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Abstract
In this paper a Phoneme-Dependent Multi-Environment Mod-
els based LInear feature Normalization, PD-MEMLIN, is pre-
sented. The target of this algorithm is to learn the difference
between clean and noisy feature vectors associated to a pair of
gaussians of the same phoneme (one for a clean model, and the
other one for a noisy model), for each basic defined environ-
ment. These differences are estimated in a previous training
process with stereo data. In order to compensate some of the
problems of the independence assumption of the feature vec-
tors components and the mismatch error between perfect and
proposed transformations, two approaches have been proposed
too: a multi-environment rotation transformation algorithm, and
the use of transformed space acoustic models. Some experi-
ments with SpeechDat Car database were carried out in order to
study the behavior of the proposed techniques in a real acous-
tic environment. The experimental results show an average im-
provement of more than 77% using PD-MEMLIN, and more
than 85% using transformed space acoustic models and multi-
environment rotation transformation, concerning the baseline.

1. Introduction
When testing and training acoustic conditions are different, the
accuracy of speech recognition systems rapidly degrades. In or-
der to compensate this mismatch, several techniques have been
developed. They can be grouped into two important categories:
acoustic models adaptation, and feature compensation, or nor-
malization. The first one, which only modifies the acoustic
models, can be more specific, whereas, feature compensation,
which modifies the feature vectors, needs less data and compu-
tation time. The use of one or other kind of algorithms depends
on the application. Hybrid techniques also exist [1], and they
have proved to be effective.

There are several feature compensation families [2], [3],
but one of the most promised research line is based on Min-
imum Mean Squared Error, MMSE, estimation. Techniques
like Stereo based Piecewise LInear Compensation for Environ-
ments, SPLICE [4], or Multi-Environment Models based LIn-
ear Normalization, MEMLIN [5], are some examples of MMSE
based feature compensation. In this paper a Phoneme Depen-
dent Multi-Environment Models based LInear Normalization,
PD-MEMLIN, is proposed and compared against SPLICE and
MEMLIN.

In many cases, normalization techniques assume that the
feature vector coefficients are independent. Thus, some kinds
of transformations in the feature space, such as translations, can
be properly treated, but not others, like rotations. Other problem
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in normalization techniques is the mismatch between perfect
and proposed transformations. In this paper, two approaches
are presented in order to compensate these problems. The first
one is a multi-environment rotation transformation, which com-
pensates the rotation produced in feature vectors by noisy envi-
ronments. The second one is using transformed-space acous-
tic models in recognition, which reduces the mismatch error
between perfect and proposed normalization transformations.
These techniques are used with MEMLIN and PD-MEMLIN
algorithms.

This paper is organized as follows: in Section 2, PD-
MEMLIN is presented. The multi-environment rotation tech-
nique is introduced in Section 3. The transformed space acous-
tic models strategy is explained in Section 4. The results for
MEMLIN and PD-MEMLIN with SpeechDat Car database [6]
are presented and discussed in Section 5. Finally, the conclu-
sions are included in Section 6.

2. PD-MEMLIN
Phoneme Dependent Multi-Environment Models based LIn-
ear Normalization is an empirical feature vector normalization
technique which uses stereo data in order to determine the dif-
ferent compensation linear transformations in a training pro-
cess. The clean feature space is modelled as a mixture of gaus-
sians for each phoneme. The noisy one is split in several ba-
sic acoustic environments and each environment is modelled
as a mixture of gaussians for each phoneme. The transforma-
tions are estimated for all basic environments between a clean
phoneme gaussian and a noisy gaussian of the same phoneme.
This can be shown in Fig. 1 for one environment.

Figure 1: Scheme of PD-MEMLIN transformations for one environ-
ment.



2.1. Approximations

Three approximations are assumed: firstly, some basic environ-
ments are defined in the noisy space, and noisy feature vectors,
y, follow the distribution of gaussians mixture for each basic
environment and phoneme:
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Second, clean feature vectors,x, are modelled following
the distribution of gaussians mixture:
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Third, for each time frame,t, x is approached as a function,
Ψ, of the noisy feature vector,yt, clean model gaussians,sph

x ,
and noisy environment model gaussians,se,ph
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2.2. Cepstral enhancement

Given the noisy vector,yt, the clean one is estimated by MMSE
criterion:

x̂t = E[x|yt] =

∫

x

xp(x|yt)dx, (6)

wherep(x|yt) is the Probability Density Function (PDF) ofx
givenyt. Using the three previous approximations, (6), can be
approximated as expression (7).

In (7), p(e|yt) is the environment weight.p(ph|yt, e) is
the probability of the phonemeph, given the noisy feature vec-
tor and the environment.p(se,ph

y |yt, e, ph) is the probability of
the noisy gaussian givenyt, the environment, and the phoneme,
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a previous training process. The other probabilities are esti-
mated on line for each time frame in the recognition phase.

The probability of the environment,p(e|yt), is estimated
using a recursive solution as:
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whereβ is the memory constant, close to 1 (0.98 in this paper),
andp(e|y0) is considered uniform for all environments. Also,
p(ph|yt, e) andp(se,ph

y |yt, e, ph), are estimated as:
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a previous training process with available stereo data for
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3. Multi-environment rotation
transformation

The goal of rotation transformation [7] is to obtain a transfor-
mation matrix (U1) in order to normalize the feature vector:

x̂t = U1yt, (15)

where index 1 means that the rotation modifies only the direc-
tion of the biggest variance feature space axes. With the stereo
database training corpus, a transformation matrix can be ob-
tained,Ue,1, for each basic environment. Principal Compo-
nent Analysis (PCA) of the covariance matrixes of clean, and
noisy feature vectors for each environment, (Σ̃e, Σe, respec-
tively) is used in order to determine the most important axes
of clean and noisy data spaces. The corresponding orthonor-
mal eigenvectors and eigenvalues are:ṽe,i, andλ̃e,i for clean
space, andve,i, andλe,i, for the noisy one, wherei = 1...D,
λ̃e,1 ≥ λ̃e,2 ≥ ... ≥ λ̃e,D, andλe,1 ≥ λe,2 ≥ ... ≥ λe,D, and
D is the dimension of the feature vectors. The rotation angle
between the two principal directions of clean and noisy spaces
is calculated as:ηe,1 = arccos(ṽe,1 ·ve,1). It can be considered
thatṽe,1 andve,1 determine an hyperplane,πe,1. The geometric
idea of this normalization technique is to split each vector into
two parts: the projection overπe,1, which will be rotatedηe,1

degrees, and the perpendicular part, which will not be modified.
Since ṽe,1 and ve,1 are not orthogonal, Gram-Schmidt is

applied tove,1 to obtain an orthonormal basis vectorv̂e,1, lying
in the same rotation hyperplane:

v̂e,1 =
ve,1 − (ṽe,1 · ve,1) · ṽe,1

‖ve,1 − (ṽe,1 · ve,1) · ṽe,1‖ . (16)

JT
e,1 is the projection matrix ofπe,1, andRe,1 is the rotation

transformation for the angleηe,1:
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(
cos(ηe,1) − sin(ηe,1)
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)
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Finally, the transformation matrix for the correspondent en-
vironment,Ue,1, can be obtained as:
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Angles (0)

Ch0 - Ch2 21.02
Ch0 - MEMLIN 128-128 6.11
Ch0 - PD-MEMLIN 16-16 5.98
Ch0 - MEMLIN 128-128 + rot 2.45
Ch0 - PD-MEMLIN 16-16 + rot 4.21

Table 1: Angles in degrees between the highest variance axes,
where rot indicates that multi-environment rotation transforma-
tion is applied after normalization techniques.

Ue,1 = Je,1Re,1J
T
e,1 + I + Je,1J

T
e,1, (19)

whereI is the identity matrix. The rotation can be performed in
all the axes, not only for the biggest variance one, but it can be
shown that with the first vector is enough [7]. In recognition, all
frames of each utterance are normalized with the most probable
environment,̂e, matrix: U1 = Uê,1.

The behavior of the multi-environment rotation transforma-
tion technique can be observed in Table 1, where Ch0 - Ch2
indicates the mean angle between the most important axes of
clean (Ch0) and noisy (Ch2) testing signals of SpeeechDat Car
database. Ch0 - MEMLIN 128-128 represents the angle be-
tween clean and normalized feature vectors axes when MEM-
LIN technique is used with 128 gaussians for noisy and clean
models. Ch0 - PD-MEMLIN 16-16 indicates the angle between
clean and normalized feature vectors axes when PD-MEMLIN
is used with 16 gaussians for each phoneme and environment.
The results show that the normalization technique is not enough
in order to compensate the rotation produced by the environ-
ment noises. If normalized signal is transformed by multi-
environment rotation transformation technique, the angles de-
crease. The results are better with MEMLIN due to rotation
transformation with PD-MEMLIN produces a rough modifica-
tion in the transformed space because it is used only one trans-
formation for environment, without any phoneme dependence.

4. Transformed space acoustic models
Normalization techniques map the noisy feature vectors into the
clean space. Since they do not generate a perfect transforma-
tion, the new transformed space is not the clean one as it should
be. This mismatch error can be compensated with the acoustic
models in recognition. By transformed space acoustic models
we mean new acoustic models trained with normalized features.
The new models are obtained through three phases:

• Normalization training process.
• Normalization of noisy training data normalization.
• New acoustic models are trained with normalized noisy

training data.

MWER (%) IMP (%)

PD-MEMLIN 5.30 77.67
PD-MEMLIN + rot 5.37 76.82
MEMLIN 6.06 72.24
MEMLIN + rot 5.65 76.32
SPLICE 7.57 57.92
PD-MEMLIN + ac 4.64 79.39
PD-MEMLIN + rot + ac 4.79 78.55
MEMLIN + ac 4.16 84.42
MEMLIN + rot + ac 4.09 85.02

Table 3: Best mean WER and improvement for different tech-
niques, in%, where rot and ac indicate that multi-environment
rotation transformation or transformed space acoustic models
are respectively used.

5. RESULTS
A set of experiments have been carried out using the Span-
ish SpeechDat Car database [6]. Seven environments are de-
fined: car stopped, motor running (E1), town traffic, windows
close and climatizer off (silent conditions) (E2), town traffic and
noisy conditions: windows open and/or climatizer on (E3), low
speed, rough road, and silent conditions (E4), low speed, rough
road, and noisy conditions (E5), high speed, good road, and
silent conditions (E6), and high speed, good road, and noisy
conditions (E7).

The task used is isolated and continuous digits. All the
utterances are 16 KHz sampled. The clean signals (Ch0) are
recorded with a close talk microphone (Shune SM-10A), and
the noisy signals (Ch2) are recorded by a microphone placed on
the car ceiling in front of the driver (Peiker ME15/V520-1). The
SNR range for the clean signals goes from 20 to 30 dB, and for
the noisy signals goes from 5 to 20 dB. 12 MFCC and energy
are computed each 10 ms using a 25 ms hamming window.

The feature normalization techniques are applied over the
12 MFCC and delta energy, and the different used models have
4, 8, 16, 32, 64 and 128 gaussians for MEMLIN, and 26 Spanish
phonemes with 2, 4, 8, or 16 gaussians for each one in PD-
MEMLIN.

For recognition, the feature vector is composed of the 12
normalized MFCC with cepstral mean substraction, the first and
second derivative and the normalized delta energy, given a fea-
ture vector of 37 coefficients. The phonetic acoustic models are
composed of 25 three state continuous density HMM with 16
gaussians per state to model Spanish phonemes and 2 silence
models for long and interword silences.

The Word Error Rate, WER, baseline results for each envi-
ronment are presented in Table 2. MWER represents the Mean
WER, computed proportionality to the number of utterances of
each environment.



Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

Ch0 Ch0 1.90 2.64 1.81 1.75 1.62 0.64 0.35 1.75
Ch0 Ch2 5.91 14.49 14.55 20.17 21.07 16.19 35.71 16.21
Ch2 Ch2 6.67 14.24 12.73 12.91 14.97 9.68 8.50 11.81

Table 2: WER baseline results, in%.

Figure 2:Improvement, in%, for different techniques, where rot indi-
cates that multi-environment rotation transformation is used after nor-
malization techniques.

Figure 3: Improvement, in%, for different techniques, where rot
and ac indicate that multi-environment rotation transformation or trans-
formed space acoustic models are respectively used.

In order to compare the presented techniques, the trans-
formation cost per environment is defined as:TC =
10log10(NphN
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), where Nph is the number of
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is the number of clean gaussian for each
phoneme, andN
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is the number of noisy gaussians for each

phoneme and environment. For MEMLIN, the number of
phonemes can be considered as 1.

The comparative results between MEMLIN and PD-
MEMLIN, with or without multi-environment rotation transfor-
mation, are shown in Fig. 2. It is presented the improvement,
IMP, which has been calculated with the improvement of each
environment and proportionality to the number of utterances of
each environment. The best IMP and MWER are included in
Table 3. In order to compare, the values for SPLICE [4] with
128 gaussians for noisy model are included, too. It can be ob-
served that multi-environment rotation transformation produces
an improvement when it is applied with MEMLIN, but not when
it is applied with PD-MEMLIN. The reason is that the differ-
ence between normalized training data, which is used in order
to obtain the rotation transformations, and normalized testing

data is higher in PD-MEMLIN than in MEMLIN. In any case,
PD-MEMLIN obtains the highest results, obtaining an improve-
ment of 77.67%, almost 20% more than SPLICE.

The comparative results between MEMLIN and PD-
MEMLIN, with or without multi-environment rotation transfor-
mation, and with transformed space acoustic models are shown
in Fig. 3. Also the best values are presented in Table 3. The
results are better than those obtained without the transformed
acoustic models, specially in WER because the biggest im-
provements are in more noisy environments, which have the
highest WERs. Another advantage of using transformed-space
acoustic models is that the results are less dependent on the
number of transformation gaussians. The higher difference be-
tween normalized training data and normalized testing data for
PD-MEMLIN is the reason of results with MEMLIN are bet-
ter. The best improvement is obtained with MEMLIN + rot:
85.02%.

6. CONCLUSIONS
In this paper we have presented a feature vector normalization,
PD-MEMLIN, and two approaches in order to compensate the
feature vector rotation generated by noise (multi-environment
rotation transformation) and the mismatch between the per-
fect and proposed normalization transformations (transformed
space acoustic models). Important improvements are obtained
with PD-MEMLIN (77.67%), better than other techniques as
MEMLIN or SPLICE. When multi-environment rotation trans-
formation and transformed space acoustic models are used with
MEMLIN an improvement of 85.02% is obtained. Since it is
not always available stereo data, in a future work, a non stereo
data PD-MEMLIN approximation will be studied.

7. References
[1] A. Sankar and C. Lee, “A maximum-likelihood ap-

proach to stochastic matching for robust speech recog-
nition,” IEEE Trans. on Speech and Audio Processing,
pp. 190–202, May 1996. [Online]. Available: cite-
seer.nj.nec.com/181474.html

[2] R. M. Stern, B. Raj, and P. J. Moreno, “Compensation
for environmental degradation in automatic speech recog-
nition,” in Proc. ESCA Tutorial and Research Workshop on
Robust Speech Recognition for Unknown Communication
Channels, Apr, 1997, pp. 33-42.

[3] M. J. F. Gales, “Maximum likelihood linear transfor-
mations for hmm-based speech recognition,”Computer
Speech and Language, Vol 12, 1998.

[4] J. Droppo, L. Deng, and A. Acero, “Evaluation of the splice
algorithm on the aurora2 database,”in Proc. Eurospeech,
vol. 1, Sep. 2001.

[5] L. Buera, E. Lleida, A. Miguel, and A. Ortega, “Multi-
environment models based linear normalization for speech
recognition in car conditions,”in Proc. ICASSP, May. 2004.

[6] A. Moreno, A. Noguiera, and A. Sesma, “Speechdat-car:
Spanish,”Technical Report SpeechDat.

[7] S. Molau, “Normalization in the acoustic feature space for
improved speech recognition,”Ph. D. Thesis, Computer
Science Department, RWTH Aachen. Feb. 2003.


