better approximations in an interval
positioned around the preliminary boundary. The wavelet-
based approach can, with an appropriate choice of wavelet
function, be viewed as a filter bank of lowpass differentia-
tors with varying cut-off frequencies. Evaluating the per-
formance of the methods based on either lowpass
differentiation or wavelet analysis, the latter method has
been found to produce T wave ends in better agreement
with those produced by cardiologists (21).

5. DATA COMPRESSION

As a wide range of clinical examinations involve the
recording of ECG signals, huge amounts of data are
produced not only for immediate scrutiny, but also for
storage in a database for future retrieval and review. It is
well-known that the availability of one or several previous
ECG recordings improves diagnostic accuracy of various
cardiac disorders, including myocardial infarction. Today,
such serial ECG comparison encompasses short-duration
recordings acquired during rest, but may in the future
encompass long signals, for example, acquired during
stress testing or ambulatory monitoring. Although hard
disk technology has undergone dramatic improvements in
recent years, increased disk size is paralleled by the ever-
increasing wish of physicians to store more information.
In particular, the inclusion of additional ECG leads, the
use of higher sampling rates and finer amplitude resolu-
tion, the inclusion of other, noncardiac signals such as
blood pressure and respiration, and so on, lead to rapidly
increasing demands on disk size. It is evident that efficient
methods of data compression will be required for a long
time to come.

Another driving force behind the development of meth-
ods for data compression is the transmission of ECG

signals across public telephone networks, cellular net-
works, intrahospital networks, and wireless communica-
tion systems. Such data transmission may be initiated
from an ambulance or a patient’s home to the hospital and
has, among other things, been found to be valuable for
early diagnosis of an infarct.

An ECG signal exhibits a certain amount of redun-
dancy, as manifested by correlation between adjacent
samples, the recurrence of heartbeats with similar mor-
phology, and the relative resemblance between different
leads. Considerable savings can be achieved in terms of
storage capacity and transmission time by exploiting the
different types of redundancy so that each sample can be
represented by fewer bits than in the original signal.
Hence, the data compression algorithm should account
for the fact that the signal contains recurrent heartbeats,
often with similar morphology, and that the signal is,
almost invariably, a multilead recording. Equally impor-
tant, it must account for the fact that both small- and
large-amplitude waveforms are present in the signal,
carrying important diagnostic information, whereas the
isoelectric line contains negligible information.

The overall goal is to represent a signal as accurately as
possible using the fewest number of bits, by applying
either lossless compression, in which the reconstructed
signal is an exact replica of the original signal, or lossy
compression, in which the reconstructed signal is allowed
to differ from the original signal. With lossy compression,
a certain amount of distortion has to be accepted in the
reconstructed signal, although the distortion must remain
small enough not to modify the diagnostic content of the
ECG. For both types of compression, it may be necessary
to perform noise filtering of the ECG signal before it is
subjected to data compression.

The outcome of data compression is critically depen-
dent on the sampling rate and the number of bits used to
represent each sample of the original signal. For example,
a signal acquired at a low sampling rate contains less
redundancy than one acquired at a high rate; as a result,
the compression ratio, defined as the bit size of the
original signal divided by the bit size of the compressed
signal, is lower for a signal acquired at a lower sampling
rate. Other factors that influence the outcome of data
compression are the signal bandwidth, the number of
leads, and the noise level. For example, a signal sampled
at a rate of 500 Hz but bandlimited to 50 Hz is associated
with a better compression ratio than is a signal bandlim-
ited to the Nyquist frequency of 250 Hz. Consequently, it is
imperative that any comparison of performance for differ-
ent compression methods is based on identical values of
the system parameters.

Methods for data compression may be categorized
according to the following three main types of data
redundancy found in ECG recordings:

* Intersample or, equivalently, intrabeat redundancy is
exploited by employing either direct or transform-
based methods.

* Interbeat redundancy is manifested, within each
lead, by successive, similar-looking heartbeats.
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Hence, their occurrence times must be determined by
a QRS detector before interbeat redundancy can be
exploited.

* Interlead redundancy is because of the fundamental
fact that a heartbeat is ‘‘viewed’’ concurrently in
different leads. Therefore, waveforms exhibit inter-
lead correlation that depend on the distance between
electrodes on the body surface.

It should be noted that many methods of data compression
have been designed to solely deal with the first type of
redundancy, although methods that deal with all three
types combined are becoming increasingly common. The
block diagram in Fig. 10 presents the two main steps in
data compression. In the first step, the redundancy of the
original signal is reduced so that a more compact signal
representation is obtained. The output data is then fed to
an encoder whose purpose is to produce an efficiently
coded bit stream suitable for storage or transmission.

5.1. Direct Methods for Data Compression

Direct methods operate in the time domain by extracting a
set of K ‘‘significant’’ samples x(nk) from the original signal
x(n) such that

ðn; xðnÞÞ;n¼ 0; . . . ;N � 1 ! ðnk; xðnkÞÞ;

k¼ 0; . . . ;K � 1;
ð2Þ

where KoN. The resulting subset of K samples is retained
for data compression, and the other samples are dis-
carded. Reconstruction of the samples between the sig-
nificant samples is achieved by interpolation using the
following general expression:

~xðnÞ¼

xðnÞ; n¼n0; . . . ;nK�1;

fn0 ;n1 ðnÞ; n¼n0 þ 1; . . . ;n1 � 1;

..

. ..
.

fnK�2 ;nK�1
ðnÞ; n¼nK�2 þ 1; . . . ;nK�1 � 1:

8>>>>>><
>>>>>>:

ð3Þ

The first and last significant samples of the signal x(n) are
usually chosen to be n0 ¼ 0 and nK�1 ¼N � 1, respectively.
The interpolating function fnk�1;nk

ðnÞ usually has a poly-
nomial form of low order, approximating the signal with
zero- or first-order polynomials, for example, by a se-
quence of plateaus or straight lines. First-order (linear)

interpolation has become especially popular because the
signal can be completely reconstructed from the set of
significant samples x(nk). Although more advanced inter-
polating functions can be used (e.g., rational or trigono-
metric functions), additional parameters need to be stored
as side information to reconstruct the signal. As a result,
improvements in performance may still be lost because of
the additional cost of representing the interpolating func-
tion.

The selection of significant samples can be viewed as an
‘‘intelligent’’ subsampling of the signal in which the iso-
electric segments are approximated by a small number of
samples, whereas the QRS complex is much more densely
sampled so that the essential information contained in the
ECG is preserved. A simplistic approach would be to select
the significant samples from among the turning points of
the signal (i.e., its peaks and valleys); however, the error
between the original and reconstructed signal may at
times be quite considerable. Therefore, the selection of
significant samples is usually based on a criterion assur-
ing that the reconstruction error remains within a certain
tolerance. The selection process can be performed sequen-
tially so that the next significant sample is selected with
reference to the properties of preceding signal properties.
Alternatively, a larger block of samples can be processed
at the same time so that significant samples are selected
with reference to the enclosing signal properties. Although
the block-based approach can be expected to yield better
performance, it is less suitable for real-time processing.

The performance of direct methods is particularly
influenced by the noise level of the ECG, as the number
of significant samples required to meet the maximal error
tolerance increases as the noise level increases. Accord-
ingly, poorer compression ratios are achieved at high noise
levels. Although direct methods work satisfactorily when
processing ECGs acquired during resting conditions, the
very idea of selecting significant samples can be ques-
tioned in noisy recordings.

AZTEC and SAPA are two well-known examples of
direct methods for data compression (22,23); several var-
iations and improvements on these two methods have
been suggested over the years (24,25).

5.2. Transform-Based Data Compression

Transform-based compression assumes that a compact
signal representation exists in terms of the coefficients of

Encoderintersample
redundancy

interlead 
redundancy

Side information

Storage or 
transmission

Data coefficients

Further 
processing

Noise 
filtering

QRS
detection

ECG

interbeat 
redundancy

Reduction of

Figure 10. Data compression of ECG signals.
The output of the block performing redundancy
reduction is a sequence of data coefficients. The
output may also include side information, which,
for example, describes the set of basis functions
used for computing the data coefficients. The
encoder translates the input into an efficiently
coded bit stream.
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a truncated orthonormal expansion,

x¼
XN
k¼ 1

wkuk; ð4Þ

where x denotes a column vector containing N ECG
samples, wk the coefficients, and uk the basis functions.
The basic idea is to obtain an estimate of x by truncation of
the complete series expansion in Equation 4 so that only K
out of the N terms are included. The coefficients w1; . . . ;wK

are retained for storage or transmission, hopefully provid-
ing adequate signal reconstruction, whereas the remain-
ing (N�K) coefficients, being near zero, are discarded.
The coefficients wk are obtained by correlating x with each
of the basis functions (i.e., by computing the inner product
wk ¼uT

kx). Hence, the subset of K coefficients constitutes
the information to be compressed, and from which the
signal is later reconstructed. If the basis functions are a
priori unknown, the set of coefficients must be supple-
mented with the samples of the required basis functions.
Following data compression, the reconstructed signal ~xK

is obtained from

~xK ¼
XK
k¼ 1

wkuk: ð5Þ

In contrast to most direct methods, transform-based
methods require that the ECG first be partitioned into a
series of successive blocks, where each block is subse-
quently subjected to data compression. The signal may be
partitioned so that each block contains one heartbeat, and,
therefore, QRS detection must always precede such com-
pression methods. Each block is positioned around the
QRS complex, starting at a fixed distance before the QRS
that includes the P wave and extending beyond the T wave
end to the beginning of the next beat. As the heart rate is
not constant, the distance by which the block extends after
the QRS complex is adapted to the prevailing heart rate.

A fixed number of basis functions are often considered
for data compression, with the value of K being chosen
from considerations concerning overall performance ex-
pressed in terms of compression ratio and reconstruction
error. Although serving as an important guideline to the
choice of K, such an approach may occasionally produce an
unacceptable representation of certain beat morphologies.
As the loss of morphologic detail causes incorrect inter-
pretation of the ECG, the choice of K can be adapted for
every beat to the properties of the reconstruction error
ðx� ~xK Þ (26). For example, the value of K may be chosen
such that the RMS value of the reconstruction error does
not exceed the error tolerance e or, more demanding, that
none of the reconstruction errors of the entire block
exceeds e. It is evident that the value of K sometimes
becomes much larger than the value suggested based on
considerations on overall performance; however, it some-
times also becomes smaller. By letting K be variable, one
can fully control the quality of the reconstructed signal,
while also being forced to increase the amount of side

information because one must keep track of the value of K
for every data block.

A crucial question to address is which set of basis
functions to choose for data compression. It is well-known
that the Karhunen–Loève (KL) expansion is optimal in
that it minimizes the MSE of approximation, and, there-
fore, the KL basis functions have become popular (26–28).
The basis functions are obtained as eigenvectors of the
correlation matrix Rx that is determined from one or
several datasets. The basis functions are labeled ‘‘univer-
sal,’’ when the dataset originates from many patients, or
‘‘subject-specific,’’ when the data originates from a single
recording. Although it is rarely necessary to store or
transmit universal basis functions, subject-specific func-
tions need to be part of the side information. The use of
universal KL basis functions is illustrated by Fig. 11.

The above-mentioned compression methods are de-
signed to reduce intersample redundancy of the ECG,
while not dealing with the fact that successive beats often
have almost identical morphology. A simplistic approach
to dealing with interbeat redundancy is to use the pre-
vious beat to predict the next, and to only code the
difference. By repeating the prediction for all beats, a
difference signal is produced whose magnitude is much
smaller than the original one, thus requiring fewer bits for
its representation. A major drawback of the simple ‘‘pre-
vious-beat’’ predictor is its vulnerability to noise, a prop-
erty that can be improved by using a predictor based on
averaging of the most recent beats (29).

A fundamental assumption of the beat subtraction
approach is that the beats, used to predict the next beat,
exhibit similar morphology. To ensure this similarity, it is
necessary to first categorize the beats according to their
respective morphology so that several average beats can
be initialized. A straightforward approach to such beat
categorization (clustering) would be to consider the energy
of the prediction error

P
n e

2
i ðnÞ in a beat interval: A new

average beat is initialized if the energy exceeds a certain
threshold, unless the current beat matches an already
existing average beat category.

As considerable correlation exists between different
ECG leads, data compression of multilead ECGs would
benefit from exploring interlead redundancy rather than
just applying the previously described methods to one lead
at a time. Direct methods for single-lead data compression
have turned out to be not easily extended to multilead
compression, although a few adaptations have been pre-
sented. With transform-based methods, interlead correla-
tion may be dealt with in two steps, namely, a
transformation that concentrates the signal energy spread
over the total number of leads into a few leads, followed by
compression of each transformed lead using a single-lead
technique (5).

5.3. Performance Evaluation

The compression ratio PCR is a crucial measure when
evaluating the performance of data compression methods.
It is defined as the ratio between the number of bits
required to represent the original signal x(n) and the
number of bits required to represent the compressed

ELECTROCARDIOGRAM (ECG) SIGNAL PROCESSING 9



signal ~xðnÞ. Another crucial measure is the bit rate PBR,
defined as the average number of bits required per second
to represent the ECG, and is, in contrast to PCR, indepen-
dent of sampling rate and word length. However, none of
these two measures provide sufficient detail on the per-
formance when lossy data compression is used because
they do not reflect the distortion of the reconstructed
signal. Accordingly, an excellent PCR or PBR may be
achieved at the expense of a severely distorted signal,
and, therefore, an essential aspect of data compression is
to define complementary performance measures that re-
flect the accuracy with which the diagnostic information
in the original ECG signal is preserved.

The percentage root mean-square difference (PRD) is a
frequently employed distortion measure that quantifies
the error between the original signal x(n) and the recon-
structed ~xðnÞ, defined by

PPRD ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼ 0

ðxðnÞ � ~xðnÞÞ2
,XN�1

n¼ 0

x2ðnÞ;

vuut ð6Þ

where it is assumed that the mean value of x(n) has been
subtracted prior to data compression. The measure PPRD

has become popular because of its computational simpli-
city and the ease with which distortion can be compared
from one signal to another. However, PPRD has certain
flaws that make it unsuitable for performance evaluation.
For example, compression of ECGs with large-amplitude
QRS complexes results in less distortion than does com-
pression of an ECG with small-amplitude QRS complexes,
even if the squared error ðxðnÞ � ~xðnÞÞ2 is identical in both
cases. This disadvantage can, to a certain degree, be
mitigated by replacing the energy normalization in PPRD

with a fixed normalization so that the modified measure,
denoted PRMS, describes the error in absolute terms,

PRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN�1

n¼ 0

ðxðnÞ � ~xðnÞÞ2:

vuut ð7Þ

This measure is somewhat more suggestive of diagnos-
tic ECG interpretation where criteria are expressed as
millivolt wave amplitudes rather than in percentages of
signal energy. However, care should be exercised when
noisy signals are compressed because PRMS then would
represent the noise discarded by the compression method,
as measured by the difference between x(n) and ~xðnÞ,
rather than by the distortion of the ECG.

Performance is often presented as a rate distortion
curve where signal distortion is displayed as a function
of PBR. Such a curve is shown in Fig. 12 for transform-
based data compression (based on the KL transform), with
PRMS as the chosen distortion measure. With this type of
curve, the operating point of a compression method can be
easily defined, specifying the bit rate at which acceptable
distortion of the reconstructed signal is achieved. By
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requiring the distortion to be low, for example, a PRMS of
only 12 mV, it is tempting to believe that the diagnostic
information in the reconstructed signal is preserved.
However, both PPRD and PRMS suffer from an inability to
reflect loss of diagnostic information; instead, all samples
are treated equally whether located in the QRS complex or
in the uninformative isoelectric segment. Although the
loss of a tiny Q wave in the reconstructed signal essen-
tially goes unreflected, the absence of a Q wave represents
an essential loss from a diagnostic point of view when, for
example, diagnosing myocardial infarction.

The weighted diagnostic distortion (WDD) measure
PWDD is one of the few mathematically defined measures
that addresses the limitations of distortion measures
based on the error between samples of the original and
reconstructed signal (30). The measure PWDD is composite
because it involves various wave parameters essential to
ECG interpretation, especially wave amplitudes and dura-
tions of the PQRST complex. Assuming that measure-
ments of the kth ECG parameter have been obtained
from the original and reconstructed signals, denoted bk
and ~bk respectively, a normalized error Dbk can be defined,

Dbk ¼
jbk � ~bkj

maxðjbkj; j ~bkjÞ
; ð8Þ

which is constrained to the interval 0oDbk � 1; it is
assumed that bk and ~bk have nonzero values. When
several beats are available for measurement, the resulting
values of Dbk are averaged before further processing is
done. For a set of P different parameters on amplitude and
duration, the WDD performance measure is defined as

PWDD ¼ 100 �
XP
k¼ 1

akðDbkÞ
2

,XP
k¼1

ak; ð9Þ

where the coefficients ak make it possible to weight the
parameter measurement errors Dbk in relation to their
overall significance. Such weighting can be used to em-
phasize measurements of particular significance, such as
ST segment measurements in ischemia monitoring.

An important aspect of performance evaluation is, of
course, the choice of ECG database. As the performance of
a method depends on the noise level, the evaluation
should be based on data representative of the application
in question. The amount of ectopic beats and arrhythmias
are other factors that, to various degrees, influence the
evaluation outcome.

6. CLUSTERING OF BEAT MORPHOLOGIES

Feature extraction may be performed for the purpose of
characterizing the morphology of a QRS complex.
Although the durations and amplitudes that result from
wave delineation contain important diagnostic informa-
tion, additional features are required to reliably group
beats with similar morphology into the same cluster. One
approach to feature extraction is to derive a set of ‘‘heur-
istic’’ features that, for example, describe the area, polar-

ity, and slopes of the waves. Another, more robust,
approach is to make use of the coefficients that result
from the correlation of each beat with either a set of
predefined orthonormal basis functions or a set of QRS
templates. Based on the set of extracted features, cluster-
ing of QRS morphologies can be performed. In its simplest
form, clustering may be used to single out beats that
deviate from the predominant morphology, which is
usually that belonging to the normal sinus beat (see Fig.
13). Once this is done, beats belonging to the ‘‘sinus
cluster’’ can be subjected to, for example, ensemble aver-
aging or heart rate variability analysis. In other situa-
tions, reason to study the entire range of beat clusters
exists. As clustering does not assign a label with a
physiological meaning to a beat, it may be necessary to
classify the beats according to their cardiac origin.

Clustering is based on a set of features, contained in the
column vector pi, which describe waveform morphology
and, possibly, also rhythm properties of the current beat.
In its simplest form, pi contains time-domain samples of
the QRS samples, and is often used in combination with
the cross-correlation coefficient ril as a measure of pattern
similarity (31–34),

ril ¼
pT
i ll

k pi k2k ll k2
; ð10Þ

where 8 � 82 denotes the Euclidean norm. The column
vector ll defines the mean of the lth beat cluster (and is
commonly referred to as a ‘‘template’’ beat). The ECG
samples of the current beat are usually bandpass-filtered
before clustering so that the influence of baseline wander
and EMG noise is reduced. A straightforward approach to
clustering is given by assigning the ith beat to the cluster
for which the highest correlation coefficient is achieved,
provided that it exceeds a certain minimum threshold; if it
does not, a new cluster is created. More advanced ap-
proaches to clustering have recently been presented that
make use of artificial neural networks, see, for example,
Refs. 35 and 36.

Using the cross-correlation coefficient as a measure of
similarity, it is easily shown that clustering becomes
invariant to changes in QRS amplitude. Amplitude invar-
iance is acceptable in certain types of ECG analysis where
the information in demand is restricted to the timing of
sinus beats. However, invariance to amplitude changes
exceeding those induced by respiration is undesirable
when the purpose is to average the sinus beats of a cluster
for noise reduction as required, for example, in high-
resolution ECG analysis; averaging of similar-shaped
beats with widely differing QRS amplitudes produces a
nonrepresentative ensemble average.

The basis function representation, previously consid-
ered for data compression, has also been considered for
feature extraction when clustering heartbeats, often ex-
pressed in terms of the Karhunen–Loève or the Hermite
basis functions (35–39). In such cases, the coefficients of
the series expansion that correspond to the most impor-
tant basis functions would define the feature vector pi.
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Improved accuracy of the occurrence time is intimately
related to the clustering process because the current beat
pi can be optimally aligned in time to ll when similarity is
measured. The availability of morphologic information
through ll may be used to improve the accuracy of the
time, originally determined by the QRS detector that
operates at a lower temporal resolution (and determined
without considering the morphology of previous beats).
When clustering is based on the cross-correlation coeffi-
cient, the samples of pi are correlated to the mean of the
cluster ll and shifted in time until the highest cross-
correlation value is obtained; the resulting value is used
for cluster assignment. It is important to realize that
omission of the time alignment operation leads to the
initiation of undesired clusters.

7. ECG SIGNAL PROCESSING IN APPLICATIONS

Numerous types of ECG analysis have been developed
that draw on the ECG signal processing so far presented.
It is outside the scope of this text to provide a comprehen-
sive description of such types of analysis. Instead, this
article is concluded by briefly mentioning two types of
analyses that both exploit low-level activities of the ECG,
aiming either at characterizing static properties of the
ECG (‘‘high-resolution ECG’’) or dynamic properties (‘‘T
wave alternans’’).

7.1. High-Resolution ECG

For many years, the interpretation of resting ECGs was
based on measurements derived from waves whose am-
plitude were at least several tens of microvolts; waves
with smaller amplitudes were ignored because these were
almost always caused by noise. This limitation was, how-
ever, removed with the advent of the high-resolution ECG
with which it became possible to detect signals on the

order of 1mV thanks to signal averaging techniques. The
high-resolution ECG has helped unlock novel information
and has demonstrated that signal processing for the
purpose of noise reduction is a clinically viable technique.
The acquisition procedure is usually the same as for the
resting ECG, except that the signal is recorded over an
extended time period so that a sufficiently low noise level
is attained by averaging.

Different subintervals of the cardiac cycle have re-
ceived special attention in high-resolution ECG analysis,
and low-level signals have been considered in connection
with (1) the bundle of His that depolarizes during the PR
segment (40,41), (2) the terminal part of the QRS complex
and the ST segment where so-called ‘‘late potentials’’ may
be present (42–44), (3) intra-QRS potentials (45,46), and
(4) the P wave (47,48). Of these four applications, the
analysis of late potentials has received the most wide-
spread clinical attention. Late potentials may be found in
patients with myocardial infarction where ventricular
depolarization can terminate many milliseconds after
the end of the QRS complex (Fig. 14). This prolongation
is because of delayed and fragmented depolarization of the
cells in the myocardium that surround the dead region
(scarred tissue) caused by infarction; the conduction cap-
ability of the bordering cells is severely impaired by
infarction. Many studies have demonstrated the impor-
tance of late potentials when, for example, identifying
postinfarct patients at high risk of future life-threatening
arrhythmias, see, for example, Ref. 49.

The high-resolution ECG rests on the assumption that
the signal to be estimated has a fixed beat-to-beat mor-
phology. As the high-resolution ECG is often expected to
contain high-frequency components up to at least 250 Hz,
the sampling rate is at least 1 kHz. It is essential that the
occurrence time of each beat (the ‘‘fiducial point’’) is
accurately determined from each individual beat before
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ensemble averaging to avoid smearing of low-amplitude,
high-frequency components of the ECG.

Ensemble averaging is related to the following signal
model in the ith beat xi is assumed to be additively
composed of a deterministic signal component s and
random noise vi, which is asynchronous to cardiac activ-
ity,

xi ¼ sþvi; i¼1; . . . ;M: ð11Þ

It is assumed that only sinus beats are modeled (i.e., beats
of ectopic origin have already been sorted out by means of
some technique for morphologic clustering). Representing
the entire ensemble with the matrix X,

X¼ ½x1 x2 � � �xM�; ð12Þ

where each column vector contains one beat, an estimate
of the signal s is obtained by computing the ensemble
average,

ŝ¼
1

M
Xw; ð13Þ

where w denotes a weight vector whose elements are all
equal to one. When the noise is uncorrelated from beat to
beat and with a standard deviation that remains constant
throughout the ensemble, the noise level is reduced by a
factor

ffiffiffiffiffi
M

p
. In situations when the noise level varies over

time, it is instead preferable to use weighted averaging in
which each weight of w is inversely proportional to the
noise level (5).

Once a low-noise ECG signal is produced by ensemble
averaging, the late potential components can be eluci-
dated from the terminal part of the QRS complex and the
ST segment using linear, time-invariant highpass filter-
ing. In order to avoid that filter ringing may obscure the
low-amplitude components, the ensemble average ŝ is
filtered backward in time rather than forward as is
customary. The detection of late potentials is commonly
accomplished by first determining the time instant when
the signal activity ends, involving a threshold procedure
that relates to the residual noise level of ŝ (44); then, the

amplitude of the interval immediately preceding the
determined endpoint must be sufficiently low for a detec-
tion to occur.

7.2. T-Wave Alternans

Tiny beat-to-beat alternations in T wave morphology are
related to myocardial ischemia and have been found
useful as a predictor of malignant ventricular arrhyth-
mias that often lead to sudden cardiac death (50,51). The
morphologic alternations follow a flip-flop pattern in
which every other T wave has the same morphology (see
Fig. 15). The alternans is often a low-amplitude phenom-
enon in the microvolt range; therefore, it cannot be easily
perceived by the naked eye from a standard ECG printout,
but requires signal processing techniques for its detection
and quantification (52).

Similar to the detection of late potentials, it is crucial
that successive T waves are properly aligned in time so
that the alternans relates to underlying physiology rather
than to inaccurate alignment. On the other hand, ensem-
ble averaging cannot play a central role in detecting T
wave alternans as such an operation would obliterate the
alternating behavior. Of the several detection methods
that have been devised, the most popular detectors are
based on the following statistical model of the T wave. At a
certain predefined time instant within each T wave, the
observed amplitude x(i) is modeled by

xðiÞ¼Aþað�1Þi þ vðiÞ; i¼ 1; . . . ;M; ð14Þ

where i denotes beat index, M denotes total number of
beats, A denotes T wave amplitude, and a denotes alter-
nans amplitude (although it is 2a that has physiological
significance because it describes the difference between
two beats). The additive noise v(i) is assumed to be a zero-
mean, random process that is stationary and white. As the
amplitude A does not convey any information on alter-
nans, its influence is typically removed from x(i) by
subtracting the mean value �x of xð1Þ; . . . ; xðMÞ so that the
corrected signal yðiÞ¼ xðiÞ � �x is instead analyzed.

By applying statistical detection theory to the model in
Equation 14 under the assumption that the noise v(i)
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Figure 14. (a) The high-resolution ECG ob-
tained by signal averaging the orthogonal X, Y,
and Z leads. (b) The terminal part of the QRS
complex and the ST segment (i.e., the interval
shaded gray in (a), is magnified 10 times in
amplitude to better display the small undula-
tions known as late potentials).
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obeys a Gaussian probability density function, it can be
shown that the optimal detector performs a correlation
between y(i) and the alternating pattern (� 1)i, for exam-
ple:

TG ¼
XM
i¼ 1

yðiÞð�1Þi
 !2

: ð15Þ

The M successive T waves are judged to contain alternans
when the decision statistic TG exceeds a certain threshold
value. Interestingly, the detector in Equation 15 can be
interpreted in terms of power spectral analysis because TG

is exactly the periodogram computed for the highest
normalized frequency at 0.5. In fact, one of the most
popular detectors was heuristically developed from the
observation that alternans is manifested by an increase in
spectral power at 0.5 (53); alternans was detected when
the power at this frequency exceeded a certain factor of
the surrounding spectral power.

The Gaussian detector in Equation 15 is sensitive to
the presence of outliers in y(i) caused by, for example,
baseline wander and ectopic beats. By assuming instead
that the noise v(i) obeys a Laplacian probability density
function (i.e., with heavier tails than the Gaussian func-
tion), the optimal detector becomes more robust to im-
pulsive noise. In the Laplacian detector, the following
decision statistic is compared with a threshold (52),

TL ¼
XM
i¼ 1

ðjyðiÞð�1Þij � jyðiÞð�1Þi � âjÞ; ð16Þ

where â denotes the maximum likelihood estimator of the
alternans amplitude, being defined by

â¼medianðyð1Þ � ð�1Þ; yð2Þ � 1; . . . ; yðMÞ � ð�1ÞMÞ: ð17Þ

It is evident from Equation 16 that the Laplacian detector
puts less emphasis on large-amplitude values in y(i) than
does the Gaussian detector in Equation 15, replacing the
squaring operation with absolute values. Moreover, the
alternans amplitude a is robustly estimated by computing
the median of the signal yðiÞð�1Þi.

Although the above detectors are designed to process a
single interval, they can be easily extended to process
intervals defined by a sliding window with the detection
procedure repeated in each new interval. With the sliding
window approach, a series of successive alternans ampli-

tudes can be produced, thereby providing means for
characterizing the morphology of the ‘‘alternans wave-
form.’’

Using simulated ECG signals, the Laplacian detector
has been found to perform better than the Gaussian one
(52,54). In general, performance assessment is difficult to
study on ECG recordings because manual annotation of T
wave alternans episodes cannot be performed because of
their low amplitude. However, the use of simulated signals
has been found valuable because the presence and extent
of T wave alternans can be controlled in detail.
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11. P. Laguna, R. Jané, and P. Caminal, Automatic detection of
wave boundaries in multilead ECG signals: validation with
the CSE database. Comput. Biomed. Res. 1994; 27:45–60.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5
A

m
pl

itu
de

 (
m

V
)

Time (s)

Figure 15. An example of T wave alternans.
The alternating behavior between two different
T wave morphologies is particularly evident
when all T waves are aligned in time and
superimposed.

14 ELECTROCARDIOGRAM (ECG) SIGNAL PROCESSING



12. P. Laguna, N. V. Thakor, P. Caminal, and R. Jané, Low-pass
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