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Abstract

In this work a method is presented for robust estimation

of the respiratory frequency from exercise ECGs. The

method is based on the rotation angles of the heart’s

electrical axis as induced by respiration, determined by

aligning successive QRS loops to a reference loop using

a least squares criterion. The respiratory frequency is

estimated by power spectral analysis of the estimated

rotation angle series. Special attention has been paid to

handling highly non-stationary and noisy exercise ECGs.

The ECG and respiratory signals of 14 volunteers and

20 patients were simultaneously recorded during stress

testing to evaluate the method. The respiratory frequency

was estimated from exercise ECGs and compared to the

frequency obtained from respiratory signals. An error

of 6.1%�3.7% (0.024�0.017 Hz, mean�sd) is achieved,

suggesting that the method is useful for analysis of exercise

ECGs.

1. Introduction

The joint study of the respiratory and cardiac systems

is of great interest during stress testing. Conventional

techniques for recording the respiratory signal, such

as spirometry, pneumography or plethysmography, are

unsuitable in this strenuous situation since they require the

use of devices which may interfere with breathing, being

uncomfortable for the patient. Therefore, methods for

indirectly extracting respiratory information are particularly

attractive in stress testing.

It is well-known that respiration influences

electrocardiographic measurements. During the respiratory

cycle, chest movements and alterations in impedance

cause changes of the heart’s electrical axis which influence

QRS morphology. Several studies have developed signal

processing techniques to derive the respiratory signal

from the ECG, the so-called ECG-derived respiration

(EDR) signal. Classical EDR methods fail, however, when

applied during a stress test, since exercise ECGs are highly

non-stationary and noisy, mainly due to muscular activity

and motion artifacts. Moreover, the respiratory frequency

is in itself highly dynamic during a stress test, changing

with effort and work load.

The aim of this work is twofold: first, to develop a

robust estimator of the respiratory frequency which handles

noisy and non-stationary signals; second, to validate

the results with those obtained from respiration signals

recorded simultaneously by a thermistor, a sensor often

used in spirometry. A method for estimating the respiratory

frequency from the VCG was described in [1], which

determines the rotation angles of the electrical axis by

aligning successive QRS-VCG loops. The respiratory

frequency is estimated by power spectral analysis of the

rotation angle series. The present work extends this method

to better account for the special characteristics of exercise

ECGs.

2. Methods

Signal acquisition and study population: The standard

12-lead ECG and the thermistor-derived respiratory signal

of 14 volunteers (10 males and 4 females, aged 28�4 years)

and 20 patients (16 males and 4 females, aged 58�16 years)

referred for stress testing were recorded simultaneously at

the Department of Clinical Physiology, University Hospital

of Lund, Sweden.

The stress test was performed on a bicycle ergometer

(Ergoline 900C, Siemens-Elema) during which the ECG

was recorded using the Siemens-Elema front-end. The

leads were digitized at a sampling rate of 1 kHz and

amplitude resolution of 0.6 �V . The respiratory signal was

recorded using an airflow thermistor (Sleepmate), amplified

(DA100C, Biopac), and digitized (MA100, Biopac) at a

sampling rate of 50 Hz. The amplifier band-pass filter was

used with lower and upper cut-off frequencies of 0.05 and

10 Hz, respectively.

The initial workload at 50 W for males, and 30 W for

females, was increased by 15 W/min for males and 10

W/min for females. Blood pressure, heart rate and rate of

perceived exertion (RPE, scored from 6 to 20 according to
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the Borg scale [2]) were monitored during the test. The

stress test was ended when an RPE of 15 was reached for

volunteers, and when prescribed by the clinical routine for

patients. The ECG and respiratory signals were recorded

from the beginning of exercise until at least four minutes

of recovery when the subject was lying on a bed. In the

present study, the signal analysis was terminated at the end

of exercise.

A total of six recordings were excluded from the study.

The underlying assumption in this work is that the spectrum

of the respiratory signal has a dominant peak, whose

position may vary with time during the stress test. Three

of the recordings were discarded because they did not fulfil

this assumption. Another one was excluded because of

unattached electrodes, another one because of excessive

amount of ectopic beats and the last one because the ratio

between its heart rate and its respiratory frequency was too

low to avoid aliasing.

Signal preprocessing: First, QRS complexes are detected

and a VCG is synthesized by means of the inverse Dower

transformation [3]. Baseline wander is attenuated using

cubic spline interpolation in which isoelectric knots are

estimated by averaging 20 ms of signal, starting 80 ms

before the QRS detection mark.

EDR algorithm: The method performs minimization of

the normalized distance " between a reference loop (N�3
matrixYR) and an observed loop ((N+2�)�3 matrixY),

with respect to rotation (3�3 matrix Q), scaling (scalar 
),

and time synchronization (N�(N + 2�) matrix J� ) [4, 5]:"min=min
;�;QkYR�
J�YQk2Fk
J�YQk2F ; J�=�0��� I 0�+�� (1)

where N is the number of samples of the QRS complex

analysis window (120 ms centered around the QRS mark).

The parameter � denotes the number of symmetrically

augmented samples to allow time synchronization (30 ms)

with � = ��; : : : ;� incremented in steps of 1 ms. The

dimensions of the 0��� , 0�+� , and I (identity) matrices

are N�(�� � ), N�(�+ � ), and N�N , respectively. The

operator k � k2F stands for the Frobenius norm.

The rotation matrix Q can be viewed as three successive

rotations around the leads, defined by the rotation angles�x, �y and �z ,Q = 24 � sin�z 
os�y sin�y� � sin�x 
os�y� � � 35 (2)

The normalized distance " is minimized by first finding

the estimates of 
 and Q for every value of � , and then

selecting that � for which " is minimum. For a fixed � the

optimal estimator of Q is given by Q̂� = V�UT� , where

the matrices U� and V� contain the left and right singular

vectors from the SVD of Z� = YRTJ�Y. The estimate of
 is then obtained by


̂� = tr(YRTYR)tr(YRTJT� YQ̂� ) (3)

The estimation of Q̂� and 
̂� is performed for all �
(�� � � � �). The set of values � , Q̂� , 
̂� which

minimizes ", according to (1), defines the optimal estimateQ̂. Then, the rotation angles �x, �y and �z are estimated

from Q̂.

At high noise levels, unreliable angle estimates occur.

Outlier angle estimates are corrected/rejected based on a

reference, computed from the standard deviation of the

100 previous estimates, which is recursively updated over

time. The rotation angle set f�x, �y, �zg is computed

from Q̂� , obtained for different values of � . Angle triplets

are discarded if any of the angles is greater than 5 times

their corresponding standard deviation (�x, �y, �z). The

subset of rotation angles f�x, �y , �zg0 is further required to

satisfy that the correlation of the corresponding transformed

loop and the reference loop is higher than 0.9 in leads

X and Z (lead Y is usually the noisiest). Finally, the

rotation angle triplet of the remaining which minimizes" is selected. During exercise QRS morphology may

change, specially the terminal part, affected by exercise-

induced ST changes. To reduce the influence of exercise-

induced QRS morphologic variations on angle estimates,

an exponentially updated reference loop is considered, i.e.,YR(k + 1) = �YR(k) + (1 � �)Y(k + 1), where k
represents beat index. The parameter � (0.8 [6]) should

be chosen to follow exercise-induced QRS morphologic

variations while avoiding adaptation to noise. The initial

reference loop YR(1) is defined as the average of the first

ten loops showing a correlation with the first loop higher

than 0.9 in leads X and Z in order to have a more reliable

initialization of the reference loop. Figure 1 displays YR
(lead X) at the beginning and at peak exercise of a stress

test. It can be appreciated how QRS morphology changes

during exercise.
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Figure 1. Reference loop (lead X) at the beginning (solid)

and at peak exercise (dashed) of an exercise ECG.

Spectral analysis: The respiratory frequency is estimated

as the peak frequency of the EDR signal. Spectral analysis
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is performed by means of Lomb’s method [7] since the

angle trends are unevenly spaced and contain gaps in noisy

or ectopic periods.

The respiratory frequency is estimated from a running

average of five spectra, each of which is estimated on a 40-

second period, sliding 5 s each time. Spectral averaging is

necessary to make the detection of the respiratory frequency

more robust. Each 40-second spectrum is obtained, as well,

as the average of m-second spectra (m � 40 s), delayed m2
seconds each, in order to reduce the variance of the spectral

estimation. Larger values of m produce spectra with better

resolution and, therefore, more accurate estimation of the

respiratory frequency. However, respiration spectra are

not always unimodal (i.e. with a single frequency peak)

but often bimodal, especially during exercise. In these

situations, smaller values of m would be desirable to better

estimate the gross dominant frequency, see Fig. 2.
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Figure 2. Spectral estimation for m=40s (solid), m=12s

(dashdot) and m=4s (dashed).

The largest spectral peak (fp) of each 40-second

spectrum is searched and a parameter � is defined as the

percentage of the total power enclosed in the bandwidth

[0:5fp,1:5fp]. If � is below a threshold (35%), the

spectrum is not used in the running average spectrum since

it has no dominant respiratory frequency. The spectra

of the estimated angle trends for each lead are summed

to account for electrical axis rotation projections on any

lead. Since respiration-induced rotation is often more

pronounced around one of the leads, it would be enhanced

in the summed spectra, especially when spurious peaks are

also present. Only those lead spectra for which � is above

the threshold are considered.

Furthermore, an interval-restricted search of the largest

spectral peak is performed to reduce the risk of spurious

peak selection. The largest spectral peak, f̂(k), is searched

for in an interval of 0.4 Hz centered on a reference

frequency, fW (k), which represents the smoothed running

respiratory frequency, exponentially updated, according tofW (k+1) = �fW (k)+(1��)f̂ (k+1), where k denotes the

index of each averaged spectrum. The parameter � (0.7 [6])

should be chosen as a compromise between obtaining a

stable estimate of the respiratory frequency and following

its variations during the stress test. The initial reference

frequency fW (1) is searched in the band 0.15-0.4 Hz.

An example of the interval-restricted peak search is

presented in Fig. 3. A peak search in the whole spectrum

would yield an erroneous estimate of the respiratory

frequency since the largest peak would be selected. Since

respiratory frequency is not expected to change abruptly,

the respiratory frequency is identified with the largest peak

in the interval.
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Figure 3. Interval-restricted peak search in the k-th

averaged spectrum. Arrows show the selected peaks in the

whole and restricted interval, respectively. Interval limits

are marked with dashed lines and fW (k) with a dotted line.

Validation: To evaluate the method, frequency estimates

are compared to those extracted from the respiratory

signals. Spectral analysis, similar to the one described

before, is applied to respiratory signals to obtain the

frequencies used as reference, f̂r(k). The � threshold used

is 75% since respiration spectra are, in general, more peaky

than angle spectra.

An absolute error trend is defined as �f(k) = jf̂(k) �f̂r(k)j. The relative error trend is defined as �f%(k) =jf̂(k)�f̂r(k)jf̂r(k) � 100(%). For each record the mean and

standard deviation (SD) of the error trends characterize the

intra-subject error (��f and ��f , respectively).

The intra-subject error is then compared to the intra-

subject short term variability of the respiratory frequency

(�fr ) during the stress test. The �fr is defined as the mean

of the SD of f̂r estimated in 60-second windows, sliding 5

s each time.

3. Results

Figure 4 shows the respiratory frequency as estimated

from the ECG and respiratory signals for a volunteer and

a patient.

The mean and SD of the intra-subject error are shown

in Table 1, as well as the percentage of the analyzed time

(Pt) with respect to the total duration of exercise (i.e. the

percentage of the time when respiratory frequency could be

estimated both from the ECG and respiratory signals).

The value m=12 achieves the best mean intra-subject

error for our study population. Lower values of m
increase the mean error but decrease its SD due to the
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Figure 4. Respiratory frequency estimated from the ECG

(dotted) and from the respiratory signal (dashed), m=12s,

for a volunteer (top) and for a patient (bottom).

Table 1. Mean � SD of the intra-subject error

m 12s���f ���f
Hz 0.024� 0.017 0.032� 0.020

% 6.1� 3.7 8.4 � 4.4Pt(%) 83�13

implicit spectral averaging. Higher values of m increase

the SD of the error but also the percentage of analyzed

time. The mean intra-subject short term variability ��fr is

0.020�0.007 Hz (5.2%�1.8%).

4. Discussion and conclusions

The proposed method retrieves the dominant respiratory

frequency from most exercise ECGs with a mean error

of 6.1% (0.024 Hz). This error is within the order

of magnitude of the respiratory frequency short term

variability itself, as estimated from the thermistor-derived

respiratory signal.

The main limitation of the method is the underlying

assumption that the spectrum of the respiratory signal has

a dominant peak. Evidently, this is not always true during

exercise, when a more complex spectrum sometimes makes

it difficult to establish a dominant frequency. This is the

motivation for using average spectral estimation of shorter

windows. At the expense of loosing accuracy in the

estimation of respiratory frequency, the overall tendency

can still be obtained.

In this work, estimation errors are much larger than in the

simulation study presented in [6] (6.1% � 3.7% vs. 0.6%� 0.3%), the reason being that, in the last one, respiration

was modeled by a sigmoidal function with a well-defined

dominant frequency.

Two sources of error are difficult to distinguish from

each other: inaccurate estimates due to high levels of noise

and non unimodal respiratory patterns. Nevertheless, the

achieved error is small enough to obtain a reliable estimate

of the dominant respiratory frequency without additional

equipment.

As future work, the study of coupling between cardiac

and respiratory systems can be approached using this

method to get a more detailed HRV information, often

obscured by this coupling.
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