
QoS Estimators for Client-Side Dynamic Server Selection:
Limitations and Keys

 Javier Lafuente-Martínez Isabel García-Muñoz Julián Fernández-Navajas
GTC-I3A-University of Zaragoza University of Zaragoza GTC-I3A-University of Zaragoza
 javierlm@unizar.es igarciam@unizar.es navajas@unizar.es

Abstract

The traditional way to cope with the increasing
number of users in distributed information services is
to use server replication, but additional and
complementary strategies have been proposed in the
last few years. In this paper, we evaluate those server
selection strategies in which, by means of a packet
burst sent from the client side, some QoS parameters
such as delay, available bandwidth and packet loss
can be estimated. In particular, our study is focused on
the estimation of available bandwidth, proposing a
two-step algorithm to measure it in the path to each
server. Ethernet, ISDN and ADSL technologies have
been used, and different scenarios and packet
conditions have been tested in order to identify the
limitations and design keys of bandwidth estimation
methods.

1. Introduction

The increasing popularity of distributed
information services in Internet causes continuous
problems of scalability in those networks that support
them. Actually, when the number of users of such
services grows, the quality of service (QoS) decreases.
The mentioned problems include: excessive load of
certain servers caused by the great number of users
that connect to them asking for a file or document, the
bandwidth waste that entails sending the same
document to several clients that share the same path to
the server, or excessive delay in distributing a file
when low-bandwidth connections have to be used.

One of the most extended solutions to alleviate
these problems consists on replicating the servers and
distributing them geographically, so that the clients
will be also distributed among the servers [1]. But this
solution creates a new problem: how to decide what
server a client has to connect to?

The easiest solution is the so-called static server
selection [2], in which clients are forced to connect to

the same server based on fixed criteria. As it does not
consider that some characteristics of the network, such
as the available bandwidth for example, are variable,
dynamic server selection [3] was thought as the
possibility of not only selecting the server from which
to get a file, but also having the possibility to connect
to a different server if the quality of the connection
with the current one degrades.

At the time of developing a solution for the
dynamic selection problem, different alternatives have
been proposed [4,5,6] but we consider the client-side
ones as the most interesting from the point of view of a
final user. These kinds of solutions propose that the
entity which demands the service (the client) has the
responsibility to find out the optimal server. This is
achieved by sending certain traffic to each possible
candidate and waiting for the responses. Different
kinds of traffic have been used for this purpose. In [7],
the authors compare six different techniques and
consider one based on tcping as the best one. Other
studies [8] use HTTP HEAD control traffic and
measure its request latency. The use of ping and the
measure of the RTT (Round Trip Time) [9,10] is also
well known. A good revision of the client-side
methods and tools can be found in [11].

In this article we try to identify the main limitations
and design keys of client-side bandwidth estimators.
To carry out our study, we have developed a two-step
algorithm that could help client-side server selectors,
by means of characterizing the path to each server in
terms of available bandwidth, before taking a decision.
Our method takes advantage of some existing
solutions, specially those based on ICMP traffic, but
includes some improvements such as the alternative of
using UDP packets instead of traditional pings and a
second step in the algorithm in order to estimate the
available bandwidth. We will first compare the
traditional solution based on pings with our UDP-
based and then, despite our method is able to estimate
other QoS parameters, we will centre our study in
available bandwidth estimation.

The rest of the article is structured as follows. In
section 2 we explain the algorithms that we have
implemented and tested. A description of the scenarios
used for the tests is included in section 3. In sections 4
and 5, we show the results obtained in the tested
scenarios and we extract conclusions in section 6.

2. Methodology

A server selection tool should be able to evaluate
from which server information could be downloaded in
less time. Therefore, the aim of the methods presented
in this section is to characterize the path from the
server to the client in which they are executed. For this
purpose, two alternatives have been studied:

- ICMP based: The traditional method for
estimating link capacity is based on sending bursts of
ICMP request (ping) packets to each server and
waiting for the reception of their corresponding ICMP
reply packets.
 - UDP based: Due to the tendency of not allowing
the incoming ICMP traffic at the servers for security
reasons, we propose a second method based on
sending bursts of UDP packets to a port that does not
accept this type of traffic. Thus, the server generates
port-unreachable ICMP packets towards the client that
are used to make the corresponding estimations of the
downlink properties.

In both cases, we use the ICMP traffic received
from the server to estimate the delay, the packet loss,
the bandwidth of the bottleneck and the available
bandwidth. A server selection methods should take a
decision based on these four parameters after
associating different weights to them.

1) RTT can be estimated by calculating the average
of the RTT for each packet sent in the burst. As this
parameter is affected by both the uplink and downlink,
it gives us information about the delay that the devices
introduce in the path and the degree of server load.

2) The estimation of the percentage of packet loss
can be calculated as the percentage of lost packets in
the burst.

3) Given a path between a client and a server that
includes several links L1,…,Ln with capacity B1,…,Bn,
the bottleneck bandwidth, which is estimated in the
first step of the algorithm presented below, could be
defined as [12]:

bottleneck bandwidth = min (B1, B2, … Bn) (1)

4) Given a link Li with capacity Bi and traffic load Ci,
the available bandwidth in the link is defined as:

available bandwidthi = Bi – Ci (2)

We present a two-step algorithm in order to obtain
the available bandwidth. In the first step, we send the
packets in the burst as close in time as possible, that is,
with the minimum gap between them. In such
conditions, other packets sharing the link are not likely
to merge with the so closely ones in the burst. As
explained in [13], when the burst crosses a link with
less bandwidth, the packet spacing becomes higher
(the packet rate becomes smaller). This increment in
the packet spacing is preserved when the burst crosses
higher speed links (Figure 1), allowing us to measure
the bottleneck link capacity at the reception of the burst
as the sum of the length of the packets received in
response to the burst, divided into the time between the
reception of the first and the last answer (3). The
second step (Figure 2) consists on sending the packets
in the burst at a rate equal to the nominal capacity just
obtained. Now, a packet spacing increase will be due
to other packets in the link merging with the burst.
This increase allows us to estimate the available
bandwidth in the bottleneck, by using the formula
shown in (3) again.

bottleneck bandwidth=((n-1)xpacket_size)/(tn-t1) (3)

An important factor to consider is the number of
packets to include in the burst, as well as the size of
these packets. The aim is to obtain a good estimation
of the links but being as less intrusive for the network
as possible. In effect, the greater the number of packets
in the burst and the greater their size, the more
intrusive the method. But having more packets in the
burst implies more accurate estimations. Studies
carried out by other authors [9] show that using five
packets by burst allows reaching a trade-off between
good bandwidth estimation and little bandwidth
required for the estimation method. In section 4 we
have assumed this value and we have carried out tests
for different packet sizes, obtaining conclusions about
the suitable size for the packets in the burst.

Figure 1. First step: packet burst through a

bottleneck link

Figure 2. Packet burst sent in the second step

3. Test scenarios

In order to test the performance of our two-step
algorithm, we study two scenarios. We have decided to
test technologies commonly used to access Internet,
such as ISDN (Integrated Services Digital Network)
and ADSL (Asymmetric Digital Subscriber Line).

3.1. Scenario 1

As shown in Figure 3, this scenario is composed of
three Linux-based computers. The client is responsible
for sending the test burst towards the server, running
the client-side algorithm. The server generates ICMP
packets in response to the received burst, depending on
the kind of traffic received: ICMP echo reply for pings
or ICMP port unreachable for the UDP packets. We
implement the bottleneck link as a 64kbps ISDN link
between the router and the server.

Some of the tests are carried out with competing
traffic. This traffic is sent from the server to the router.
The reason is two-fold: we are interested in the
characterization of the critical link, the bottleneck, and
we consider that the presence of competing traffic in
the way from the server to the client is the most
interesting case, as it emulates a server sending
information to clients that share links.

In this scenario, we have first studied how UDP
and TCP traffic compete. Then, we have tested the
influence of UDP and TCP competing traffic in our
algorithm results.

Figure 3. Scenario 1

3.2. Scenario 2

The interest of this scenario, shown in Figure 4, is
two-fold. First, unlike the previous scenario, the path is

asymmetric in terms of bandwidth. The ADSL
connection used in this scenario offers 128kbps in the
uplink (the way from the client to the server) and
256kbps in the downlink (the way from the server to
the client). This is a particular case where a problem
affecting client-side estimators appears: they are
unable to detect if the bottleneck is in the way from the
client to the server or in the opposite way. Secondly,
we discuss the influence of the packet size in
bandwidth estimations in the case of transmitting over
ATM (Asynchronous Transfer Mode), which is the
ADSL underlying technology.

Figure 4. Scenario 2

4. Scenario 1: Results

By understanding how UDP and TCP traffic
compete, we could understand the influence of
competing traffic in the traffic we inject in the network
to take our measurements and vice-versa. In this
section we centre our study on link capacity and
available bandwidth estimation.

4.1. How UDP and TCP traffic compete

In order to run this test, the server starts to transmit
UDP packets at different rates to the client, that try to
compete with a ftp (TCP) transmission running from
the server to the computer which is acting as a router.
We evaluate the ISDN link by means of tcpdump.

The bandwidth distribution in the case of sending
240-Byte UDP packets is shown in Figure 5. As we
can see, in absence of UDP traffic, the ftp transmission
is obtaining all the capacity of the link. As we increase
the UDP packet rate, this kind of traffic obtains more
bandwidth. We have verified that, when UDP and TCP
traffic compete, TCP obtains the bandwidth that UDP
is not using. The reason is that TCP implements flow
control but UDP does not. Thus, TCP is able to adapt
its transmission rate to the variations detected in the
available bandwidth.

We have also tested the case in which two UDP
transmissions compete or two TCP transmissions
compete. The results reveal that the bandwidth sharing
is proportional to the product (packet_size x
packet_rate) obtaining 50% of the link capacity when
their rates are the same.

Figure 5. UDP competing with TCP traffic

4.2. Results of the algorithm in absence of
competing traffic

In absence of other traffic, we have first compared
the capacity of both our UDP-based method and the
ICMP-based to estimate the bottleneck capacity (the
ISDN link in this scenario), that is, we test the first
step of our proposed two-step algorithm. We have
studied the effect of varying the size of the packets that
we send in the burst.

The values shown in the graphs are obtained as the
mean of the estimation of several bursts with the same
characteristics. Each burst is composed of five packets
with the same size. As explained in section 2, the client
sends the burst to the server and waits for the reply to
each packet in the burst. Then, it can calculate the
capacity of the link. Depending on the algorithm used,
the packets sent in the burst are ICMP or UDP. In both
cases, we have tested the following packet sizes: 60
Bytes, 120 Bytes, 240 Bytes and 296Bytes. As we are
testing the first step of our algorithm, we send the
packets with the minimum packet spacing (maximum
packet rate).

In Figure 6 we compare the bandwidth estimated by
the algorithms after the first step with the bandwidth
obtained by sending only UDP traffic at different
packet rates. We have verified that, despite the packets
are sent at a higher rate from the sender, our ISDN pc-
cards can process no more than 32 pps (packets per
second), that is, the minimum packet spacing we can
obtain is around 31ms in the ISDN interfaces. As
shown in Figure 7, if we send 60-Byte packets, the
maximum bandwidth occupied in the ISDN link is less
than ¼ of the link capacity (64kbps). Thus, when we
use 60-Byte packets in the test burst, we obtain an
estimation around 16kbps. We can also see that the
maximum precision could be obtained by using large
packets with a size not higher than the MTU
(Maximum Transmission Unit). The optimum value
would be 250 Byte because the test burst occupies all
the bandwidth during less time, being less intrusive.

The MTU depends on the underlying technology and
could be defined as the largest packet size that can be
sent in a packet-based network without being
segmented. The default MTU in ISDN connections is
296 Bytes.

As expected in absence of competing traffic, the
second step of our algorithm estimates an available
bandwidth similar to the link capacity. Results for our
UDP algorithm are shown in Table 1.

In summary, the results show that UDP-based and
ICMP-based estimations are similar. Moreover, using
250-Byte packets is the best choice because represents
a trade-off between the accuracy of the estimation and
the length of the packets in the burst.

Table 1. Bottleneck capacity and available

bandwidth estimations
Packet size 60 Bytes 120 Bytes 240 Bytes 296 Bytes
Bottleneck

capacity (bps)
15750.60 31446.39 54055.77 55301.61

Available
bandwidth(bps)

15340.94 29521.40 55458.70 57103.50

0

10000

20000

30000

40000

50000

60000

70000

10 20 24 28 30 32 33 34 40

240 B 120 B 60 B ping 240 B ping 120 B

ping 60 B UDP 240 B UDP 120 B UDP 60 B

Figure 6. Bandwidth estimation using ICMP or UDP
packets in the burst in absence of competing traffic

vs. sending UDP traffic only

Figure 7. Importance of packet size in bandwidth
estimations

4.3. Influence of competing traffic

When we introduce traffic in the ISDN link, it has
to compete with the burst we send. In this subsection,
we take advantage of the results just obtained in order
to centre in identifying other keys and problems. Thus,
we use 250-Byte UDP packets in the test burst.

We first run an ftp (TCP) transmission from the
server to the computer that is acting as a router. This
traffic uses all the capacity in the ISDN link from the
server to the client. When the client is receiving the
ICMP port-unreachable responses to the UDP packets
of the test burst, we detect a decrease in the amount of
bandwidth assigned to the ftp connection. The reason
is that, as was extracted from Figure 5 in the case of
UDP, ICMP does not implement flow control but TCP
does. This implies that the ICMP port-unreachable
packets in the burst are not affected by existing TCP
traffic, but ICMP traffic affects TCP transmissions.
Results in Table 2 are explained in Figure 8: in the first
step of the algorithm, we send the test packets as close
as possible, being difficult for the TCP packets to
merge with the burst. In the second step, we send the
test packets at the rate estimated in the first step. As
the new packet rate is lower, some TCP packets can
merge with the burst. T1 and T2 are the value of the
expression (tn-t1) used in (3), for the first and the
second step of the algorithm respectively.

Table 2. Estimations in presence of TCP traffic
Packet size 250 Bytes

1st Step: Bottleneck capacity (bps) 60338.54
2nd Step:Available bandwidth (bps) 40626.16

Figure 8. IDSN bandwidth sharing in presence of

TCP competing traffic

Then, in presence of TCP competing traffic, we can
estimate the bottleneck bandwidth but the available
bandwidth estimation is not valid because, from the
results in subsection 4.1, we know that the bandwidth
available for a desired transmission depends on the
kind of traffic. Therefore, if the traffic sent from the
server to the client use UDP, it can use more than the
estimated bandwidth (the competing TCP traffic will
vary its transmission rate). On the other hand, if the
desired traffic uses TCP, the bandwidth sharing will be

proportional to the product (packet_size x packet_rate)
of those TCP transmissions.

If our burst has to compete with UDP traffic, which
does not implement flow control either, our
estimations become more affected as the UDP packet
rate is increased. We must remember that in those
situations the bandwidth sharing is proportional to the
product (packet_size x packet_rate) and that our ISDN
pc-cards cannot process more than 32 pps.

Table 3. Estimations in presence of UDP traffic
UDP

competing
packets

60 Bytes
10 pps

(4800 bps)

60 Bytes
20 pps

(9600 bps)

250 Bytes
10 pps

(20000 bps)

250 Bytes
20 pps

(40000 bps)
1st Step:
Bc (bps)

56047.33 44944.35 44832.36 35134.40

2nd Step:
Ab (bps)

52875.63 38002.10 43645.65 25412.71

Then, in presence of UDP competing traffic, we

can obtain a good estimation for available bandwidth if
the size of the competing traffic and burst packets are
similar but in any case, an acceptable estimation is
obtained. Anyway, the bottleneck bandwidth
estimation is not valid because the traffic in our burst
is also UDP and it is difficult to avoid packet mixing.

5. Scenario 2: Results

In this section we identify the main problems that a
client-side estimator encounters if an asymmetric path
or a technology that uses fix-size frames exist.

5.1. The asymmetric path problem

The detection of a bottleneck in the path is
relatively easy, but knowing if it affects the traffic
going to the server or coming from it is not. We
consider this as a limitation of client-side methods
when the path between client and server is asymmetric.
This is the case of ADSL in which, due to
communications between clients and servers are
usually asymmetric (the server sends the information
requested by the client, who usually only have to send
back some control traffic to maintain the
communication), the uplink offers less bandwidth than
the downlink. In such situations client-side methods
could detect the uplink as a bottleneck, in spite of the
capacity of the downlink is higher, resulting in a
wrong estimation of the available bandwidth.

5.2. Influence of technology in the results

In this scenario ATM is the underlying technology.
As the transmitted frames have a fixed size of 53-Byte

(The header is 5 Bytes long and the remaining 48
Bytes can be filled with data), the size of the packets
we generate in the test burst is important. If a frame is
not completely filled with data, the bandwidth
estimation will not be as good as desired.

In Figure 9 we show the bandwidth estimations
versus the size of the test packets. Depending on this
size, one or more ATM cells are filled with data.

Figure 9. Bandwidth estimation vs. Packet size

6. Conclusions

We have proposed a complementary solution for
helping client-side server selection methods to estimate
available bandwidth in the path to each server and we
have identified the main keys and limitations of those
client-side methods.

The main limitations we have identified are:
- Estimations depend on the size of the packets sent in
the test burst. A good choice of the size for those
packets depends on technology particularities.
- Estimations depend on the type of competing traffic
as long as on the size of its packets.
- Client-side estimators are not reliable when tested in
asymmetric-path connections.

These limitations allow us to define the main keys
in order to design a client-side bandwidth estimator:
- It should adapt the type of the packets in the test burst
to the type of both the competing traffic and the traffic
the client wants to discharge from the server.
- It should adapt the size of the packets in the test burst
to the MTU of the bottleneck link.
- The higher the number of packets included in the
burst and the larger their size, the more accurate the
estimation but the more intrusive the method.

Further work is being done in order to develop a
complete tool, capable of adapting the measurement
method to the kind of traffic desired to download
(UDP, TCP, HTTP) and able to dynamically switch
from one server to a better one when the QoS of the
communication decreases significantly.

7. Acknowledgement

This work has been possible thanks to the CICYT
projects (TIC2001-2481 and TIC2002-04495-C02),
financed by FEDER and the Spanish Ministry of
Science and Technology, and the project (FISG03/117)
financed by FIS.

8. References

[1] J.D. Guyton, M.F. Schwartz, “Locating nearby copies of
replicated internet servers”, Proceedings of SIGCOMM’95,
August 1995.
[2] M.Conti, E.Gregory, F.Panzieri, “Load Distribution
among Replicated Web Servers: A QoS-Based Approach”,
WISP 1999, ACM Press, Atlanta (GA), 1999.
[3] Robert L. Carter, Mark E. Crovella, “Server Selection
using Dynamic Path Characterization in Wide-Area
Networks”, INFOCOM’97, 1997.
[4] Ellen W. Zegura, Mostafa H. Ammar, Zongming Fei,
Samrat Bhattacharjee. “Application-layer Anycasting: A
Server Selection Architecture and Use in a Replicated Web
Service”. IEEE/ACM TRANSACTIONS ON
NETWORKING, vol. 8, n. 4, August 2000.
[5] D. Andersen, T. Yang, V. Holmedahl, and O. H. Ibarra.
“SWEB: Towards a scalable World Wide Web server on
multicomputers”, in Proc. of the 10th Int’t. Parallel
Processing Symp. (IPPS’96), Apr. 1996.
[6] E.D. Katz, M. Butler, and R. McGrath, “A scalable http
server; the NCSA prototype”, Computer Networks and ISDN
Systems, vol.27, pp.155-164, 1994.
[7] Sandra G. Dykes, Kay A. Robbins, Clinton L. Jeffery.
“An Empirical Evaluation of Client-side Server Selection
Algorithms”. IEEE INFOCOM, vol. 3 , PP.1361-1370,
March 2000.
[8] Marco Bernardo, “A simulation Analysis of Dynamic
server Selection Algorithms for Replicated Web Services”,
MASCOTS 2001, 371-378, August 2001.
[9] Mark Crovella, Robert Carter, “Dynamic Server
Selection in the Internet”, Proceedings of the 3rd. IEEE
HPCS '95, 1995.
[10] Allen B. Downey, “Using pathchar to estimate Internet
link characteristics”, Proceedings. of SIGCOMM’99.
[11] K. Lai, M. Baker, “Nettimer: A tool for Measuring
Bottleneck Link Bandwidth”, Proceedings of the USENIX
Symposium on Internet Technologies and Systems, pp. 123-
134, April 2001.
[12] Ningning Hu, Steenkiste, P, “Evaluation and
characterization of available bandwidth probing techniques”,
IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS, vol.21, N.6, pp. 879-894 August
2003.
[13] R. Carter and M. Crovella, “Measuring Bottleneck Link
Speed in Packet-Switched Networks”, Boston Univ.,
Comput. Sci. Dept., Tech. Rep., Mar. 1996.

