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Abstract

In this work we evaluated the robustness of an automatic

system to study the relation between HRV and QTV. RR and

QT series were measured by an automatic delineator and

a low order linear model was used to explore their short

term interactions and to quantify the QTV fraction related

to HRV. Simulated series and artificial ECG signals were

used to quantify the method performance, considering

noise contamination of SNR from 30 to 10 dB. The errors

found in the estimation of the QTV fraction related to HRV

point out a non relevant performance decrease resulting

from automatic delineation. The joint performance of

delineation plus variability analysis is satisfactory for

records presenting SNRs over 20 dB.

1. Introduction

The beat to beat ventricular repolarization variability

(VRV) is known to be affected mainly by the heart rate

variability (HRV), but also by other unrelated factors.

These fractions are not yet completely characterized nor

clearly quantified. Assessing this relation from QT and RR

series, we explored the interactions by an improved version

of a previously proposed dynamic linear approach [1].

Besides the smaller amplitude of QT variability (QTV)

compared to HRV, one of this study main problems is the

uncertainty in T wave end delineation. In clinical data,

noise contamination increases delineation difficultness

and can result in spurious QTV. We computed RR and

QT intervals from automatic ECG delineation, avoiding

intra/inter-observer variability. This previously developed

wavelet transform based system has proven to be quite

robust against noise and morphological variations [2].

The joint robustness of delineation and parametric

approach was studied over controlled generated ECG

signals, contemplating known relation of QT versus

RR. Noise records were used to contaminate the ECG

considering SNR levels from 30 to 10 dB in order to

evaluate the accuracy lost in the estimation of QTV.

2. Methods

Our approach to assess VRV and HRV interaction

(based on Porta et al [3]) was previously presented [1]

and an enhanced version is under evaluation in this work.

We consider RR(n) defined as the time interval from the

previous to actual nth beat, and QT (n) as the QT interval

related to the nth beat. All the series are zero-meaned.

2.1. Model formulation

We explored QTV and HRV interactions assuming an

open loop linear model (Fig. 1) where A11, A12, A22 andD are z�1 polynomials with coefficients a11(k), a12(k),a22(k) and d(k). WRR(n) and WQT (n) are uncorrelated

stationary zero-mean white noises (variances �2RR and�2QT ). RR(n) series was modelled as a p order AR (ARp)
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Figure 1. QTV versus HRV interactions model.

stationary random process and QT trend assumed to result

from two uncorrelated sources, one driven by HR and other

resulting of an exogenous input (ARARXq model, [4])RR(n) = � pXk=1 a22(k)RR(n� k) +WRR(n) (1)QT (n) = qXk=0 a12(k)RR(n� k) + UQT (n)� qXk=1 a11(k)QT (n� k)UQT (n) = � qXk=1 d(k)UQT (n� k) +WQT (n): (2)
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For simplicity, the same order q was assumed for all

ARARX polynomials, while a possible different order p is

allowed for the AR model, which is a generalization from

previous approaches where q = p was used [1, 3]. The

order p represents the RR memory in its own past, while

order q produces a cumulative memory effect betweenA11 and A12 or D, depending on the QT dependence

considered. Note that q = p means double memory atQT (n) series than at RR(n) series.

The assumption of uncorrelated sources allows to

compute the Power Spectral Density (PSD) of QT

(SQT (
)) as the sum of the partial spectraSQT=WRR(
) = TR�2RR ���� A12(z)A11(z)A22(z) ����2z=ej
TR (3)SQT=WQT (
) = TR�2QT ���� 1A11(z)D(z) ����2z=ej
TR (4)

where 
 = 2�f with f the frequency in Hz. AsQT (n) and RR(n) series are unevenly sampled, the mean

RR interval (TR) was used as the sampling period for

estimating PSD functions, what has been shown acceptable

for low frequencies far from the Nyquist frequency [5].

In each spectra SE(
), E 2 fQT=WQT ; QT=WRRg,

the power was measured by PSD decomposition in

components, each one corresponding to a pole pk. A

real pk produces a real spectral component with power
k = Res [SE(z)=z℄, calculated at z = pk; complex

conjugate poles pk and p�k are associated to complex

conjugate spectral components, which summed produce a

real spectra with power 
k + 
�k = 2<(
k). The spectral

power, PBE , in a frequency band B, is obtained by adding

the contributions of the poles located in B. With 
k = 1
for real and 
k = 2 for complex conjugate poles,PBE = Xpk2B 
k <(
k): (5)

The algebraic decomposition of spectra does not

guarantee admissible spectral components once negative

estimates of power can occur, if the poles are close together

[6]. Near the limit of a frequency band, this can originate

a negative global contribution in a band, in which case the

estimated model is considered inadequate and a different

model order is selected. The relative contribution of QTV

driven by RR in the frequency band B is given byRBQT=WRR = PBQT=WRRPBQT=WRR + PBQT=WQT (6)

2.2. Model identification and order selection

The polynomial A11 was estimated from the series

using least squares, while the ARARX model parameters

were iteratively obtained using a generalized least squares

methodology [4]. A large enough SNR guarantees that

the minima of the square residue are global [4] and

convergence to residual white noise WQT (n) is expected

in a reasonable small number of iterations for adequate

orders.

Orders p, q between 2 and 18 were considered to

be adequate for modelling a given segment of data if

the residual WRR(n) and WQT (n)) can be considered

uncorrelated white noises (5% significance bilateral test

on the normalized autocorrelations, both in respect to the

first 40 lags and all lags). Also were considered inadequate

the model orders producing a negative global contribution

in a frequency band, as described in the previous section.

Optimal p and q were automatically selected from the

obtained adequate orders as the ones that better satisfied

the Akaike Information Criteria (AIC) [4].

2.3. Simulation and performance evaluation

The validation of the model was based on simulatedRR(n) and QT (n) series of 350 consecutive beats with

known QTV fraction correlated with RR (QTRR(n)).
Uncorrelated RR(n) series realizations were simulated,

with 500 Hz sampling rate, using the Integral Pulse

Frequency Modulation (IPFM) model [5], following AR8
modulating signals that match the spectra typically found

at supine REST and head-up TILT situations (Fig. 2).

Assuming that the linear model holds, QT (n) series were
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Figure 2. Spectra of AR8 models used in simulation.

simulated for each of the models (REST and TILT), using

a priori chosen coefficients.The QT fraction driven by

HRV (QTRR(n)) is obtained by filtering the simulatedRR(n) whereas the non correlated fraction (QTQT (n))
is by filtering a simulated white noise with variance�2QT (WQT (n)). The clean (“
”) test dataset was

defined considering 50 uncorrelated realizations of each

modulating signal and 3 cases of possible dependencies:A
: QT and RR fully correlated: QT (n) = QTRR(n)B
: QT and RR uncorrelated: QT (n) = QTQT (n)C
: Mix ofA
 andB
: QT (n) = QTRR(n)+QTQT (n).
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To evaluate the methodology in a more realistic context

we constructed artificial ECG signals corresponding to

each of the previous dataset elements. A clean and

well defined template beat chosen from real files was

baseline corrected and the interval from QRS end to T

end was scaled to reflect the variability characteristics

of the described QT (n) series. The ECG was obtained

by concatenation of the modified beats following theRR(n) beat intervals. The ECG fiducial marks were

obtained using the automatic delineation system [2] on the

artificially generated ECG signal and the corresponding

signal derived (“s”) interval measurements series RR(n)
and QT (n) were denoted as datasets As, Bs and Cs for

each case of possible dependency.

Additionally, artificial ECG signals were contaminated

with pre-recorded noise from the MIT-BIH Noise Stress

Test Database [7] corresponding to baseline wandering,

muscular artefacts and electrode movement artefacts. The

first noise leads in the database were resampled to 500

Hz and multiplied by a constant factor to get a predefined

SNR when added to the artificial ECG. The contaminated

artificial ECG signals were also processed following [2].

Potential RR outliers were rejected andRR(n) andQT (n)
series of 350 consecutive beats were taken as new noise

driven (“v”) test data (datasets Av , Bv and Cv). The true

spectra of the simulated series can be obtained directly

from �2QT and the simulation coefficients. The true

reference power variability measures ~PBE were calculated

for both models (RR simulated from REST and TILT)

and used as references for all QT (n) series from all

datasets derived from the model. The percentage error " of

the ARARX model in quantification of the QTV fraction

correlated with HRV is the difference between the ratio

calculated in equation (6) and the reference value:" =  RBQT=WRR � ~PBQT=WRR~PBQT=WRR + ~PBQT=WQT !�100: (7)

3. Results and discussion

The methods described were implemented using

MATLAB System Identification Toolbox. The measures

were estimated considering frequency bands (B) typically

used in HRV studies: low frequency (B=LF ) as 0.04-0.15

Hz and high frequency (B=HF ) as 0.15-0.4Hz. Total

power (B=TP ) was taken from 0.04 Hz to the highest

frequency present in each spectrum.

3.1. Automatic delineation effect

The results from series measured on the artificial ECG

signal (datasets As, Bs and Cs) presented errors slightly

higher that in raw clean simulated series (A
, B
 and C
).
The distribution of the errors (") in the quantification of the

QTV fraction correlated with HRV can be found in Fig.

3, for each frequency band. In A
, B
 and C
, " � 5%
for about 77% of the series in TP band, 72% in LF and80% in HF, while in As, Bs and Cs " � 5% for about72% of the series in TP band, 66% in LF and 73% in HF.

The mean (") and standard deviation (�") of " found in

each dataset and frequency band are presented in Table 1:" � 4:5% (�" � 15%) for A
, B
 and C
 while " � 5:5%
(�" � 16%) for As, Bs and Cs, representing a small and

non relevant performance decrease.

Figure 3. Box-and-whisker plot of " by frequency band inA
, B
, C
, As, Bs and Cs (+ for " out of quartiles box).

3.2. Noise contamination

We found adequate segments and valid models for over

99% of the series for SNR � 20dB. Lower SNR reduced

the number of segments to near 85% of the situations

with 15dB and less than 20% with 10dB. As expected,

the quality of the estimation decreased with SNR level.

Dataset Av is the most affected with " reaching 10% in

TP and 14% in HF for SNR of 30 dB. For dataset Bv," � 5:5% (�" � 8%) for all frequency bands and SNR� 10 dB. In dataset C, " � 4% (�" � 20%) in LF

and " � 9% (�" � 8%) in TP, SNR � 20 dB; HF is

more affected with " � 14:5% (�" � 10:5%). Looking

to the distribution of the estimated variability measuresPBQT=WRR (Fig. 4), considering all noise types for datasetsC
, Cs and Cv (SNR from 30dB to 15dB) the estimated

values kept near the reference even for SNR of 15 dB. No

relevant differences were found between noise types nor

REST and TILT situations. Equivalent results were found

for all datasets, with the lowest errors in dataset B for all

SNR levels. In spite of A and C situations presented the

same level of error in the power estimation, as one of the

fractions does not exist in dataset A, QTV power is lower,

what justifies higher errors in fraction quantification (%).
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Table 1. Mean and standard deviation of " in datasets A
, B
, C
, As, Bs and Cs. (%;mean� sd)

series A
 series B
 series C
 series As series Bs series CsB = TP �0:67� 0:20 2:21� 2:02 4:16� 8:89 �2:39� 1:45 3:01� 2:44 �2:70� 9:21B = LF �0:29� 0:11 3:09� 7:53 �3:05� 14:81 �1:80� 1:99 5:47� 11:42 0:87� 15:61B = HF �0:94� 0:40 2:33� 2:06 �3:76� 8:33 �2:84� 1:18 3:62� 3:94 �3:43� 8:13

Figure 4. Distribution of PBQT=WRR for datasets C
, Cs and Cv . Reference measures from the simulation model.

4. Conclusions

Exploring short term RR and QT interaction in

clinical routine data and facing noise contamination is a

challenging and complex problem. This study evaluated

the robustness of a methodology to assess this relation

by automatic delineation and linear low order parametric

modelling. The results pointed out that no relevant

performance decrease results from delineation. The quality

decrease in estimation due to ECG noise does not degrade

the variability measures to nonusefull levels with moderate

contamination levels. Noisier ECG records will require an

improvement of the delineation system.

The results indicated that the joint performance of

the two systems (delineation plus variability analysis)

is satisfactory for SNR levels over 20 dB, namely in

the more realistic clinical case of a mixture of QT

dependencies. Clinical interpretation studies about the

value of the uncorrelated fraction can now be faced within

the framework of this modelling.
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