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Abstract

In a previous study, we presented a new approach to

characterize heart rate turbulence (HRT). An HRT de-

tector was developed which involved a HRT test statistic

T (x), being based on Karhunen-Loève (KL) basis func-

tions. The purpose of the present study is to evaluate the

performance of T (x) on simulated data and compare to

that of turbulence onset (TO) and turbulence slope (TS).

Three different simulations were performed for the purpose

of studying the influence of signal-to-noise ratio (SNR),

QRS jitter, and ECG sampling rate. The results show that

T (x) performs strikingly better in all simulations.

1. Introduction

The short-term fluctuation in heart rate which may fol-

low a ventricular ectopic beat (VEB) is referred to as

HRT [1, 2]. In normal subjects, the heart rate first increases

and then decreases to baseline, immediately after a VEB.

The increase in heart rate is hypothesized to be due to com-

pensation of the sudden drop in blood pressure induced by

the VEB and subsequently sensed by the baroreceptors [3].

Once blood pressure is restored, the heart rate returns to

baseline in order to maintain the blood pressure. The sub-

ject’s ability to recover from a local decrease in blood pres-

sure is reflected by the strength of turbulence. The absence

of HRT reflects autonomic dysfunction [3].

It has been demonstrated that HRT is a powerful predic-

tor of mortality after acute myocardial infarction [1, 2], and

offers considerable potential in other areas as well [3, 4].

Several parameters for HRT characterization have been

presented of which TO and TS are the most commonly

employed. The parameter TO is the relative change of RR

intervals enclosing a VEB, defined by the relative differ-

ence of the averages of the 2 normal RR intervals before

and after the VEB. Since TO measures the relative change

in RR intervals, negative values of TO imply heart rate ac-

celeration following the VEB, whereas positive values im-

ply heart rate deceleration. The parameter TS is defined

by the steepest slope observed over five consecutive RR

intervals in the first 15 RR intervals following the VEB.

Prior to computation of TO and TS, an average RR inter-

val tachogram is often determined from available VEBs.

While both TO and TS have proven to be clinically use-

ful, they are heuristic in nature as they do not result from

modeling of the data. In a previous study, we extended the

well-known integral pulse frequency modulation (IPFM)

model to account for ectopic beats and HRT [4]. Inspired

by the extended model, a technique for HRT characteriza-

tion was presented which involved a set of KL basis func-

tions, expressing HRT as a function of time as opposed to

existing HRT parameters which are functions of beat in-

dex. An HRT test statistic T (x) was then developed based

on the KL representation. The purpose of the present study

is to evaluate the performance of T (x) on simulated data

and compare to that of TO and TS.

2. Methods

2.1. Extended IPFM model

The original IPFM model was introduced to generate

a series of occurrence times for normal sinus beats with

known rate variability, reflecting basic electrophysiologi-

cal properties of the sinoatrial node [5, 6]. The model input

signal is the sum of a DC level, accounting for mean heart

rate, and a zero mean modulating signal, m(t), account-

ing for variability due to parasympathetic and sympathetic

activity, see Fig. 1(a). The input signal is integrated until

a threshold T0 is reached, representing the mean interval

length between successive events. An event is created at

time tk (the kth beat following the initial event at t0 = 0)

as the output of the model, and the integrator is reset to 0.

As a result, the output signal of the IPFM model becomes

an event series which represents beat occurrence times.

During sinus rhythm the electrophysiological influence

of a supraventricular ectopic beat (SVEB) may be viewed

as a reset of the charging potentials in the sinoatrial node.

In order to incorporate such a property in the IPFM model,

the integrator has to be reset at the occurrence time ts
l cor-
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Figure 1. (a) Block diagram of the original IPFM model.

(b) Block diagram of the extended IPFM model. (c) The

switches, S1 and S2, in the extended IPFM model. The

switches are drawn in the state of a normal sinus rhythm.

Dashed lines describe control signals.

responding to the l th SVEB, see Fig. 1(b).

A normal heartbeat will induce an electrical wave prop-

agating from the atria to the ventricles, whereas a VEB will

induce a retrograde wave propagating from the ventricles

to the atria. The electrical wave from a normal heartbeat

will not arrive to the ventricles if a VEB is present, since

the electrical wave will be interrupted by the retrograde

wave induced by the VEB. In the extended model, this in-

terruption is accounted for by the switch S1 which opens

at tvl , corresponding to the occurrence time of the l th VEB,

and which closes at tv
l + tr, where tr corresponds to the

ventricular refractory period, see Figs. 1(b) and (c). These

modifications account for SVEBs and VEBs when gener-

ating normal sinus beats without turbulence.

In order to account for the HRT phenomenon, additional

feedback is introduced in the model. Physiologically, HRT

is triggered at tkl+1 by the diastolic blood pressure drop

induced by the VEB, where tkl+1 denotes the occurrence

time of the first normal sinus beat that follows the l th VEB.

The first normal sinus beat before the l th VEB is denoted

tkl
, so the time sequence is . . . , tkl

, tvl , tkl+1, . . .. Heart

rate turbulence is incorporated by feedback involving a lin-

ear system with causal impulse response hl(t), where hl(t)
is the HRT associated with the lth VEB, see Fig. 1(b). The

feedback branch models the baroreceptors so that HRT is

triggered by an impulse fed to the linear system at tkl+1.

The HRT is modeled as a linear combination of basis

functions,

hl = Bθl, (1)

where hl is an N×1 vector with the discrete representation

of hl(t), B is an N × p matrix with the basis functions in

its columns, and θl is a p×1 weight vector associated with

the lth VEB. Thus, this extended IPFM model accounts for

variations in both HRT dynamics and amplitude through

B and θl. In this study, data-dependent basis functions are

considered and, in particular, the KL basis functions since

these are optimal for a given set of data. The KL basis

functions are obtained as the eigenvalues and eigenvectors

of the mean correlation matrix from subjects with HRT.

2.2. HRT detection

Our approach to detect and characterize HRT is based on

the extended IPFM model and the linear model in (1). The

detection procedure is formulated as one in which HRT is

absent (hypothesis H0) or present (hypothesis H1),

H0 : x = m

H1 : x = Bθ + m.
(2)

Here, x is an N × 1 vector with the observed data, m is

an N × 1 vector with random white noise characterized by

a Gaussian probability density function (PDF) N (0, σ2
I)

with σ2 as unknown parameter, B is a known N × p (p ≤
N ) orthogonal matrix, and θ is a p×1 vector with unknown

weights.

The resulting test statistic T (x) of the generalized like-

lihood ratio test (GLRT) is used for HRT detection [4].

Thus, H1 is decided if

T (x) =
N − p

p

θ̂
T

H1
θ̂H1

xT x − θ̂
T

H1
θ̂H1

> γ′, (3)

where θ̂H1
= B

T
x is the maximum likelihood estimation

of θ assuming H1 is true, and γ ′ is a threshold determined

by a given probability of false alarm PFA.

3. Simulation and performance measures

The extended IPFM model is used to evaluate the per-

formance of HRT detection. It is assumed that HRT has a

known, fixed shape, obtained from the KL representation

of the averaged HRT from 84 VEBs in 31 patients with

myocardial ischemia selected from the European ST-T

database [7]. The underlying heart rate variability (HRV),

being modeled by m(t), is obtained as the output of a 7 th

order autoregressive (AR) model with white noise as in-

put [7].

Three types of simulations were performed in order

to evaluate HRT detector performance. The first type

evaluated performance at different signal-to-noise-ratios

(SNRs). The SNR associated with the lth VEB was cal-

culated according to,

SNRl = 10 log10

(

h
T
l hl

mT
l ml

)

, (4)
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where ml is an N × 1 vector with the discrete representa-

tion of m(t) associated with the l th VEB. Different SNRs

were obtained by changing the relation between the energy

in hl and ml (weighting hl with a suitable factor) before

adding them to the input of the extended model. Thus,

the noise power was fixed, whereas the signal energy was

changed to produce different SNRs.

The second type of simulation evaluated the influence

of QRS detection inaccuracies on HRT detection. Such

inaccuracies were studied by adding zero mean Gaussian

noise to the occurrence times of the normal sinus beats tk

produced by the extended model.

The third type of simulation evaluated the influence of

different sampling rates Fr of the original ECG signal on

HRT detection. This was studied by adding zero mean uni-

form noise,
[

− 1

2Fr
, 1

2Fr

]

, to the occurrence times tk.

Performance was measured by probability of detection

PD and probability of false alarm PFA, estimated by

PD =
N(H1|H1)

N(H1|H1) + N(H0|H1)
, (5)

and

PFA =
N(H1|H0)

N(H1|H0) + N(H0|H0)
, (6)

respectively, where N(Hi|Hj) denotes the number of Hi

decisions whenHj is true. Thus, N(H1|H1) denotes when

HRT is present and detected, N(H0|H1) when HRT is

present but missed (missed turbulence), N(H1|H0) when

HRT is absent but detected (false alarm), and N(H0|H0)
when HRT is absent and missed.

Different values of PFA were obtained by changing the

detection threshold for the HRT parameter of interest. In

the second and third type of simulation, detection perfor-

mance is presented using the receiver operating character-

istic (ROC) in which PD is displayed versus PFA.

4. Results

The detection parameter PD is displayed as a function of

the SNR for a fixed PFA = 0.05 in order to relate the per-

formance of the different HRT detectors to averaging, see

Fig. 2. Here, it is implied that different SNRs may be in-

terpreted as different numbers of VEBs used for averaging.

The horizontal differences between the curves in Fig. 2 can

be interpreted as a power gain of T (x) with respect to TO

and TS. For PD = 0.95, there is approximately a 6 dB gain

between T (x) and TO, and a 3 dB gain between T (x) and

TS. This means that T (x) achieves the same performance

as TO, using only one fourth of the number of VEBs for

averaging, and the same performance as TS with only half

the number of VEBs, assuming that HRT and noise in dif-

ferent VEBs are uncorrelated [6].

PD

SNR (dB)
-10 0 10 20
0

0.5

1 ����

T (x)

TS- - - -

TO........

Figure 2. PD as a function of the SNR, for PFA = 0.05.

The power gain is approximately 6 dB between T (x) and

TO, and approximately 3 dB between T (x) and TS; for

PD = 0.95.

The influence of QRS detection inaccuracies on HRT

detection was studied for T (x), TO, and TS, see Fig. 3.

The detection performance of T (x) is unaffected by QRS

jitter with a standard deviation of 0.5 ms, whereas TO and

TS are slightly reduced, see Fig. 3. If the standard de-

viation is larger than 0.5 ms, the performance of T (x) is

superior to both TO and TS, see Fig. 3.

The influence of the sampling rate Fr of the original

ECG signal on HRT detection was found to be negligible

for all detectors when Fr = 1000 Hz was used, see Fig. 4.

However, for lower rates, the performance of T (x) was

vastly superior to both TO and TS. For example, with a

sampling rate of Fr = 250 Hz and a PFA = 0.05, the

PD for T (x), TS, and TO were 100%, 64%, and 38%,

respectively, see Fig. 4.

5. Conclusions

The present paper demonstrates that the achieved per-

formance of the model-based approach to HRT detection

is superior to both TO and TS, to date being the two

most common detection parameters. The simulation re-

sults show that the HRT test statistic T (x) achieves the

same performance as TO and TS at a considerably lower

SNR. In order to attain the same performance as T (x), TS

needs at least twice the amount of VEBs, and TO at least

four times. It is also shown that T (x) performs much better

in the presence of QRS jitter and at lower ECG sampling

rates than do TO and TS.
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Figure 3. ROC curves illustrating the influence of QRS detection inaccuracies on HRT detection, studied by QRS jitter

with a standard deviation (std) of 0.5 ms, 1 ms, and 2 ms. The SNR was equal to 10 dB.
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Figure 4. ROC curves illustrating the influence of sampling rate Fr on HRT detection. The SNR was equal to 10 dB.
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