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Abstract: QT and RR series interactions were explored by a dynamic linear
approach using AR and ARARX models with automatic orders selection.
Validation with simulated data and application to real records are presented.
An important QTV fraction was found to be not linearly driven by HRV.

1 Introduction

The electrocardiogram (ECG) analysis is extensively used as a diagnostic tool
to provide information on the heart function. Each cardiac beat (Figure 1)
is typically associated to a sequence of �ve principal waves denoted by P, Q,
R, S and T, whose characteristics are clinically relevant. In particular, the
time interval between the onset of the QRS complex and the T wave end,
known as QT interval, is considered to express the duration of ventricular
repolarization. Abnormal QT values have been associated with ventricular
pro-arrythmicity and its beat-to-beat variations are, to some extent, driven
by the autonomic nervous system through the RR interval (measured as the
time interval between consecutive beats). However it has not been yet clearly
quanti�ed which fraction of QT variability (QTV) is e�ectively correlated
with RR beat-by-beat variations (Heart Rate Variability - HRV).

Figure 1: Schematic representation of relevant information in a cardiac beat.

The determination of RR and QT sequences requires the detection and
delineation of ECG waves and limits. A wavelet transform based delineation
system has proven to be quite robust against noise and morphological varia-
tions [3], even in the problematic T wave. Problems in delineation of T end
lead to uncertainty in QTV measures which, allied to its smaller amplitude
compared to HRV, represents the main diÆculties in exploring this relation.
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Many authors used alternative measures such as the RT interval (time
between the peaks of the R and T waves); however, in spite of being easier to
measure, the RT presents even shorter length than QT interval, additionally
penalising the variability measures. A linear dynamic parametric approach
was proposed by Porta et al [7] to express the interactions between the RR
and RT intervals and allowing to quantify the fraction of the RT variability
driven by RR. In previous work [1] we used a linear low order model similar to
the one proposed by Porta to explore the short term HRV and QTV relations.
A generalized and improved version of that model including automatic orders
selection is now proposed and validated, de�ning an approach to quantify the
fraction of QTV not driven by HRV.

2 Methods

2.1 Model formulation

Our approach, based on Porta [7], expresses RR and QT variability interac-
tions in an open loop linear model (Figure 2) where A11, A12, A22 and D
are polynomials in z�1 with coeÆcients a11[k], a12[k], a22[k] and d[k], respec-
tively. The seriesWRR[n] andWQT [n] are uncorrelated stationary zero-mean
white noises with variances �2RR and �2QT and n denotes beat number.

[n]
[n]

[n]

[n]

[n]

u

Figure 2: Schematic representation of the QTV versus HRV model.

RR[n] series was modelled as an ARp stationary random process given by

RR[n] = �

pX
k=1

a22[k]RR[n� k] +WRR[n] (1)

The QT was assumed to result from two uncorrelated sources, one driven by
heart rate and other resulting of an exogenous input (ARARXq model [2])

QT [n] =

qX
k=0

a12[k]RR[n� k]�

qX
k=1

a11[k]QT [n� k] +u QT [n]; (2)

uQT [n] = �

qX
k=1

d[k]uQT [n� k] +WQT [n]



C
0
4
 
P
A
P
E
R

D
R
A
F
T

Modelling short term variability interactions in ECG: QT versus RR 3

Therefore, the model accounts for the possible dependence on its past values
and those of the RR interval (as shown in recent studies [8]). For simplicity,
the same order q was assumed for all ARARX model polynomials, while a
possible di�erent order p is allowed for the AR model. This is a generalization
from previous approaches [1, 7] where the same order was considered for all
polynomials in the model. In fact there is no reason to constrain the QT and
RR sequences to the same memory of its own past.

The assumption of uncorrelated sources allows to compute the Power
Spectral Density (PSD) of QT (SQT (f)) as the sum of the partial spectra
that express each one of the contributions

SQT=WRR
(f) = RR�2RR

���� A12(z)

A11(z)A22(z)

����
2

z=exp(j2�fRR)

(3)

SQT=WQT
(f) = RR�2QT

���� 1

A11(z)D(z)

����
2

z=exp(j2�fRR)

(4)

where f is the frequency in Hz. As both QT [n] and RR[n] series are unevenly
sampled the mean RR interval (RR) was used as sampling rate for estimating
the PSD functions, what has been shown acceptable for low frequencies far
from the Nyquist frequency [4]. As usual in HRV studies, the spectral energy
within each frequency band (band) was measured taking the areas (P band)
below the spectra, S,

P band
E =

Z
f2band

SE(f)df ; (5)

with E 2 fQT;QT=WQT ; QT=WRRg. The ratios between P band
QT=WQT

and in

total power P band
QT represent the relative contribution of the QTV not driven

by RR in the frequency band band.

2.2 Model identi�cation and order selection

From the RR[n] and QT [n] interval series corrected from the mean, the poly-
nomial A11 was estimated using least squares, while the ARARX model pa-
rameters were iteratively obtained using a generalized least squares method-
ology [2]. For adequate orders the convergence to white noise residual WQT

is expected in a reasonable small number of iterations and a large enough
SNR guarantees that the minima of the square residue are global [2].

From p; q 2 f6; 8; 10; 12; 14; 16; 18g, an order was considered to be ade-
quate for modelling a given segment of data if the normalized autocorrela-
tions of the residual (WRR[n] or WQT [n]) satis�ed a 5% signi�cance bilateral
test, both in lags lower than 40 beats and considering all lags. The optimal p
and q were automatically selected from the adequate orders as the ones that
better satis�ed a common criteria such as FPE or AIC [2]. The uncorrelation
between WRR[n] and WQT [n] was also veri�ed for the same 5% signi�cance.
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2.3 Simulation set-up and performance evaluation

The validation of the model was based on simulated RR[n] and QT [n] series
with known QTV fraction correlated with RR (QTWRR

).
The RR[n] sequences were simulated using a model IPFM (integral pulse

frequency modulation) [4] following a AR10 modulating signal. Two models
(RR1 and RR2) with di�erent main frequency components (Figure 3) were
used to simulate uncorrelated RR series realizations.

Figure 3: Spectra of the AR10 models used to generate data.

To obtain realistic QT series from RR sequences we considered a constant
QT value qt0, extracted from a real beat, and used the classical Bazett0s
formula as a static relation between a QT and the previous RR [8]: QTj[n] =
qt0
p
RRj[n], for j = 1; 2. The test data was de�ned considering 3 cases:

A: QT and RR correlated: RR1i[n] vs QT1i[n] and RR2i[n] vs QT2i[n];

B: QT and RR uncorrelated: RR1i[n] vs QT2i[n] and RR2i[n] vs QT1i[n];

C: Mixture of the dependencies: RR1i[n] vs QT1i[n]+QT2i[n]�QT2i and

RR2i[n] vsQT1i[n]+QT2i[n]�QT1i; wereQTji = (
PN

n=0QTji[n])=N .

were i denotes realization. The QT [n] fraction linearly driven by RR[n] is
denoted as QTRR[n] and calculated for each pair of test data as the pro-
jection of (QTi[n]-QTi) over the subspace generated by the corresponding
(RRi[n]-RRi) and its delayed vectors up to order 10 (in accordance with RR
simulation). The ratio between the power variability measures of this projec-
tion and of the total QTV corresponds to the fraction correlated with HRV.
The reference variability measures ~P band

E were obtained from AR10 spectral
model, analogously as P band

E and the errors calculated as P band
E � ~P band

E .
After identi�cation of the model (�gure 2), from the estimated coeÆ-

cients and the residues WRR[n] and WQT [n], we calculated explicitly the
signals QTWRR

[n] and QTWQT
[n] corresponding to the two uncorrelated driv-

ing sources in QT (QT [n] � QT = QTWQT
[n] + QTWRR

[n]). The similarity
of QTWRR

[n] and the reference projection QTRR[n] was evaluated from the
coherence between them and the same was applied to QTWQT

[n] versus the
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di�erence between (QT [n]�QT ) and the reference projection (corresponding
to the QTV fraction uncorrelated to HRV). Both spectral coherences were
calculated using an non parametric approach (Welch method with a Hanning
window).

2.4 Real data set

ECG recordings of young normal subjects from POLI/MEDLAV and Politec-
nico Ca' Granda databases [6] were used in this study (3 leads at 500 Hz) and
each lead was processed by the delineation system in [3]. Only segments with
minimum length of 315 consecutive beats with valid RR and QT intervals
were considered in the subsequent analysis: anomalies in RR series were iden-
ti�ed [5] and QT intervals out of a 3-standard deviation band were rejected as
possible outliers. Longer segments were carved up respecting the minimum
length admitted, what allowed to obtain 29 segments from POLI/MEDLAV
database and 135 segments from Politecnico Ca' Granda database, with a
mean length of 415 and 402 beats (� 292.46 and 329.24 sec), respectively.

3 Results and discussion

The methods were implemented using MATLAB and the facilities of the
System Identi�cation Toolbox. All the results are relative to the orders chosen
by FPE but analogous ones were obtained using AIC. To evaluate whether
the uncorrelated fraction di�ered for di�erent frequencies, the measures were
estimated considering separately low frequency (band = LF: 0.04-0.15 Hz)
and high frequency (band = HF: 0.15-0.4Hz), frequency bands typically used
in HRV studies. Total power (band = TP) was considered as the band from
0.04 Hz to the highest frequency present in each spectrum.

3.1 Simulated data

We simulated 50 uncorrelated RR realizations (i = 1; :::; 50) with 348 beats
at 500 Hz, resulting on a test data of 300 pairs of RR vs QT series.

As expected the orders selected (�gure 4, left) were mainly the lowest, as
an AR10 was used to generated RR[n] series and the IPFM model does not
change revelantly the frequency components, for the considered frequency
bands [4]. The errors in the calculated ratios between P band

QT=WQT
and P band

QT

were lower than 5% for more than 75% of the series in LF and HF frequency
bands and for about 96% of the segments considering TP. In the right panel
of �gure 4 are presented the distribution of the errors for each case.

The mean and standard deviation of the errors in the estimated QTV
fraction uncorrelated to RR can be found in the table below, for each case of
simulated series and for all the data set, considering each frequency band.
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Figure 4: Simulated data: left) selected orders; right) box and whisker plots
of errors in the ratios between P band

QT=WQT
and P band

QT .

series A series B series C all data sets
P TP
QT=WQT

2:53� 0:76 �0:06� 2:11 0:88� 3:12 1:12� 2:46

PLF
QT=WQT

4:56� 5:21 1:01� 5:99 0:63� 3:22 2:07� 5:24

PHF
QT=WQT

9:45� 8:89 1:46� 7:10 0:55� 4:48 3:82� 8:10

Errors in ratios over simulated data (%;mean� std).

Considering all data sets, the mean errors were lower that 4% for all
bands. The increased error found in series A is due to the very low power
of RR1 and QT1 series in HF band and of RR2 and QT2 in LF band (as
illustrated in Fig. 2), resulting in a small absolute error on the estimated
PSD measures holding a high percent importance. Eliminating the series
A the mean results became lower that 1%, with a relevant decrease on std
values (0:41� 2:70 for TP, 0:82� 4:80 for LF and 1:00� 5:94 for HF).

The gain (evaluated as the squared absolute value) and phase (angle) of
the complex spectral coherence 
 between the model estimated QTWRR

[n]
and the projection QTRR[n] used as reference are presented in the table
below, for each frequency band. The high gains re
ect the degree of similarly
between the variability distribution shapes and thus QTWRR

[n] has frequency
contents close to QTRR[n] both in power as in location of peaks. The lower
gains relative to QTWQT

[n] are partially related with the very low power in
some regions of the simulated spectra (case A). Excluding these series the
mean gain increase to 0.87 (TP), 0.93 (LF) and 0.86 (HF). The very low
phases re
ect the no existence of delays in the model.

QTWQT
[n] QTWRR

[n]

 gain 
 phase (rad) 
 gain 
 phase (rad)

TP 0:98 0:01 0:76 �0:01
LF 0:99 �0:02 0:80 �0:01
HF 0:90 0:01 0:75 �0:01

Mean spectral coherence between QTV fractions and the references
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3.2 Real data

We obtained adequate models for 28 segments in POLI/MEDLAV and 132
in Politecnico Ca' Granda database and in 4 cases for which we did not found
an adequate order to the AR model part.

In the left panel of �gure 5 the orders selected by FPE for each model part
are presented. Lower orders are more frequent for the ARARX model than
for AR, re
ecting di�erent dependence of QT from its own past (memory)
and past RR intervals. This can also be seen in simulated signals (left side
of �gure 4) validating that the QT intervals were realistically simulated.

The fraction uncorrelated with HRV was found to be higher than 40%
for 98% of the segments in TP and HF band and for 91% in LF suggesting
that other factors rather than RR could drive an important part of QTV.
The values found for the ratios (%) between the measures on uncorrelated
fraction and total QTV spectrum were very high, as illustrated in Figure
5. It is worthwhile to remark that in this study we aimed to estimate the
fraction of QTV that is not correlated with HRV. The uncorrelation between
that part of QTV and HRV does not imply that there is not any physiological
dependence between them, since non-linear e�ects are not taken into account.

TP LF HF
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Politecnico Ca’ Granda

S W
Q

T/S
Q

T (%
)

Frequency Bands
TP LF HF
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Frequency Bands

Figure 5: Real data: left) selected orders; right) box and whisker plots of the
ratios between P band

QT=WQT
and P band

QT .

4 Concluding remarks

This work discusses the characterization of the short term QT versus RR
variabilities by applying a linear open loop model that includes an approach
for order selection in each part of the model. The methodology was validated
with simulated data and applied to real records. The orders selected for the
RR model part are generally higher than for QT what can be associated
to di�erences in the memory of the signals. The results point out that an
important part of QTV (more than 40%) is not linearly driven by RR.

The study of the QT versus RR interactions is a complex problem. A
deeper characterization requires the incorporation of additional information
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on the model. Identi�cation and interpretation of the sources non-correlated
with RR are the driving force for future studies.

References

[1] Almeida R, Pueyo E, Mart��nez JP, Rocha AP, Olmos S., Laguna P (2003).
A parametric model approach for quanti�cation of short term QT vari-

ability uncorrelated with heart rate variability. XXX International Confer-
ence on Computers in Cardiology, IEEE Computer Society, Thessalon��ki.
(Greece). 30, 165{ 168.

[2] Ljung L (1999). System identi�cation theory for the user 2nd edition.
Prentice Hall PTR, Thomas Kailath, Series Editor.

[3] Mart��nez JP, Almeida R, Olmos S, Rocha AP, Laguna P. (to appear).
Wavelet-based ECG delineator: evaluation on standard databases. IEEE
Transactions on Biomedical Engineering.

[4] Mateo J, Laguna P. (2000). Improved heart rate variability signal analysis
from the beat occurrence times according to the IPFM model heart timing

signal. IEEE Transactions on Biomedical Engineering. 47, 985{ 996.

[5] Mateo J, Laguna P. (2003). Analysis of heart rate variability in the pres-

ence of ectopic beats using the heart timing signal. IEEE Transactions on
Biomedical Engineering. 50, 334 { 342.

[6] Pinciroli F, Pozzi G, Rossi R, Piovosi M, Capo A, Olivieri R, Della Torre
M. (1988). A respiration-related EKG database. XV International Confer-
ence on Computers in Cardiology, IEEE Computer Society. 15, 477 { 480.

[7] Porta A, Baselli G, Caiani E, Malliani A, Lombardi F, Cerutti S.
(1998). Quantifying electrocardiogram RT-RR variability interactions.
IEEE Transactions on Biomedical Engineering. 36, 27 { 34.

[8] Pueyo E, Smetana P, Malik M, Laguna P. (2003). Evaluation of QT in-

terval response to marked RR interval changes selected automatically in

ambulatory recordings. XXX International Conference on Computers in
Cardiology, IEEE Computer Society, Thessalon��ki. (Greece). 30, 157{
160.

Acknowledgement : The �rst author acknowledges the grant SFRH/BD/5484/
2001 supported by FCT and ESF (III CSF). This work was also supported
by the integrated action HP2001-0031/CRUP-E26/02 and projects TIC2001-
2167-C02-02 from MCYT/FEDER, P075/2001 from CONSID-DGA (Spain).

Address : Rute Almeida or A.P. Rocha: Departamento de Matem�atica Apli-
cada, Faculdade de Ciências, Universidade do Porto, Rua Campo do Alegre
687, 4169-007 Porto, Portugal.
Others: Comm. Techn. Group, Aragon Institute of Eng. Research, Zaragoza
Univ., Mar��a de Luna 1, Edi�cio Ada Byron, 50018 Zaragoza, Spain

E-mail : rbalmeid@fc.up.pt,aprocha@fc.up.pt,
laguna@posta.unizar.es


