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Block Adaptive Filters With Deterministic Reference
Inputs for Event-Related Signals: BLMS and BRLS
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Abstract—Adaptive estimation of the linear coefficient vector occurrence as a signal thatis well described by a truncated linear
in truncated expansions is considered for the purpose of mod- expansion of orthonormal basis functions has been studied.

eling noisy, recurrent signals. Two different criteria are studied The coefficients of the linear expansion can be estimated
for block-wise processing of the signal: the mean square error

(MSE) and the least squares (LS) error. The block LMS (BLMS) using different approaches. In many situations, the mean square
algorithm, being the solution of the steepest descent strategy for €T0r (MSE) between the observed and the modeled signals
minimizing the MSE, is shown to be steady-state unbiased and represents a suitable cost function since it is related to signal
with a lower variance than the LMS algorithm. It is demonstrated energy. The optimal coefficients are commonly referred to
that BLMS is equivalent to an exponential averager in the sub- o the \Wiener solution and are determined on an individual
space spanned by the truncated set of basis functions. The block . o . Lo
recursive least squares (BRLS) solution is shown to be equivalent occurrence basis, thus constltutl_ng memoryless estlm_atlon In
to the BLMS algorithm with a decreasing step size. The BRLS is the sense that none of the previous occurrences are included
unbiased at any occurrence number of the signal and has the samein the current coefficient estimation. By introducing memory
steady-state variance as the BLMS but with a lower variance at in the estimator, the variance of the coefficient estimates can

the transient stage. The estimation methods can be interpreted ¢ qnsiderably reduced while the capability of tracking signal
in terms of linear, time-variant filtering. The performance of the h . - - tis still ilabl

methods is studied on an ECG signal, and the results show that changes In a noisy environment s st aya| able. . .
the performance of the block algorithms is superior to that of the Several papers have been presented in the area of biomedical

LMS algorithm. In addition, measurements with clinical interest ~ signal processing where an adaptive solution based on the LMS

are found to be more robustly estimated in noisy signals. algorithm is suggested; see, e.g., [1]-[4]. The reference inputs
Index Terms—Adaptive filters, deterministic input, event-re- t0 the LMS algorithm are deterministic functions and are de-
lated signal, orthogonal expansions. fined by a periodically extended, truncated set of orthonormal

basis functions. In these papers, the LMS algorithm operates on
an “instantaneous” basis such that the weight vector is updated
every new sample within the occurrence, based on an instanta-
HE problem of noise reduction in recurrent signals is weleous gradient estimate. In a recent study, however, a steady-
studied and has traditionally been solved by ensemble &tate convergence analysis for the LMS algorithm with deter-
eraging or by one of its many variations. The time refereneginistic reference inputs showed that the steady-state weight
of each occurrence is often synchronized to a known, externaktor is biased, and thus, the adaptive estimate does not ap-
stimulus; however, in certain signals, the time reference is difroach the Wiener solution [5]. To handle this drawback, we
ficult to observe, and therefore, a fiducial point needs to be assnsider another strategy for estimating the coefficients of the
tablished for each occurrence by some kind of estimation priirear expansion, namely, the block LMS (BLMS) algorithm,
cedure. A major disadvantage with ensemble averaging is thatvhich the coefficient vector is updated only once every oc-
efficient noise reduction is typically achieved at the expense @firrence based on a block gradient estimation. The BLMS algo-
using a large number of occurrences for averaging. In orderrithm has already been proposed in the case of random reference
better track short-term changes in morphology of a recurrénputs and has, when the input is stationary, the same steady-
signal while still achieving a reduction of the noise level, it istate misadjustment and convergence speed as the LMS algo-
desirable to develop methods that incorpoenfeiori informa-  rithm [6]-[11]. A major advantage of the block, or the transform
tion on possible morphologies. More recently, modeling of eagfomain, LMS algorithm is that the input signals are approxi-
mately uncorrelated (or orthogonal in a more general sense). To
the best of our knowledge, block adaptation has not been con-
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is achieved at the expense of a large increase in computatioflals solution can be easily understood because the optimal
complexity. In contrast, when deterministic and orthonormal isignal description in the transformed domain is the projection
puts are used, the complexity is about the same as for the LMSthe expected value of the observed signal. This solution
algorithm. corresponds to a minimum because the Hessian matrix is
The selection of orthonormal basis functions is, of course, deesitive definite.
pendent on the application of interest. In the area of biomedicalThe observed signal;. is commonly contaminated by noise.
signal processing, the analysis of evoked potentials in the eléssuming an additive-noise model, each signal occurréece
troencephalogram has been based on impulse functions [X2Jn be decomposed as
[14], sine and cosine functions [1], [15], complex exponentials d;, = s, + 1y (5)
[16], [17] and Walsh functions [18], whereas the QRST com- . o .
plexes of the electrocardiogram (ECG) have been modeled'¥jeres is a deterministic signal, and, is zero-mean random
Hermite functions [4], [19] or basis functions that result fronf0ise. The Wiener solution (4) for this signal model is
the Karhunen-Loéve (KL) expansion [20]. The purpose of the wi =TT, (6)
basis function description is not only noise reduction, as men-
tioned above, but may also be applied to data compression [i&j
[22], feature extraction [19], and monitoring [20].
The paper is organized as follows. The Wiener solution for yi. =TT s, (7)

as is its memoryless estimation [the inner product (IP)]. Theter defined by the matrixT'T? with the clean signas; as
BLMS algorithm with deterministic reference inputs is then prenpyt [23]. The cost function at the optimum will be

sented in Section Ill. Section IV presents the equivalent transfer Y

function of the BLMS algorithm and its relation to the IP and i = E{njmi} + s (I - TT)s, (8)
LMS estimators. Section V describes the estimation of lineatich is the sum of the noise energy and the truncated signal
coefficients using a different cost function—the weighted leastror.

squares (LS) error criterion. The resulting optimal solution de- Since the clean signal. is unavailablew;, needs to be es-
fines the block recursive least squares (BRLS) algorithm; its riemated according to (4) from the observed sigdal A very
lationship to the optimal MSE solution is established in Sesimple way is to approximat&{d,} ~ d; in (4), implying

tion V. A comparative performance analysis of the four estiméhat the linear coefficient vector is estimated by

tors (IP, LMS, BLMS, and BRLS) is presented in Section VI in wil’ = 17d, 9)
terms of bias, variance, and definitions of signal-to-noise ratio ) ) )
(SNR). Finally, the performance of the estimation methods is Where IP denotes the inner product between each basis function

lustrated in Section VIl using KL basis functions to characteriZ&"d the observed signal. This kind of estimation is memoryless
the ST-T segment of the ECG. since only information from thé&th occurrence is used to es-

timate £{d; }, and as a result, sudden changes in signal shape
can be tracked. On the other hard,!” will be sensitive to the

. presence of noise.
An observed event-related sign&l can be represented as

a N x 1 vector, where the subindéxdenotes the occurrence . BLMS ESTIMATION
number. When a truncated orthogonal expansion is used, the

estimated signaf;, is a linear combination gf basis functions  ©Oneé way to reduce the influence of noise is to include adap-
T ) tive algorithms in the coefficient estimation since this type of
Yi = LWy

estimators has memory of previous occurrences. When the de-
whereT is aN x p matrix whose columns are the basis functerministic signal is repetitive with slow occurrence-to-occur-
tions, andw,, is thep x 1 coefficient vector withp < N. One rence shape changes, the amount of noise can be reduced at the
approach to finding the optimal linear coefficient vectof is expense of a slower convergence. The tradeoff between conver-
to minimize the cost function defined by the mean square ergence speed and SNR improvement is controlled by the memory
betweend; andy; used in the estimation.

J = E{(d), — Tw)T(d), — Twp)}. ) _The structure of the vector-based adaptive_ filter is shown in
Fig. 1. The primary inputly, = sg + n; consists of succes-
sive concatenated signal occurrences. For the steady-state anal-

9k = 217 Tw;, — 2T7 E{d;} = 0. 3) ysis of the algorithm, we assume that the deterministic signal

awy, sy remains unchanged during all occurrences, $g.= s. In
Since we have thal'* T = I, for any subset of orthogonal practice,s; will be occurrence variant, and the algorithm will
basis functiong, the Wiener solution for the linear coefficienttrack signal changes in a finite adaptation time. At each signal
vector is occurrence, the adaptive system estimates the amount of each

- reference input (columns of th€ x p matrix T') present in the
wy =T E{dx}. (4) input signald,.
1t should be noted that for truncated expansiaiE” # I; equalityonly | order to minimize the cost function (2), the optimal weight

holds for complete expansions. vector can be estimated using an iterative algorithm based on

., the projection of the deterministic signal in the transformed
main. Hence, the modeled signal is given by

Il. MSE ESTIMATION OF EXPANSION COEFFICIENTS

Applying differentiation, we obtain
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di = sg + ny Accordingly, the steepest descent algorithm (10) can be written

as
T yvi =Twg ek Vit1l = (1 — 2N)Vk + 2uTTnk. (19)
X
This algorithm is named block LMS (BLMS) because it is
equivalent to the LMS algorithm but with blockwise gradient
estimation. In a similar way, the update equation for the weight
Wk | Adaptive vector can be easily obtained as

| algorithm

Wig1 = (1 — 2p)wi + 20T dy. (20)

Fig. 1. Adaptive block-wise estimation of truncated expansions. In other words, the BLMS is equivalent to exponential averaging
in the subspace spannedByNote that the BLMS is equivalent
the steepest descent strategy. The weight vector is updated apd® wheny = 0.5.
every signal occurrence according to We will now consider the bias and variance of the BLMS
AJ algorithm since these quantities are needed for comparison with

Wil = Wk = b (10)  other estimation methods. The weight error vector at/tie
where . is the step size, which controls stability and convefccurrence can be written as
gence speed of the algorithm. Using the definitionegf = L k=l T
dr — y& = di — Twy, and decomposing the weight vector Vi = (1 —2w*vo+2p Y (1 —2u)* 7 T"n;.  (21)
as the sum of the optimum vakuand the weight error vector 7=0

(11) The first term is clearly a transient, which, for< p < 1, will

wi =W+ vy : - :
vanish after a sufficiently large number of signal occurrences.

we can write Therefore, at steady state, only the second term in (21) will be
Jo = E{(di — T(W° + vi)) T (dp — T(W° +vi))} important. Takindimy .., of the expected value, we obtain
=FE {(ez —Tv) (e — Tvk)} (12) klim E{vi} = E{ve} = klim 2u
wheree}, = d; — Tw® denotes the error signal obtained with k-1 NP
the optimum weight solution. Using the Wiener solution (6), the x Y (1=2)" ' T E{n;} =0 (22)
minimum error signal can be written as /=0
e =s+mn, — Tw® = (I—TT )s +ny (13) since the nois@, is assumed to be zero mean. Accordingly, the

. ) . steady-state weight vecter., is an unbiased estimator of the
and thus, two independent sources can be considered in the q{far solution (6).

signal: the error due to truncation and the observed noise.

_ X In order to analyze the steady-state variance, we need to quan-
The cost function (12) can equally be written as

tify the excess MSE/;* in the cost function (16). The energy
J.=E {(ez)T ei} + E{vIv,} — 2B {vI'TTe°} (14) of the weight error vectoE{v] v,} can be calculated as
where the quadratic dependence on the weight error vector isE {vivi} = (1 — 2u)?*E {vEvo} +2(1 — 2p)*2p

evident. At the optimal solution, the signal truncation error is
orthogonal to the reference inputs, and x B vy

Tlel = TTI - TT")s + TPy = TTng.  (15)

x

-1
k—j—
(1 —2p)F= =11,

1]

Hence, the cost functios, can be written as = —j
» +4u°E (1- 2u)k it n?T
Jh=FE {(ez)T ei} +E{vivi} —2E{viT n;} (16) =0
where the first term is called the minimum ertkff, and the sum k—1 -
of the two following terms is referred to as the excess of MSE x> T (1 —2p) ) b (23)
JEE 1=0
The gradient can be calculated as At steady-state, the first two terms will be null if appropriate
.1 o
a_k — 2E {vi} — 2T7E {n;} . (17) values of the step-size are selected, and then
Vi T T
. . . . FE ot = Etrive
When only thekth signal occurrence is available, a simple gra- {V“V } { {V V“’}}
dient estimation considers k—lk—l
= lim 4p°tr Z Z(l — o)kt
dJy T A

2The dependence &f° on the occurrence numbgris omitted because for T T [
S TP > —j—1
the steady-state analysis, it is assumed that the deterministic sigriavariant x T E{nlnj }T(l - 2#) . (24)
for all signal occurrences.
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If the noise signal is assumed to be stationary with correlatifrequency responses were calculated in [23], where the linear
function shorter than the gap between consecutive occurréncesefficients were estimated using the IP and the LMS algorithm.
then This section will extend the analysis for the BLMS algorithm.

In the update equation of the BLMS algorithm (20), the term

E{nm]} = §;N (25) 174, represents the IP estimationwf using only informa-

tion from thekth occurrence. The first term accounts for the es-
'timation done at the previous occurrence. As a consequence, the
BLMS algorithm can be understood as a transform-domain ex-

whereN is the N x N noise covariance matrix. Accordingly
the steady-state weight error vector energy is

) k-t L ponential averager. It is well known that exponential averaging
E{vive} = klﬂlc}o ap? Z(l = 2u)* " D {TNT} is equivalent to a linear time-invariant filter whose transfer func-
J=0 tion is a comb filter. On the other hand, truncated orthogonal ex-
S tr{T'NT}. (26) pansions estimated with inner product are equivalent to a linear
1=p time-variant filter [23]. Therefore, the combination of both sys-
For the particular case of white noise with varianée (26) is tems is a linear time-variant filter.
simplified to An alternative demonstration can be done by looking at the
2 reconstructed signal. A first-order finite difference equation is
E{vive}= llipffu. (27) obtained by premultiplying both sides of (20) iy
In order to complete the evaluation of the cost function (16), the Vi1 = (1= 2)yx + 2uTT dy. (32)

cross termE{viT?n;} needs to be quantified as

T k o In the case of complete expansidFT? = I, the coefficients

E{vi T mij = (1= 20)"E {vo T'ny} in (32) are scalar and time invariant. Accordingly, the system can
k-t ki1 — be described with a single transfer function, which is a comb

+ Z(l —2u)" B {nj L nk} - (28) filter. The same transfer function was obtained for the LMS al-

J=0 gorithm fed with a complete set of impulse functions in [14]

The first term is again a transient, and it will be null at steadynd, more generally, with any complete set of orthogonal func-

state. The second term is zero because tions in [23].

EnfTT ' =tr (TTE{nm?} T} =0, k#j When truncated orthogonal expansigns< N are consid-
J J ? e . . . . . .
(29) ered, a coupled system of finite difference _equauons is obtained
gtom (32) becausd'T? # Iy. The equation system can be

which follows from (25). Summing up, the steady-state co ‘
written in a scalar way as

function is
s A £ Ntr{TTNT}. (B0) y[kN +1] = (1 - 2u)y[(k — 1IN +1]
N—-1
In the case of complete expansions, we hafdtfNT} = 2 Z rimd[(k— )N +m] 1=0,1,....N—1 (33)

tr{IN}, which is equal to the noise energy. In the case of white

m=0
noise and incomplete expansions
JBLMS _ jo 14 po? 31) where the coefficients;,,, are the elements of the matfiRT” .

< 1l-pn Thus, a set of lineaWth-order finite difference equations with

It may be worthwhile to point out certain relationships to théme-variant coefficients is obtained. If null initial conditions are
LMS algorithm. In the case of the LMS algorithnfic* is com- used, alinear time-variant system can be defined from (33). The
posed of three terms [5, Eq. (12) and (13)], whereas for ta@alysis of this equation system is simpler than the one obtained
BLMS algorithm, only two terms are presentin (16) because tHe[23, Eq. (14)] for the LMS algorithm.
signal truncation error is orthogonal to the input basis functionsOne way to solve the equivalent time-variant impulse
T. Moreover, the LMS algorithm converges to a biased estimd@sponse is to observe the output respofigen] to impulse
in the case of truncated expansions [5], whereas the BLMS &gactions é[n — a] located at different time instanis with
timation is steady-state unbiased. When complete expansifns @ < N — 1. Then, the equivalent time-variant impulse
p = N are used, it can be noted th&§-MS = JIMS [5] This responsé:[m,n] will accomplish
result agrees with the fact that the algorithms become identical -
\(/g;]e)n complete expansions are used (compare (20) with [5, qu[a’ n] = Z hfm,n]8[n — a — m] = hln — a,n]. (34)

m=—0o<

IV. EQUIVALENT TRANSFERFUNCTION (@) .

] Lets, =[0---0 1 0---0]T be the occurrence representation
Truncated orthogonal expansions can be understood as ling@fhe impulse inpu[n — a]. The BLMS output at thekth

time-variant filters. The equivalent instantaneous impulse aggcyrrencef;, follows the recursion

£, =0, 0

wander in the ECG, are usually removed in a preprocessing stage because they T k=
fi. = (1 — 2u)k*12uTT 6o, E>1

do not convey any valuable clinical information.

(39)

3The very-low frequency components of biomedical signals, e.g., baseline {
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which is equal to the linear convolution of the FIR impulse re- Step-size/Forgetting factor relationship
H H T n T T
sponse of the IP at time instam{'T"L" §, and the comb filter osf v — . o o [—060f
with impulse response 045} ‘ ~ --- 2=0.80 ||
: == A=0.90

> 2p(1 = 2p)*8[n — EN]. (36) D035t 4 ' :
=t @ ol A

= 2
The same impulse response was obtained in [23] for the LMS §025[ 3\
algorithm when small values of step-size are used (quadratic & 02f
terms of,. were neglected). LT O W

V. LEAST SQUARES COEFFICIENTVECTOR 005

An alternative solution to the MSE criterion is to use the least , : , :
squares (LS) error criterion, where the cost function to be mini- 0 5 10 15 20 25
. . R ... Occurrence number k
mized depends on the observed signal in a deterministic way.
The problem can be defined as finding the< 1 coefficient Fig. 2. Relationship between the step size in BLMS and the forgetting
vectorw that minimizes the cost function factor A in BRLS.

37) can be estimated in a recursive way using a block RLS (BRLS)

— oTer — (dy — T (s —
Ei = epex = (d = Tw) (di = Tw). approach by rewriting (41) as

The least squares solution is given by [24] BRLS 1-XA aris 1—X
LS T
> = T'dy 38 - . . .
Wk » (38) The LS coefficient vector consists of updating the solution of the
hich is | ical h \uti ) i he | revious occurrence with the new dalta The difference from
which 1s ldgntlcg “_’ the solution obtained by using the inn he BLMS is that the update coefficients are time variant, and
product estimation in (9). therefore, the recursive LS solution (BRLS) can be understood

Whe_n several signal occurrences arejoi_ntly analyzed, sevelahne BLMS algorithm in (20) with an occurrence-varying step
extensions of the cost function can be defined to take the mfgri-

mation from previous signal occurrences into account. The clas-
sical approach is to include all the available past signal occur- [ = %
rences, possibly weighted by a forgetting factor to add tracking 2(1 = A

capability to the algorithm. Then, the cost function at it The equivalent occurrence-variant step giz®f the BLMS al-
occurrence is the squared error weighted sum from the firSt Qsrithm is illustrated in Fig. 2 for several values of the forget-
currence to the current time. Therefore, the coefficient vectorgg factor \. The convergence is fast at the first signal occur-
the kth occurrence is chosen to minimize rences because the equivalent step-size is large (in particular,
w1 = (1/2) and is therefore equivalent to IP). For later oc-
currences, the step-size decreases, and finally, the steady-state
value isp, = (1—\)/2. The strategy of a decreasing step-size
implies that larger step sizes at the beginning provide a faster ap-

where the constant, 0 < A < 1 is the forgetting factor. Note Proximation to the optimum, and later, smaller valuesiaire
that the coefficient vector is held constant during the observatiff€d to reduce the variance. A decreasing step size has heuristi-
interval. The coefficient vector obtained by minimizing (39) i§2ly been included in some variants of the LMS algorithm [25].
denoted byw!:S and provides the LS coefficient vector at the Although the least squares cost function (39) is deterministic,

kth occurrence. A necessary condition for the optimum is the presence of noise in the observed signal yields some devia-
tion with respect to the ideal noise-free solution. Then, bias and

(43)

k
& = Z MN=i(d; — Tw)T(d; — Tw) (39)
1=0

b variance could be used to quantify these deviations.
? — Z M=iow — 2T7d,;) = 0 (40) The weight error vector can be written as
w4
=0 yBRLS _ BRLS _ 7
and then 1)\ =t
- TN " N'n,. 44
1 k 1— Ak ; i (44)
Wit = g T YA (41)
1= i=0 Using the zero-mean noise assumption, the BRLS yields an un-

. . _ ) biased estimate
Every time a new occurrence is available, the cost function (39)

needs to be minimized. Fortunately, the LS coefficient vector E{vP*Sl =0 (45)
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TABLE |
WEIGHT ERRORVECTOR v, FOR DIFFERENT ESTIMATION METHODS
P vi =T ny
LMS | v[(k=)N+j] = Fk ;v + 205 i Fynvjm1 T (fm] +¢fm])) ~ 1<j <N
BLMS vi=(1—-20) vo+2uTT Y (1 -2 'y
BRLS vy, = 11_‘ /\Ak TT Y50 M-in,

for any occurrence indek. The steady-state variance can bwherer]T denotes thgth row of T. The expression of the weight

calculated as error vectorvy, for each of the estimation methods is given in
5 BRL\T _ BRLS Table I. The expression for the LMS algorithm is taken from
{(Voo )" ve } [5], F; ; denotes the transition matrix between tte and the
_ kh_IEOE {tl’ {VERLS (VERLS)T}} jth time instants [5] |
12 T ™ N 2 T T Fij=]]@-2ur.7l), i>j (52)
(1— ) klggo;;)\ tr {T7E {n;n?} T} L[J
1 _ A . . . . . .
_ tr{TTNT} (46) a_nd ¢[n] is the instantaneous signal truncation error within the
1+A signal subspace

where the noise assumption (25) is also used. In the white noise _ T o
_ 2 i ; c[n] = s[n] — 7y W (53)
caseN = ¢-1I, and the variance can be written as
T 1) The estimation based on the inner product is sensitive to noise
E { (VEORLS) VEORLS} =17 )\pfo- (47)  because the noise is directly projected on the subspace spanned
) ] ] by T. In contrast, the weight error vector for LMS and BLMS
If the forgetting factor is selected accordingite- A = 24, then s composed of two terms: a transient (which depends on initial
BRLS and BLMS have the same steady-state variance conditions and which will be null at steady-state) and a filtered
BRLS\T  BRL Iz e version of the previous noise occurrengesi = 0,1, ..., k—1.
E{(VooR S) Ve S} - mtr{TNT boo48) In the case of the BLMS algorithny;;, is an exponential av-

. . . _erage of previous noise occurrences. For the LMS algorithm,
. Fmally, we _note t_haf[ the BRLS can be despnbed asa “net% expression is more cumbersome but conceptually similar.
time-variant filter, similar to the BLMS algorithm. The first-

. . . . ne main difference is that for the LMS, two terms are aver-
order finite difference equation that characterizes the BRLS %'ed' the instantaneous noise signfah] and the signal trun-
gorithm is obtained by premultiplying (42) wifRt ged gn 9

cation errorc[m]. Another difference is that the update aver-

aging in BLMS is uncoupled because the coefficiehts 2.

are scalars, whereas in LMS, the update is coupled because the
ansition matriced"; ; are not diagonal. When small values of

Fe step-size are usdd,y .+, ; can be approximated Y —24)I

[23, (25) and (26)], and then, both algorithms are approximately

equivalent. However, the weight error vector for the BRLS al-

gorithm is composed of only an exponential average of previous
A performance comparison of estimation algorithms is usaeoise occurrences without the transient term.

ally done in terms of bias and variance, but additional factors The biasE{v; } and the varianc&{v} v, } can be analyzed

could also be considered, such as convergence speed, commattany occurrencé using the expressions given in Table I. If

tional complexity, and delay. In this section, we will comparéhe deterministic signas; is assumed to be constant for all

bias and variance when the deterministic signais assumed signal occurrences, the comparison can be made at steady state.

to be occurrence invariant, and we will present definitions of thér example, the expressions of steady-state bias and variance

BRLS _ y 1- 2 pris 1-X oty 49
Ykl TAT TR YE T Tk ko (49)

This finite difference equation has occurrence-variant coe
cients and, therefore, defines a linear time-variant filter.

VI. ESTIMATOR PERFORMANCE COMPARISON

SNR. for the cases of zero-mean white noise with varianéeand
The output signaly; for any linear coefficient estimation zero-mean colored noise are given in Tables Il and Ill, respec-
method can be written as tively. In the case of the LMS algorithm, both bias and variance
are time-variant, i.e., different values are obtained at every time
v = T(w® +vi) (50) instantj, 1 < j < N of the kth signal occurrence.

wherev,, depends on the selected estimation method. For the/Vhen the deterministic signal is constant only within a

LMS algorithm, there is no compact expressionvafbecause shorter interval, the bias and variance analysis should be done

the weight vectorw(n] is updated at every sample, and th&fter a finite number of signal occurrences. Similar expressions
output signal at théth occurrence in (50) needs to k;e writterP bias and variance could be obtained for this case using Table |,
in a scalar way including the transient terms for LMS and BLMS.

The main objective of using adaptive algorithms in the linear
ylkN + 4] = T]T(w" +v[kN+j]) 1<j<N (51) expansion coefficient estimation is to reduce the noise in the
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TABLE I
STEADY-STATE BIAS AND VARIANCE FOR WHITE NOISE
Bias: E{Woo} — W° = E{veo} | Variance: E {(wm —w)T (Weo — w°)} =F {voTovoo}
1P 0 po’
LMS | 2uB; Y 27 c[m] Fasj—1m41Tm, 4p*tr D +0” 307 (Fry-15)° Qs (FR1s) )
where B; = (I — Faggo1,;)"" where Q; = Y0 Fvg ot mit T T F vy 1 s and
D; =B; (Zﬁﬁf 97 clm] [l] F -1, mn Tm"'zTFsz—l,m) BT
BLMS 0 o po’
T—X, =2
TABLE Il
STEADY-STATE BIAS AND VARIANCE FOR COLORED NOISE
l Bias: E{ve} | Variance: E {v&vw}
1P 0 E{n;TT n;} =tr {T'NT}
LMS | 2uB; ZZ:’?_I cfm]Fryj—1,me1Tm complex formula [5]
BLMS 0 }—g—l/{tr{TTNT}
BRLS 0 3 {TTNT}
observed signall;, = s + n;. A natural performance index 2000w K bagigfunetions e
will be the improvement of the SNR between input and output , /\—\
signals obtained by any of the estimation methods (IP, LMS, A500F -+ o o) g_/\
BLMS, and BRLS) at théth occurrence. Let SNRoe the SNR f,\f’\
of the input signal at théth occurrence £ 1000 =
[
: E{sTs} 2
SNR, = —————. (54) =1
E{nfn.} £ s00f
The SNR of the output signal, can be written using (50) as of
E{sTTT"s
snry = Zls TT s} (55) | . ‘ .
E{vivi} 5005 200 400 500 800
. . . Time (ms)
and thus, the improvement in SNR will be
SN% K Fig. 3. ST-T complex selected for the simulation from a normal heartbeat.
ASNRy, = 2= T (56)
SNR,  E{vivi} where b[n] is the projection of the deterministic signafin]

where K is a constant for a given signal subspaBeand a Onto the subspace spanned Byb[n] = Th_kxW. Then,
noisy observed signal,.. Accordingly, the improvement of the SNR™®[n] is time variant, even at steady-state, because both
SNR is inversely proportional to the weight error variance. TH&Imerator and denominator have different values at different
steady-statAASNR for each estimation method can be easily ofime instantg’ of the signal occurrence. However, a comparison
tained using (56) and Tables Il or IIl. For example, the stead@mong different estimation methods should be done using the
state improvement of SNR of BLMS versus IP is, for both casé8dme temporal basis either for occurrences or samples. When

of white and colored noise the scenario is evaluated on an occurrence-by-occurrence
1— basis, then (58) could be averaged over all instants of:itie
ASNRBIMS/IP _ 2~ (57) occurrence, and then
o T
When the BLMS algorithm is used with < 0.5, the steady- ~ SNRM® = — =1 . (59)
state output signayBLMS s cleaner thary'C. On the other > imr 7 B{V[EN + jIVT[EN + jl}7;
hand, the convergence speed of the BLMS algorithm will be
low for small values of.. VII. RESULTS

In the case of the LMS algorithm, the weight vector is up- L
dated on a sample-by-sample basis, and the output signal at tim&h€ performance of the four estimation methods (IP, LMS,
instantr = kN + j is y[n] = 77 w[n]. Accordingly, the instan- BLMS, and BRLS) is illustrated by a simulation example in
taneous SNR of the output signal is evaluated as which the characteristics of an ECG signal are studied. In par-
ticular, the ECG is analyzed with respect to the ST-T complex
SNRLMS[ ] = b*[n] (58) (Fig. 3) since this part of the cardiac cycle frequently reflects
T?E{ v[n]vTn]}7r;x[n] myocardial ischemia. Ischemic heart disease constitutes one of
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the most common fatal diseases in the western hemisphere. Mfythe number of basis functionsand the step-sizg. The re-
ocardial ischemia is caused by a lack of sufficient blood flowults below present the performance during “steady-state” heart
to the contractile cells and may lead to myocardial infarctioconditions; however, it is naturally of interest to also study the
with its severe sequellae of heart failure, arrythmias, and degperformance during changes in the ST-T segment; such a study
Changes that occur in the ST-T complex due to ischemia aseoutside the scope of the present paper.
traditionally quantified by the amplitude measurement “ST60” The first component weight error vector trajectory is illus-
obtained 60 ms after the depolarization phase has ended [26}ated in Fig. 4(a) when only one basis function is used in the
Basis functions derived by using the KL expansion [24] hawexpansion model with a large step-size= 0.3; A = 0.4). The
been found useful for monitoring of ischemia [20]. The Kllarge steady-state bias of the LMS algorithm is due to the signal
basis functions used in the present study were estimated frommcation error and the large value of the step-size, whereas
a training set of signals including several databases in orderthe BLMS yields a steady-state unbiased estimate. On the other
adapt the basis functions to a large variety of ECG morpholband, IP and BRLS are unbiased at any occurrence. The variance
gies. The four most significant basis functions are also plottegtolution shown in Fig. 4(b) pinpoints the steady-state equiva-
in Fig. 3. It should be emphasized that although the KL badence between BLMS and BRLS and their advantage versus IP
functions have been selected here, other orthogonal expansiod LMS. The variance of the LMS algorithm is shown at every
can be used as well. time instant with a very large steady-state value due to the com-
The signal analyzed below was synthesized as a sequencbionétion of large truncation error and large step-size.
identical ST-T complexes, in the same way as was done in [5],If a larger amount of memory is used by the adaptive algo-
to which white Gaussian noise was added with an SNRO rithms (lower value of: or higher value of\), the steady-state
dB. The four estimation methods (IP, BLMS, LMS, and BRLSYariance will be lower, but the convergence speed will decrease;
were then applied to the simulated signals. Average results freee Fig. 5. It can be checked that the LMS and BLMS perfor-
a set of 5000 trials are shown in Figs. 46, with several valuegnce are very similar when very small value of the step-size
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Fig. 7. ST60 trends for several values of the number of basis functions and step-size are BN#B. The ST60 amplitude of the clean signal wa$7 V.

are used, but there are still some differences due to the trunegpansion has a critical impact on the bias and variance per-

tion error: The LMS is biased and with a slightly higher variancirmance of the LMS algorithm but not in IP, BLMS, or BRLS,
where only the variance is affected in a linear way by the number

at steady state.
When a larger number of basis functions is used in the exf basis functiong.

pansion, most of the signal energy is contained in the signalFig. 7 shows ST60 trends measured from the signals esti-
subspace spanned B, and the effect of the truncation errormated by IP, LMS, BLMS, and BRLS for different conditions
on the LMS is much less important (see Fig. 6), even for largé the number of basis functions and the step size. It can be
values ofy; (note that when complete expansions are used, LM8en that the LMS yields a biased estimate, which is especially
and BLMS are equivalent for any step size). It is also illustratgmtonounced for large signal truncation error (Ipjvand large

in Figs. 4 and 6 that the number of basis functions used in thep size. It is also illustrated that the performance of LMS and
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Fig. 8. ST60 trends with SNR= 10 dB and low-memory estimation. The ST60 amplitude of the clean signatwasg:V.

BLMS is similar for low values of the step siZg = 0.05). The [4]
variances of the four estimation methods are proportional to the
number of basis functions.

In many situations, the SNR is much lower than 20 dB, [5]
whereas the signal properties may be changing. Fig. 8 exampli-
fies this case by presenting the performance for two different
step sizes. The number of basis functions is set to 4 in order tqg)
provide a sufficiently good signal characterization.

VIIl. CONCLUSION 17l

In this paper, the problem of adaptive estimation of linear 8
transform coefficients for event-related signals was analyzed for
a block structure with deterministic inputs. The BLMS algo-
rithm was derived using the steepest descent strategy with block!
gradient estimation to minimize the mean square error. Its per-
formance was found to be better than the LMS algorithm, prof10]
viding a steady-state unbiased estimation of the Wiener solution
and a lower steady-state variance that is unaffected by the sig
truncation error. [12]

Using instead a block-wise least-squares approach, the re-
sulting BRLS algorithm yields an unbiased estimate for any oclt3l
currence and with lower variance than BLMS at the transient
stage but with identical steady-state variance. The BRLS was
shown to be equivalent to the BLMS with a decreasing step-size

. C T4
(larger values at the transient state to get a fast approxmaﬂ&n
to the optimum and lower values at steady-state to reduce the
variance). It was shown that BRLS and BLMS have the saméL5]
steady-state variance whep = 1 — A,
[16]
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