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Unsupervised Data-Driven Feature Vector
Normalization With Acoustic Model Adaptation
for Robust Speech Recognition
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Abstract—In this paper, an unsupervised data-driven robust
speech recognition approach is proposed based on a joint feature
vector normalization and acoustic model adaptation. Feature
vector normalization reduces the acoustic mismatch between
training and testing conditions by mapping the feature vectors
towards the training space. Model adaptation modifies the param-
eters of the acoustic models to match the test space. However, since
neither is optimal, both approaches use an intermediate space be-
tween training and testing spaces to map either the feature vectors
or acoustic models. The joint optimization of both approaches pro-
vides a common intermediate space with a better match between
normalized feature vectors and adapted acoustic models. In this
paper, feature vector normalization is based on a minimum mean
square error (MMSE) criterion. A Class Dependent Multi-En-
vironment Model LInear Normalization (CD-MEMLIN) based
on two classes (silence/speech) with a Cross Probability Model
(CD-MEMLIN-CPM) is used. CD-MEMLIN-CPM assumes that
each class of clean and noisy spaces can be modeled with a
Gaussian mixture model (GMM), training a linear transformation
for each pair of Gaussians in an unsupervised data-driven training
process. This feature vector normalization maps the recognition
space feature vector to a normalized space. The acoustic model
adaptation maps the training space to the normalized space
by defining a set of linear transformations over an expanded
HMM-state space, compensating for those degradations that the
feature vector normalization is not able to model, like rotations.
Experiments have been carried out with the Spanish SpeechDat
Car database and Aurora 2 databases using both the standard
Mel-frequency cepstral coefficient (MFCC) and advanced ETSI
front-ends. Consistent improvements were reached for both
corpora and front-ends. Using the standard MFCC front-end, a
92.08% average improvement on WER for Spanish SpeechDat
Car and a 69.75% average improvement for clean condition eval-
uation of Aurora 2 was obtained, improving those results reached
with ETSI advanced front-end (83.28 % and 67.41 %, respectively).
Using the ETSI advanced front-end with the proposed solution, a
75.47 % average improvement was obtained for the clean condition
evaluation of Aurora 2 database.

Index Terms—Acoustic model adaptation, data-driven feature
vector normalization, linear transformation matrices, robust
speech recognition, unsupervised.
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I. INTRODUCTION

UTOMATIC speech recognition (ASR) systems can

achieve satisfactory performance under controlled condi-
tions. However, when training and testing acoustic conditions
differ, the accuracy of the systems rapidly degrades. To com-
pensate for the different effects which cause the mismatch
between training and recognition spaces, robustness techniques
have been developed along three main lines of research [1]:

* robust feature vector extraction methods, to generate

acoustic vectors less affected by the noise;

 acoustic model adaptation methods, which map acoustic

models from training space to recognition space;

» feature vector adaptation/normalization methods, which

map testing space feature vectors to the training space.

In this paper, we focus on “unsupervised” methods, which are
those that do not require a transcription of the training data. Un-
supervised adaptation can provide more user friendly solutions
for ASR applications because they do not require active enroll-
ment by the speakers. Also, they can be very useful in those
situations where the transcriptions are not available, or they are
very expensive to obtain.

Feature vector adaptation/normalization methods fall into one
of these three main classes [2]: high-pass filtering, model-based
techniques, and empirical compensation. High-pass filtering re-
search involves methods such as Cepstral Mean Normalization
(CMN) [3], [4] and RelAtive SpecTral Amplitude (RASTA)
processing [5], which are included in almost all ASR systems
because they are simple and effective. Model-based methods
assume that the mismatch between training and recognition
spaces can be represented by a structural model of environ-
mental degradation. So, the corresponding parameters of the
structural model are estimated and the appropriate inverse oper-
ation is applied to compensate the recognition signal. Examples
of model-based methods are Vector Taylor Series for feature
normalization (VTS) [6], Codeword Dependent Cepstral Nor-
malization (CDCN) [7], and Spectral Subtraction (SS) [8].
Finally, empirical compensation methods use direct cepstral
comparisons and are entirely data-driven. Typically, a training
phase based on stereo data (clean and noisy signals simultane-
ously recorded) is required to estimate some transformations,
although “blind” approaches, which use only noisy training
data, have been developed [9], [10]. Some algorithms which
are based on this approach include multivariate Gaussian-based
cepstral normalization (RATZ) [9], Stereo-based Piecewise
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Linear Compensation for Environments (SPLICE) [11], Proba-
bilistic Optimum Filtering (POF) [12] and Multi-Environment
Model-based LInear Normalization (MEMLIN) [10].

In general, acoustic model adaptation methods produce better
results than other robustness research lines because they can
model the uncertainty caused by the noise statistics in a more
accurate way [13]. However these methods require more data
and computing time. Furthermore, the performance of acoustic
model adaptation methods degrades dramatically when the tran-
scription of the adaptation data is not available (unsupervised
techniques) [14]. For this case, a previous step to provide an esti-
mation of the transcription of the adaptation data is needed (usu-
ally a recognition process). Unfortunately, this approach can not
provide satisfactory performance when the adaptation data are
highly noise corrupted or the recognition task is complex (e.g.,
large vocabulary, spontaneous speech, etc.) because the word
accuracy might be not good enough. On the other hand, sev-
eral feature vector normalization/adaptation techniques, which
in general do not need as much training data and computational
time as acoustic model adaptation methods, have proved to be
very effective under adverse conditions [10], [11]. Thus, in order
to combine the advantages of the acoustic model adaptation and
the feature vector adaptation/normalization methods in an un-
supervised framework, we consider an unsupervised hybrid so-
lution in this work. By hybrid solution, we mean a combination
of a feature vector normalization/adaptation technique with an
acoustic model adaptation technique.

Previous work [10] has shown that MEMLIN and its super-
vised Phoneme Dependent extension (PD-MEMLIN) are effec-
tive in compensating for the effects of adverse dynamic car con-
ditions, thus improving the performance of techniques based on
similar criteria, e.g., SPLICE, RATZ. In order to use unsuper-
vised data in the training process, and following the same phi-
losophy as PD-MEMLIN, a class dependent generalization is
proposed in this paper. Thus, Class-Dependent MEMLIN (CD-
MEMLIN) is defined and a simple class definition, silence and
speech, is used throughout the paper. Note that this class def-
inition works in an unsupervised framework by using a voice
activity detector (VAD) over the clean training speech to clas-
sify the frames. CD-MEMLIN assumes that each acoustic class
of clean and noisy spaces can be modeled with Gaussian Mix-
ture Models (GMMs), and a linear transformation is trained for
each pair of Gaussians.

A critical point in the performance of MEMLIN [15] is the
cross-probability model, which is the a posteriori probability of
the clean model Gaussian given the noisy one. So, in this work
we propose a Cross-Probability Model (CPM) based on a set of
GMMs, which will be applied over CD-MEMLIN, defining the
technique CD-MEMLIN-CPM. In this approach, noisy feature
vectors associated to each pair of Gaussians (clean and noisy)
are modeled with a GMM, obtaining a time-dependent and dy-
namic solution for the CPM.

The proposed unsupervised hybrid solution uses
CD-MEMLIN-CPM for feature normalization followed
by an acoustic model adaptation method based on linear
transformations over an expanded HMM-state space. Hence,
clean and normalized spaces are modeled with GMMs and a

set of linear transformations is obtained, estimating one linear
transformation per pair of Gaussians (clean and normalized)
using linear regression. In recognition, each normalized feature
vector is recognized with the augMented stAte space acousTic
dEcoder (MATE) [16] using expanded acoustic models, which
are generated from the reference models and the set of linear
transformations. The approach of the proposed hybrid solution
is to map the reference acoustic models to the normalized
space, compensating those degradations that the feature vector
normalization/adaptation techniques are not able to model, like
rotations [17].

To compare the performance of the proposed methods, two
databases have been used: the Spanish SpeechDat Car database
[18], [19], which represents a real dynamic environment, and the
widely used Aurora 2 database [20], which does not represent a
real environment because the noise has been artificially added,
but is a reference database to compare robustness techniques.

This paper is organized as follows. In Section II, a brief
overview of CD-MEMLIN is included. In Section III, the
cross-probability model importance is studied in a qualitative
way and CD-MEMLIN-CPM is proposed. In Section IV,
the online unsupervised hybrid solution, which combines
CD-MEMLIN-CPM with the novel acoustic model adaptation
method based on linear transformations is presented. The
results of the proposed techniques with Spanish SpeechDat Car
and Aurora 2 databases are detailed in Section V. Finally, the
summary, conclusions and future work directions are discussed
in Section VI.

II. CD-MEMLIN OVERVIEW

Class-Dependent Multi-Environment Model-based Llnear
Normalization (CD-MEMLIN) is an empirical feature vector
normalization/adaptation technique based on a general MMSE
framework where each class is modeled with a GMM for
the clean and noisy spaces. Hence, three approximations are
considered.

A. CD-MEMLIN Approximations

¢ (lean feature vectors x are modeled with a GMM of N,
components for each class ¢

N,
p(xlc) = Y plsacle)p(X|sz.e. ) ¢))
P(K[sser0) =N (xim,, ) @)

where p, X,  and p(s,|c) are the mean vector, the
diagonal covariance matrix, and the a priori probability as-
sociated with the clean model Gaussian s . for the c class.
Note that all classes are modeled with the same number of
Gaussians (NN,,) for simplicity.

* The noisy space is split into several basic environments,
e, which represent different acoustic conditions. Further-
more, the corresponding feature vectors y are modeled as

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on February 8, 2010 at 05:56 from IEEE Xplore. Restrictions apply.



298 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 2, FEBRUARY 2010

a GMM of N, components for each basic environment and

class
(yle, c) Zp yc|e c (y|s;7c,e7c) 3)
p (y|8;_’c7670) :N (Y;“s§76728§,6) (4)
where s; . denotes the corresponding Gaussian of the

noisy model for the el basic environment and ¢ class;
Hs: s Y. . and p(sy |e,c) are the mean vector, the
d1ag0nal covariance matrix, and the a priori probability
associated to s .. Again, observe that all classes are
modeled with the same number of Gaussians per basic
environment (V) for simplicity.

* Finally, the relationship between x and y is consid-
ered linear within each pair of Gaussians per class,
81“0 and Syc : p(X|Y7sI,C7SZ,cvevc): N(Xay -

2, .,sc ), Where rg, . is the bias vector

transformation between noisy and clean feature vec-

tors associated to each pair of Gaussians (s, . and sy o)

and X, ,s¢ . s the corresponding covariance matrix.

Although CD-MEMLIN proposes a linear degradation

model of the signal space based on a bias vector, different

approximations could be considered, such as first order

polynomial or even nonlinear estimates [10].

r e
Sz,c,85

B. CD-MEMLIN Enhancement

In order to estimate the clean feature vector x; for each time
index t, the MMSE estimator is applied combining the three
approximations

xt = E[x|y:]
N. N. Ny N,
- ZZZZP €, C, SJc 3:rc|yt)
X E [X|Yt76767 Sy,cvsz,c]
N. N. Ny N,

=¥ - ZZZZI‘SM,“

e Sz,

Xp (Sy,c|Yt;eaC)P (sm,c|yt7e ¢, Sy c) (5)

ely )p(clyt, e)

where the operator E[] is the expected value, N, is the number
of classes, and NV, is the number of basic environments. Here,
p(ely:) is the a posteriori probability of the basic environment;
p(clys, e) is the a posteriori probability of the class ¢, given
the noisy feature vector y; and the basic environment; and

p(s;, .|y, €, c) is the a posteriori probability of the noisy model
Gaussian sj . given the noisy feature vector y;, the basic
environment e, and the class c¢. These three terms are com-
puted for each test feature vector combining (3) and (4) in the
recognition phase [10]. Finally, the Cross-Probability Model
(CPM) p(Sz.clye.e,c, sy .), is the probability of the clean
model Gaussian s, ., given the noisy feature vector y;, the
basic environment e, the class ¢, and the noisy model Gaussian

¢ .- The CPM term along with the bias vector transformation,

Tsycpss o is estimated in an unsupervised training phase using
stereo data.

C. CD-MEMLIN Training

Given a stereo data training corpus for each

basic  environment and class, (Xec, Yeo) =
e,c e,cy. . . e,c e,c .

{(xl Y1 )7""( EC7yt ) ’(XTe,gyTe,C)}’ with

tee = 1,..., T, ¢, the bias vector transformation Ty, opss is
estimated by minimizing frame-by-frame the mean weighted
square error, with respect to s, .sc . [10].

On the other hand, the cross-probability model
P(8z,clyt,e,¢,5; ) is simplified by avoiding the time
dependence given by the noisy feature vector y;, i.e.,
P(Sz,clye,e,¢,87 ) = p(szcle,c, sy ). Thus, the term
p(8z,cle; ¢, 55 ) can be obtained with (1), (2), (3), and (4) as

P (8a.clesc, Sy c)
_ p(sy.elec) p(ylsye erc) (sacle
o p(s5.clesc) p(y]sg cres0) plsacle)p(x]sa,es0)

Sz,c

VP(X|$z,¢, €)

(6)

In summary, CD-MEMLIN estimates a linear model com-
pensation based on a bias vector transformation for each pair
of noisy and clean model Gaussians per basic environment
and class. Thus, the mapping space associated with each
CD-MEMLIN transformation is more enclosed and has less
uncertainty than the ones corresponding to RATZ or SPLICE
[10]. Note that RATZ assumes a bias vector transformation for
each clean model Gaussian, and SPLICE defines a bias vector
transformation per noisy model Gaussian. Also observe that
MEMLIN is a simplified version of CD-MEMLIN when just
one class is considered. On the other hand, if one class per
phoneme is defined, CD-MEMLIN would present the same
solution as PD-MEMLIN [10].

The clean estimated feature vector for CD-MEMLIN x;
(5) can be seen as a shifted version of the noisy vector
Y: @ Xy = ¥ + &, where g; is the complete time depen-
dent bias vector. Thus, a direct correspondence between
CD-MEMLIN and the acoustic model adaptation techniques
can be appreciated. Usually, X, is decoded using clean acoustic
models. However, it provides the same solution as decoding
the noisy feature vector y; using adapted acoustic models
where the adapted acoustic models are built frame-by-frame
modifying just the mean vectors of the clean acoustic models.
Thus, for each time index ¢ the adapted mean vectors u‘tld“p ,
would be computed as pt*? = p — g,, where p is the corre-
sponding mean vectors of the clean acoustic models. Note that
it is assumed that the acoustic models are composed of HMMs
with GMMs as the observation generation probability density
functions (pdfs) for all the states. This correspondence between
CD-MEMLIN and acoustic model adaptation techniques can
be applied to all the feature vector normalization/adaptation
methods which consist of a linear transformation composed
only by a bias vector (e. g., CMN, RATZ, SPLICE).

The supervised training process is a major limitation for use
in user friendly applications because active enrollment by the
speakers is required. Thus, to maintain the unsupervised frame-
work, a simple two-class definition is used for CD-MEMLIN in
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this work, silence and speech, so that a voice activity detector
(VAD) can be used to label each training feature vector.

Finally, if CD-MEMLIN is inspected, two critical points can
be detected in order to improve the performance of the tech-
nique: the degradation model of the signal space, which has
been approximated as linear, and the cross-probability model,
which has been considered time-independent. The first point
was studied for MEMLIN in [10], where different linear and
non linear solutions were presented, while this work is focused
on the second issue.

III. CROSS-PROBABILITY MODEL BASED ON GMMSs

A. Cross-Probability Model Performance

To study the performance of the cross-probability model in
a qualitative way, the comparative pdfs and log-scattergrams
between the first Mel frequency cepstral coefficients (MFCCs)
in nonsilence frames for different signals are depicted in Fig. 1.
Fig. 1(a.1) and (a.2) represents the relationship between clean
and noisy feature coefficients (the noisy space was selected
from the Spanish SpeechDat car database: low speed, rough
road). Fig. 1(b.1) and (b.2) shows the relationship between
clean and CD-MEMLIN-normalized feature coefficients. Fi-
nally, Fig. 1(c.1) and (c.2) represents the relationship between
clean and CD-MEMLIN-normalized coefficients when the
cross-probability model is computed over s, . based on the
corresponding clean feature vectors as (p(s.,.|x:)). Note that
this is the oracle solution although it could not be applied in
a real situation. In all cases, CD-MEMLIN is applied mod-
eling the noisy and clean spaces with 64 Gaussians per class

Fig. 1(a.1) and (a.2) shows clearly the effects of the real
car environment. The pdf of clean first MFCCs is affected
[Fig. 1(a.1)], shifting the mean and reducing the variance
(typical effects of convolutional distortion and additive noise,
respectively). Also, the random nature of the environmental
degradation increases the uncertainty between the feature coef-
ficients: a given clean feature coefficient can generate different
noisy features, and vice versa [Fig. 1(a.2)]. The effects of the
noisy environment are compensated when CD-MEMLIN is
applied (Fig. 1(b.1) and (b.2)). The pdf of normalized first
MEFECCs is approximated to the pdf of clean signal first MFCCs
[Fig. 1(b.1)], and the uncertainty is reduced, although there is
still a considerable uncertainty between clean and normalized
coefficients [Fig. 1(b.2)]. The peak that appears in Fig. 1(b.1)
is because of the transformation of noisy feature vectors to-
wards the clean silence. This problem could be solved if an
efficient VAD were used not only in the training process but
also during the normalization process [10]. Note that in spite
of the qualitative improvement obtained with CD-MEMLIN,
there is still a large mismatch between clean and normal-
ized feature coefficients. Finally, if CD-MEMLIN is applied
with the oracle cross-probability model, the pdf of the nor-
malized first MFCCs is almost the same as that of the clean
MEFCCs [Fig. 1(c.1)], and the uncertainty is drastically reduced
[Fig. 1(c.2)]. These results verify the qualitative importance
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Fig. 1. PDFs and Log-scattergrams between the first MFCC coefficient in non-
silence frames computed over different signals.

of the estimation of the cross-probability model in the perfor-
mance of CD-MEMLIN algorithm. The same assertion has
been concluded for MEMLIN in previous work [15].

B. GMM for Cross-Probability Model

To improve the static cross-probability model (6) for
CD-MEMLIN, we propose to model the noisy feature vectors
associated to each pair of Gaussians of the acoustic class
(speech/silence) ¢ (s, and sfbc) with a GMM of Né compo-
nents

e
p (yt|sa:,c7 Sy,c"/ €, C)

Ny
= Zp (Yel8), Sw,cr 85 0 €5 €) (8} |S0,0r 55 cresc) (T)
5y
P (yt|s;, Sa.cr Sy cr s c)
= N (et oy Do) @®)

wherepry, o o B 50 sy oand p(sy sz e, sy . €, ) are the
mean, the diagonal covariance matrix, and the a priori proba-
bility corresponding to the s; Gaussian of the cross-probability
model associated to s, . and Sy.c- TO train these three parame-
ters, a previous training process with stereo data for each basic
environment and class is applied using the Expectation—-Maxi-
mization (EM) algorithm [21]. Hence, each noisy training fea-
ture vector associated to a basic environment ¢ and class ¢ y;**

is labeled with the most probable noisy model Gaussian [(3)
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and (4) are used] and the most probable clean model Gaussian,
which is computed with the corresponding clean training fea-
ture vector x;’° using (1) and (2).

Once the cross-probability GMM parameters are estimated,
p(8z.cle; ¢, y¢, 55 ) can be estimated combining (6), (7), and
(8) as

p (SI,C|67 Y, 3;,0)
p (yt|e7 ¢, sx,c: s;,c) p (Sx,c|e7 ¢, s;,c)

N p(yelescs suer 55.0) P (smelese e )

Sz,e

(€))

Note that the time-independence assumption considered in
the first approach of CD-MEMLIN has been avoided, while
the training process is still unsupervised. On the other hand,
p(8z,cle; ¢, 55 ) represents in this case the a priori probability
of the trained GMMs for the cross-probability model (since the
pair of Gaussians (s, sg’() are not equiprobable) and has to
be estimated in the training process.

IV. UNSUPERVISED HYBRID COMPENSATION TECHNIQUE

Previous works [10], [22], [23] show that feature vector
normalization/adaptation techniques such as RATZ, SPLICE,
and MEMLIN are effective to compensate the effects of noise,
obtaining satisfactory improvements. However, these kinds
of techniques have intrinsical limitations, e.g., not taking into
account several kinds of degradations like rotations, because the
feature vector coefficients are considered independent. In order
to compensate for this weakness, a linear transformation can be
used in the feature vector domain. However, this solution does
not result in very good performance [17]. Thus, we propose an
unsupervised hybrid compensation technique which combines
CD-MEMLIN-CPM with an acoustic model adaptation method
based on a set of linear transformations over an expanded
HMM-state space.

The scheme of the proposed hybrid compensation technique
is depicted in Fig. 2. It is composed of two phases: training
and decoding. In the unsupervised training phase, the avail-
able clean and noisy stereo training data are used to estimate
the parameters of the corresponding feature vector normaliza-
tion/adaptation method (“Training normalization,” which in this
case is CD-MEMLIN-CPM). Furthermore, the noisy training
feature vectors are compensated using the corresponding
method (“Normalization”) and a set of linear transformations is
estimated with the normalized and clean stereo training data by
linear regression (“Matrix estimation”). In the decoding phase,
each compensated testing feature vector (“Normalization™) is
recognized using augMented stAte space acousTic dEcoder
(MATE) [16] (“MATE decoder”) with expanded acoustic
models, which are obtained with the reference acoustic models
and the set of linear transformations. During the search process,
a linear transformation per frame is implicity selected by ML
criterion in a modified Viterbi algorithm which can be seen
as a 3-D Viterbi. Note that, although CD-MEMLIN-CPM is
the selected feature vector normalization/adaptation technique
for the proposed hybrid method in this work, so that a VAD
should be included in the training phase to complete the generic
scheme showed in Fig. 2, any other algorithm could be used in
the same way.

Training phase

INOr on
parameters

Clean training data

A 4

Training
normalization

Noisy training data >

Rotation
matrices

Matrix

—» Normalization A
estimation

Decoding phase

Recognized
utterances

Noisy testing data Normalization

MATE
decoder

Rotation
matrices

Normalization
parameters

Fig. 2. Scheme of the proposed unsupervised hybrid compensation technique.

A. Matrix Estimation

In order to estimate the set of linear transformations, three
approximations are considered.
* Clean feature vectors x are modeled using a GMM of N,

components
N
p(x) = > p(sz)p(xlsa) (10)
p(x|sz) =N (X;ll'sz7zsz) (11)

where p, , X, , and p(s,) are the mean vector, the diag-
onal covariance matrix, and the a priori probability asso-
ciated with the clean model Gaussian s,.

* Normalized feature vectors x are modeled using a GMM
of N; components

N;
p() = > p(X[ss)p(sa) (12)
p(X|sz) =N (%:p,,,Zs,) (13)

where p,_, X, and p(s;) are the mean vector, the diag-
onal covariance matrix, and the a priori probability asso-
ciated with the normalized model Gaussian s;.

* Given a pair of clean and normalized model Gaussians
(s and s;), normalized feature vectors can be approx-
imated as a linear function of the clean feature vectors:
Xt ~ A, s,X, where A, .. is the linear transforma-
tion between the feature vectors X; and x; associated to
the pair of Gaussians s, and s;. Observe that a more com-
plex model could be considered, although we select this
simple one (only a linear transformation) because it is as-
sumed that other kinds of degradations between noisy and
clean frames are compensated by the feature vector nor-
malization/adaptation technique (CD-MEMLIN-CPM in
this work)

Thus, a set of linear transformations can be defined as

A={A, 0T = (A (14)
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where the index n, which represents each pair of Gaussians s,
and sz, has been included to simplify the notation. Also, N de-
notes the number of the pair of the Gaussians: N = N, X N, .

In order to estimate the linear transformation A,,, clean and
normalized stereo data are used in the previous training phase:
(X,X) = {(Xl,f(l); o3 (Xt,)A(t); ey (XT,)A(T)}, with t =
1,...,T. Observe that X is obtained by compensating all the
noisy training data 'Y, with the selected feature vector compen-
sation/adaptation technique (“Normalization” in training phase
in Fig. 2). Thus, A,, is estimated by minimizing the defined
mean weighted square error §,,, (15) with respect to A,, (16)
(all the details have been included in Appendix I)

Xt)

1 T
&z?gh@wmmi

. TT I:()A(t — Anxt)(f(qt — Anxt)T]
A, =A, ,, =argmin{€,}

n

[2%@&%@@»@«&Fﬂ

15)

: lzp(sﬂxt)]ﬂ(sﬂfit) (¢ - (Xt)T)] (16)

where the operator T[] denotes the trace and ()T is the trans-
pose; p(s.|x+) is the a posteriori probability of the clean model
Gaussian s,, given the clean training feature vector x;, and
p(sz|X¢) is the a posteriori probability of the normalized model
Gaussian sz, given the normalized training feature vector X;.
Both probabilities can be estimated by combining (10) and (11),
for the first case (17), and (12) and (13) for the second one (18):

P(xts2)p(s2)
SN p(xels2)p(52)
P(fit|5@)P(8i)
SN p(Relsa)p(sa)

p(salxe) = a7

p(sz|%e) = : (18)

B. MATE Decoder

In order to select the linear transformation A, associated
with each normalized testing feature vector X;, from the set of
estimated linear transformations A,,, a Maximum-Likelihood
(ML) criterion is applied in the decoding process using the
MATE decoder (“MATE decoder” in Fig. 2). Hence, the refer-
ence acoustic models are modified in a similar way as described
in [16], where the set of linear transformations in this case
are the linear transformations A,, previously estimated. Thus,
each state (¢) of the reference space HMM acoustic models
(¢ =
linear approximation X; ~ A,_ ;. X; = A,x;. The goal of the
state expansion is to reduce the mismatch between the reference
space acoustic models and the normalized feature vectors for
each linear transformation. Note that each expanded state is
specialized in one of the linear transformations previously
estimated.

Assuming that a component s, in the pdf mixture of the
original state ¢ follows a normal distribution: A/ (x; Ky, ¥..),

q

the corresponding expanded state component for the nth

Reference HMM

o S O f
D)) =

Expanded HMM

N
PLy]

.
R

Reference HMM states q;

Rotations n;

Fig. 3. Example of the proposed expanded acoustic models. A three state
left-to-right reference HMM (left side) is transformed using three linear
transformations (right side).

linear transformation s, ,, follows the normal distribution
N (%y; Anp,sq JALY, AT, So, the pdf for the expanded state
(¢,n) p(Xt|g,n) is a GMM composed by the previously de-
fined expanded components, where the a priori component
probabilities are considered unaltered: p(s,.,) = p(s,). Hence,

qu
p(ilan) = 3 p(sg)N (% Ak, AnZ,AT) - (19)

where N, is the number of the Gaussians of the pdf of the
original state q.

To complete the parameter set of the expanded acoustic
models, the expanded state transition probabilities I" are com-
puted as
%' q

N
where a4’ 5 ¢.n 1S the transition probability from the expanded
state (¢’,n’) to (¢,n), and ay , is the transition probability
from the original state (¢') to (¢), which is part of the refer-
ence acoustic model parameters. Observe that ag 4 » could
be estimated with the EM algorithm [16]. However, in this work
the transition probabilities are considered equiprobable for sim-
plicity.

A graphical example of the proposed expanded acoustic
models is presented in Fig. 3. A standard three state left-to-right
reference HMM (left side), which is defined by the distribu-
tions p(.|¢;) 7 = 1,...,3, and the transition probabilities a; ;,
1=1,...,35 =1,...,3, is expanded using three linear trans-
formations (right side). Observe how each reference HMM state
is transformed into three new states, modifying the distribu-
tions (p(.|gi,n;) s =1,...,3 5 =1,...,3), and the transition
probabilities (aivj,i/’j/ 1=1,...,35=1,...,3 i = Tyeonyd
7' =4,...,3). Note that the expanded acoustic models, from a
generative point of view, can be seen as a more flexible speech
production process under adverse environment conditions. In
fact, the expanded acoustic model could generate sequences of
rotated feature vectors more suitable to the normalized space.

Once the clean acoustic models have been expanded, the
classic Viterbi search algorithm for decoding unlabeled se-
quences has to be modified to use the new expanded models.
Thus, given a normalized testing utterance (“Normalization”

(20)

F=agmngn
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in the decoding phase in Fig. 2), the sequence of expanded
states that maximizes the likelihood determines implicity the
linear transformation A; for each normalized feature vector.
The search algorithm under this framework can be performed
by computing recursively the score state variable ¢, ,,(t) for
the state (¢, n) and the time index ¢

bgn(t) = Iqr/li},( {bgm(t = 1) ag mgn-p(Xelg,m)}. 21

It can be observed that the proposed searching solution is sim-
ilar to the approach presented in [24], where a 3-D Viterbi al-
gorithm was developed to compensate the effects of non sta-
tionary noise. However, note that the presented hybrid solution
can be seen as decoding each CD-MEMLIN-CPM-normalized
feature vector X; = y; + g with the corresponding expanded
acoustic models, where the mean vectors and covariance ma-
trices are adapted frame-by-frame as A,y and A; X AT, respec-
tively. This solution provides the same results as decoding the
noisy feature vector y; with adapted acoustic models, where
the adapted mean vectors and covariance matrices are modified
frame-by-frame as A;p — g; and A; X AT, respectively. From
this point of view, the presented hybrid technique is conceptu-
ally similar to maximum-likelihood linear regression (MLLR),
where linear transformations are included jointly in acoustic
models. However, both approaches are quite different. Thus, the
linear transformations for the proposed hybrid technique are es-
timated using a different criterion than MLLR. Furthermore, the
unsupervised MLLR version needs a previous step to provide a
hypothesis of the transcription of the adaptation data (usually a
decoding process); so that the performance of the unsupervised
MLLR solution can degrade dramatically in high noise acoustic
conditions or when the adaptation task is complex (e.g., large
vocabulary, spontaneous speech. . .) because the hypothesis of
the transcription could not be precise enough. These problems
do not affect the proposed hybrid technique, which does not re-
quire the transcription of the adaptation data. Finally, observe
that the proposed hybrid solution does not use a compact solu-
tion with extended matrices as in MLLR because of the com-
putational cost. So that, given a certain complexity level, the
proposed solution provides a better performance than the com-
pact approach because it is not possible, from a practical point
of view, to include all the transformations of CD-MEMLIN in
the MATE framework.

V. EXPERIMENTAL RESULTS

To study the performance of the proposed unsupervised on-
line compensation techniques, a set of experiments were carried
out using two databases: the first one is the Spanish SpeechDat
Car database [18], [19], which is composed of real, dynamic,
and complex environments. The second is the Aurora 2 data-
base [20], which does not represent real environments because
the noise has been artificially added, but it has been widely used
to compare robustness techniques.

In both cases, the recognition task is isolated and continuous
digit recognition. As the feature set, the standard ETSI front-end
[25] features plus energy are computed every 10 ms using a
25-ms Hamming window. Also, the corresponding delta- and

delta-delta-coefficients are included to complete the 39-dimen-
sional feature vectors. Online cepstral mean normalization is
applied to testing and training data. The feature vector normal-
ization/adaptation techniques are applied over the 12 MFCCs
and energy, whereas the derivatives are computed over the nor-
malized static coefficients. The acoustic models are composed
of a 16-state HMM for each digit with a three-state begin-end
silence HMM and a one-state inter-word silence HMM. In all
cases, each pdf state is composed of a mixture of three Gaussian
components.

A. Results With SpeechDat Car Database

Seven basic environments were defined for the Spanish
SpeechDat Car database.

e El: car stopped, motor running.

¢ E2: town traffic, closed windows, and climatizer off (silent

conditions).

e E3: town traffic and noisy conditions (windows open,

and/or climatizer on).

* E4: low speed, rough road, and silent conditions.

* ES5: low speed, rough road, and noisy conditions.

» EG6: high speed, good road, and silent conditions.

» E7: high speed, good road, and noisy conditions.

In this study, two simultaneously recorded channels of the
database (stereo data) have been used: the CLose talK channel
(CLK), which recorded the clean signal with a Shune SM-10A
microphone, and Hands-Free channel (HF), which recorded the
noisy signal using a Peiker ME15/V520-1 microphone located
on the ceiling of the car in front of the driver. The signal-to-
noise ratio (SNR) range for the CLK signals goes from 20 to
30 dB, and the HF SNR goes from 5 to 20 dB. The unsuper-
vised training process has been carried out with the CLK and
HF signals of the training set.

A training corpus for each basic environment is needed to
learn the corresponding parameters of the proposed techniques:
bias vector transformations, cross-probability models, and
linear transformations. For this purpose, 16 108 utterances for
all basic environments and different tasks: isolated and contin-
uous digits, spelling, dates, commands, and names are used. To
train the acoustic models for the connected digits task, a set of
the training corpus composed by the digit task utterances are
used (1896 utterances for all basic environments). The testing
corpus is composed of 1086 utterances for all basic environ-
ments and different speakers from the training corpus. The
composition of the training and testing corpora is explained in
detail in Table I, including the number of utterances and words
for each basic environment.

The word error rate (WER) baseline results for each basic en-
vironment are presented in Table II, where AWER is the average
WER in %, which is computed proportionally to the number
of words of each basic environment (see Table I). The “Train”
column refers to the signals used to obtain the corresponding
acoustic HMMs: if they are trained with all clean training ut-
terances, the column is marked as CLK, and if the column is
marked as HF, the acoustic models are trained with all noisy
training utterances (multi-condition training). Furthermore HF}
indicates that specific acoustic HMMs for each basic environ-
ment are applied in decoding (environment match condition).
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TABLE I
NUMBER OF UTTERANCES AND WORDS FOR TRAINING AND TESTING CORPORA USED IN ALL THE EXPERIMENTS WITH SPANISH SPEECHDAT CAR DATABASE
| El E2 E3 E4 E5 E6 E7 Total
# Utterances train 3,393 3,122 2356 2,106 2,550 2,038 543 16,108
# Utterances train (digits) 400 368 272 248 304 240 64 1,896
# Words train 10,542 9,652 7,160 6,517 7,908 6,265 1,673 | 49,717
# Words train (digits) 2,105 1,930 1431 1,301 1,596 1,249 336 9,948
## Utterances test 199 223 136 152 200 120 56 1,086
# Words test 1,049 1,166 715 798 1,049 630 294 5,701
TABLE II

WER BASELINE RESULTS WITH SPANISH SPEECHDAT CAR DATABASE, IN %, FROM THE DIFFERENT BASIC ENVIRONMENTS (El7 caey

Train Test El E2 E3 E4 E5 E6 E7 | AWER (%)
CLK CLK 095 232 070 025 057 032  0.00 0.91
CLK HF 3.05 1329 1552 2732 3136 3556 53.06 21.48
HF HF 381 686 350 376 496 444  3.06 4.63
HF t HF 1.14 437 168 213 210 206 23.13 3.42
CLK-AFE CLK-AFE | 1.14 232 070 0.13 048 000  0.00 0.88
CLK-AFE HF-AFE | 143 480 350 351 648 238 13.95 435

-

On the other hand, “Test” column indicates which signals are
used for decoding: clean (CLK), or noisy (HF). Also results
with the ETSI Advanced front-end (AFE) [26] are included in
Table II for comparison. They are marked as CLK-AFE and
HF-AFE for clean and noisy signals, respectively.

Table II shows the effect of real car conditions, which pro-
duces a significant increase in WER for all the basic environ-
ments (Train CLK, Test HF) compared to that of the clean con-
ditions, (Train CLK, Test CLK). When acoustic models are re-
trained (ML criterion) using all basic environment signals (Train
HF) the AWER decreases considerably to 4.63%. Finally, the
most competitive results (3.42% AWER) are obtained when spe-
cific acoustic models are retrained for each basic environment
with ML criterion (Train HF t) despite the poor WER reached
with the E7 basic environment due to the reduced amount of
training data for that condition (64 utterances, see Table I). How-
ever, this option is not possible in a real situation because the
basic environment can not be known for each testing utterance.
Furthermore, observe that AFE provides a very similar perfor-
mance with matched clean conditions (Train CLK-AFE, Test
CLK-AFE), while a significant improvement is reached when
noisy testing data is decoded with clean acoustic models (Train
CLK-AFE, Test HF-AFE) due to additional Wienner filtering
and “SNR-dependent” processing.

In order to study the performance of the proposed techniques,
the Average Improvement in WER (AIMP), in %, is defined.
Thus, given an AWER, the corresponding AIMP is computed
as

100(AWER — AWER Lk —nr)

AIMP =
AWERcLk-cLk — AWERcLk—HF

(22)

where AWERcLk—cLk is the average WER obtained under
clean conditions (Train CLK, Test CLK: 0.91 in this case), and
AWERCcLk_gF is the baseline (Train CLK, Test HF: 21.48 in

this case). So, A 100% AIMP would be achieved when AWER
equals the one obtained under clean conditions.

Fig. 4 shows the AIMP for CD-MEMLIN when a different
number of Gaussians (N. x N,) per basic environment is
considered (4, 8, 16, 32, 64, and 128). Note that the number
of Gaussians per basic environment can give us a qualitative
idea of the computational cost of the feature vector normaliza-
tion/adaptation process in the decoding phase. Furthermore,
MEMLIN and SPLICE with Environmental Model selection
[11], which is the multi-environment version of SPLICE,
are included to compare (N. = 1 in both cases). In case of
CD-MEMLIN, the class labels for each training feature vector
(silence or speech) were obtained with a simple voice activity
detector (VAD) based on an energy threshold, which was ap-
plied over the clean training feature vectors. It can be observed
that CD-MEMLIN produces a consistent improvement with all
numbers of Gaussians per basic environment with respect to
SPLICE with environmental model selection and MEMLIN,
reaching 79.02% AIMP (5.23% AWER). Also CD-MEMLIN
reduces the mapping space at the level of the two classes
(silence/speech), adapting in a better way the bias vector
transformations to the acoustic models and providing smaller
projection spaces for the bias vector transformations than other
techniques based on the same principles (e.g., RATZ, SPLICE,
MEMLIN, etc.). In order to obtain more specific transforma-
tions, the number of transformations per Gaussian per basic
environment with CD-MEMLIN (V,,) is higher than SPLICE,
which is 1, although the computing cost in the normalization
process is almost the same because the most costly part is the
computation of the scores of the noisy model Gaussians.

Previous work [10] indicates that using more classes (one per
phoneme, PD-MEMLIN) can provide better results, but in that
case a supervised training process is required. This is shown in
Fig. 4, where the AIMP for PD-MEMLIN is also included. In
that case the labels for training data are obtained with Viterbi
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Fig. 4. Average improvement in WER, AIMP, in % with Spanish SpeechDat
Car database for different feature vector normalization/adaptation techniques:
SPLICE with environmental model selection, MEMLIN, CD-MEMLIN, and
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Fig. 5. Average improvement in WER, AIMP, in % with Spanish SpeechDat
Car database for different techniques: CD-MEMLIN, CD-MEMLIN with cross-
probability model based on GMM, CD-MEMLIN-CPM, and the corresponding
hybrid techniques based on CD-MEMLIN-CPM-A and CD-MEMLIN-A.

forced alignment and 1, 2, or 4 Gaussians per phoneme and basic
environment are used, so that the total number of Gaussians per
basic environment is N. x NN,, where N, = 26 (25 Spanish
phonemes plus the silence). Furthermore, Fig. 4 shows that the
performance of SPLICE is improved by MEMLIN in all condi-
tions, as it has been observed in a previous work [10].

The AIMPs for CD-MEMLIN-CPM, the hybrid tech-
nique based on CD-MEMLIN-CPM and the acoustic model
adaptation based on linear transformations (which is called
CD-MEMLIN-CPM-A for simplicity) are depicted in Fig. 5.
Also, the results of CD-MEMLIN and the hybrid technique
based on CD-MEMLIN (CD-MEMLIN-A) are included for
comparison. The AIMP is presented for a range of Transforma-
tions per Environment(TpE = N, x N, x N;). The GMMs
for the cross-probability model are composed of two Gaussians
while 16 linear transformations are used (N, = N; = 4) to
extend the acoustic models. There is a significant improvement
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Fig. 6. Average improvement in WER, AIMP, in % with Spanish SpeechDat
Car database for CD-MEMLIN-CPM-A with 1, 4, and 16 linear transformations
when different number of transformations per basic environment is used.

TABLE IIT
BEST AVERAGE WER (AWER), AVERAGE IMPROVEMENT IN WER
(AIMP) IN %, AND NUMBER OF TRANSFORMATIONS OBTAINED
FOR SPANISH SPEECHDAT CAR DATABASE

Train Test | TPE  AWER (%) AIMP (%)
HF MLLR | HF - 5.8 78.77
CLK HF CD-MEMLIN 8,192 523 79.02
CLK HF CD-MEMLIN-CPM 2,048 4.16 84.22
CLK HF CD-MEMLIN-CPM-A | 2,048 2.54 92.08

(84.22% AIMP, 4.16% AWER) that CD-MEMLIN-CPM ob-
tains with respect to CD-MEMLIN, especially when the basic
environments are modeled with high number of Gaussians.
Also, it can be verified that the proposed hybrid solution
CD-MEMLIN-CPM-A, provides the best results for almost
all the transformations per environment, although very similar
performance is reached with CD-MEMLIN-A. This indicates
that the MATE decoder with linear transformations is a good
solution to combine with feature vector normalization/adapta-
tion techniques. In fact, the performance with 32 components
per class and the basic environment (92.08% AIMP, 2.54%
AWER) is significantly better than any presented result of
the proposed techniques in this Section. Even if matched
training conditions (Train HF, Test HF: 81.93% AIMP, 4.63%
AWER) or environment match conditions (Train HF { Test
HF: 87.81% AIMP, 3.42% AWER) are considered, the perfor-
mances are slightly inferior with respect to the one obtained
with CD-MEMLIN-CPM-A. This is due to the fact that the
noisy space is more heterogenous than the normalized one.
Furthermore, note that a reduced number of Gaussians per class
and basic environment is enough to obtain satisfactory results
(89.87% AIMP, 3.00% AWER with only two components per
class and basic environment). Also, observe that the improve-
ments obtained with CD-MEMLIN-CPM-A, CD-MEMLIN-A
and even with CD-MEMLIN-CPM are superior to the one
reached with AFE (4.35% AWER). Fig. 6 shows the evolution
of the average improvement when CD-MEMLIN-CPM is used
with 1, 4, and 16 linear transformations. Increasing from 4 to
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TABLE 1V
WORD ACCURACY BASELINE RESULTS WITH AURORA 2 DATABASE WHEN STANDARD ETSI FRONT-END AND HTK ARE USED

Clean training, multicondition testing

A B (©
Subway Babble Car Exhibition Average Restauran Street Airport  Station Average Subway MStreet M Awerage Average

99,05
89,95 ,

91,53 72,19 88,55 90,03 85,58 74,52 88,15 73,84 81,24 79,44 86,03 89,09

75,53 47,61 63,53 72,29 64,74 51,89 66,05 49,27 55,20 55,60 71,94 75,03

47,34 22,91 30,75 39,08 35,02 26,80 36,28 24,60 24,96

22,44 5,53 10,71 14,25 13,23 7,12 17,35 10,50 9,50

10,65 0,12 6,83 0,95 8,62 5,28 6,14

66,72 47,76 58,12 50,09 60,74 49,63 53,14

Multicondition training, multicondition testing

A

Subway Babble Car Exhibition Average

Restauran Street

B

Airport  Station Awverage Subway MStreet M Awerage Average

98,66

97,73

96,72

94,33

16 linear transformations slightly improves the performance
while the computational cost is increased roughly by a factor
of 4. However, the use of only 1 linear transformation does not
give any additional improvement over the CD-MEMLIN-CPM
results.

The most representative results (AWER and AIMP) obtained
with the different techniques are summarized in Table III. Fur-
thermore, the performance of unsupervised MLLR, where the
transcriptions obtained from the decoding of the noisy training
data are assumed as the true ones, is presented in the table to
complete the comparison (Train HF MLLR, Test HF). In this
case, 12 effective transformations are computed: one transfor-
mation per digit and two more for the short inter-word silence
and the long silence. Note that the performance in this case
(78.77%AIMP, AWER 5.28%) is inferior to that obtained with
matched training condition and the unsupervised proposed tech-
niques.

No constraints have been assumed in estimating the set of
linear transformations A,, so that the covariance matrices of
the expanded states could not be diagonal (A, X5 A}). How-
ever, in order to present a fair comparison, the covariance ma-
trices were diagonalized before they were used in the MATE
decoder. Observe that the diagonalization of the covariance ma-
trices would not be needed if the feature vectors were trans-
formed with A1 and the log-determinant of the Jacobian was
added in the likelihood computation (log(A.,,)). However, we
discarded this solution because it is less efficient than the pro-
posed approach, although a small improvement could be ob-
tained.

The computational cost associated to CD-MEMLIN-CPM or
CD-MEMLIN-CPM-A is more expensive than CD-MEMLIN,
although the number of transformations per basic environment
is the same. However, some solutions can be proposed in order
to reduce the computational cost. Thus, the static cross-proba-
bility model (6) could be used to determine the a priori most
probable pair of Gaussians, so that not all the GMMs trained to
model the noisy feature vectors associated to each pair of Gaus-

sians would need to be computed, just the most probable ones.
On the other hand, the computational cost of the MATE decoder,
which is required in the proposed hybrid solution, could be re-
duced if classic pruning techniques were considered [27].

B. Results With Aurora 2 Database

For the Aurora 2 work, identical utterances from the clean
training set and the multicondition training set have been
used in the unsupervised training process for the proposed
techniques. Thus, the noise types from set B and C are kept
as unseen conditions, while the system is tuned on the noise
types from set A. Furthermore, some SNRs remain unseen even
for set A (0 dB and —5 dB), because they are not included
in the multicondition training set. 422 utterances per kind
of noise and SNR are used in the training phase (20 basic
environments: 4 kinds of noise x 5 different SNRs), while the
testing set contains 70 070 utterances. The testing and training
tasks are continuous and isolated digits. Since the purpose of
the presented techniques is to reduce the mismatch between
training and recognition spaces, we present only the results for
clean training and multicondition testing. All the improvements
we present in this section are computed with respect to the
results reached with standard ETSI front-end and HTK [28]
(typical reference system: 58.06% average word accuracy [20]).
Complete baseline results, including clean and multicondition
training, have been included in Table IV.

The average improvements (AIMP) for CD-MEMLIN,
CD-MEMLIN-CPM, and CD-MEMLIN-CPM-A with Aurora 2
database are depicted in Fig. 7 for different numbers of Gaus-
sians per environment. As it has been observed previously
that CD-MEMLIN-CPM-A provides a slight improvement
with respect to CD-MEMLIN-A, CD-MEMLIN-A results have
not been included in this subsection. In this case, AIMP is
computed as the average of the improvements of the different
recognition conditions because the high variability of the
SNRs. Thus, the high and medium SNR environments, which
are the more interesting conditions in real applications, are
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TABLE V
WORD ACCURACY AND IMPROVEMENT OBTAINED FOR AURORA 2 DATABASE WITH THE PROPOSED HYBRID TECHNIQUE BASED ON CD-MEMLIN-CPM AND
ACOUSTIC MODEL ADAPTATION BASED ON LINEAR TRANSFORMATIONS (CD-MEMLIN-CPM-A)

Clean training, multicondition testing
A B (o]
Car Exhibition Average Restaurani Street Airport Station  Average Subway M Street M Average

Percentage
Improvement

Average

] , 99,22| 99,29  99,19] 99,20/ 99,03 99,22 99,29] 99,19 ] ] 99,15 6,90%

) ) 98,45] 98,24  98,34] 98,31 97,92 98,04 9852 98,20 97,85 97,70 63,97%

, ; 97.67| 97,41 97,60  96,86] 96,91 96,50]  97,36] 96,91 96,57 96,00 j 79,29%
95,83]  93,76] 9526] 9550 9509 92,70] 91,86] 92,21 94,10 92,72 91,61 91,56 X 81,04%
90,99 81,77 86,40 89,21 87,09 81,95 79,81 8146 83,12| 8169 7577 7917|7147 72,73%
72,93 54,01 62,80 72,06]  6547| 57,35 56,17| 60,17 58,75 58,11 44,43 52,27 ; 51,71%
4135] 27,49 29,81 40,03 34,67 2950] 29,32 31,36] 29,88] 30,02 ] ) 25,30%
91,23 85,03 88,14 9049 88,72 8544 84,53 85,67 86,37]  85,50| ) ]

71,89%][ 77,49%[ 70,48%] 72,26% 76,96%] 63,00%[ 76,53%[ 7525% 58,08%[ 55,54% 69,75%
56,32%] 77,13%] 70,10%| 62,72% | 66,57%| 74,24%| 63,17%| 79,30%] 76,35% 59,91%[ 54,84%]
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Fig. 7. Average improvement in word accuracy in % with Aurora 2 database
for different techniques: CD-MEMLIN, CD-MEMLIN with cross-probability
model based on GMM (CD-MEMLIN-CPM), and the proposed hybrid tech-
nique based on CD-MEMLIN-CPM and acoustic model adaptation method
based on linear transformations (CD-MEMLIN-CPM-A). Different numbers
of transformations per basic environment are used.

more important in the computation of the AIMP. The GMMs
for the cross-probability model are composed of two Gaussians
(N, = 2) and again 16 linear transformations are used to
extend the HMM-based acoustic models (N, = N; = 4).
It can be observed how CD-MEMLIN provides a consistent
improvement over the baseline for all numbers of trans-
formations per basic environment, reaching 62.03% AIMP
(82.76% average word accuracy) when 64 Gaussians per class
and basic environment are used. It has been observed with
the Spanish SpeechDat Car database, CD-MEMLIN-CPM
overcomes the performance obtained with CD-MEMLIN for
all numbers of Gaussians (65.31% AIMP, 84.11% average
word accuracy), showing again the good performance of the
proposed GMM-based model for the cross-probability. Fi-
nally, Fig. 7 also includes the AIMP for the proposed hybrid
solution when CD-MEMLIN-CPM is used as feature vector
normalization/adaptation technique (CD-MEMLIN-CPM-A).
Again, a reasonable and consistent improvement for all the
number of Gaussins per environment is obtained with respect
to CD-MEMLIN and CD-MEMLIN-CPM (69.75% AIMP,

86.15% average word accuracy). In fact, they are slightly better
than the ones obtained with ETSI Advanced Front-End (AFE)
(67.41% MIMP, 85.97% average word accuracy). Furthermore,
fewer Gaussians are needed to reach very competitive results
(65.16% AIMP, 84.17% average word accuracy with only
two Gaussians per class and basic environment). Note also
that the proposed hybrid solution over CD-MEMLIN-CPM
even overcomes the performance obtained with multicondition
training for high SNR (clean, 20 dB, and 15 dB), although no
transcription is used in the training process as multicondition
training does.

In order to compare the best results reached with the pro-
posed techniques concerning ETSI AFE, the complete best
results (CD-MEMLIN-CPM-A with 64 Gaussians per class
and basic environment, two Gaussians to model the cross-prob-
ability model and 16 linear transformations) are included in
Table V. An important improvement can be observed in set A,
73.03% AIMP (88.72% average word accuracy), because the
training process of the proposed hybrid technique is applied
over the same kinds of noise. Also, competitive results have
been obtained for set B (72.94% AIMP, 85.50% average word
accuracy). Although set B includes unseen types of additive
noise in the training phase, the average improvement is quite
similar to that of set A. The performance is not as competitive
for set C (56.81% AIMP, 82.29% average word accuracy),
whose utterances include unseen convolutional distortion and
additive noise. Thus, we can conclude that the transformations
that have been learned in the training process may not compen-
sate for the degradation produced by the environments of set C.
Similar conclusions could be obtained from the complete re-
sults of CD-MEMLIN or CD-MEMLIN-CPM, hence they have
not been included. Compared to the ETSI AFE, the behavior of
the proposed hybrid technique under seen conditions (set A) is
much better (73.03% AIMP versus 66.57% AIMP in Set A),
while for set B and set C the average improvements are slightly
inferior. From these results, we can conclude that a reasonable
future approach could be to improve the performance of the
presented technique under unseen conditions.

The proposed hybrid solution (CD-MEMLIN-CPM-A) pro-
vides very satisfactory performance in medium and high SNR
conditions, which are the most important ones in real appli-
cations, obtaining more than 93% average word accuracy for
10 dB, 15 dB, 20 dB, and clean conditions.
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TABLE VI
WORD ACCURACY AND IMPROVEMENT OBTAINED FOR AURORA 2 DATABASE WITH THE PROPOSED HYBRID TECHNIQUE BASED ON CD-MEMLIN-CPM AND
ACOUSTIC MODEL ADAPTATION BASED ON LINEAR TRANSFORMATIONS (CD-MEMLIN-CPM-A). ETSI ADVANCED FRONT-END (AFE) IS USED

Clean training, multicondition testing

A
Babble  Car Restaurani Street

99,14 99,00

Subway

Exhibition Average
99,35

Airport

B C
Station  Average Subway M Street M Average

Percentage
Average |mprovement
99,13 5,78%

98,27 98,56 97,83

98,42 67,81%

97,20 97,55 97,13

97,43 81,09%

96,26 95,07 94,07

94,89 84,66%

88,93 86,99 87,75

87,87 80,29%

To complete the experiments, the hybrid technique
CD-MEMLIN-CPM-A was applied with the ETSI AFE.
The results, which are included in Table VI, show that the
proposed solution is compatible with the ETSI AFE, pro-
viding consistent and significant improvements with respect
to CD-MEMLIN-CPM-A with the standard ETSI (Table V),
specifically for low SNR environments, while the performance
for medium-high SNR environments is also more competitive
(more than 94% average word accuracy is obtained for 10 dB,
15 dB, 20 dB, and clean conditions). Furthermore, results
obtained for unseen conditions (set B and set C), overcome the
ones obtained with the standard ETSI because of the robust
front-end.

VI. SUMMARY, CONCLUSION, AND FUTURE WORK

All the proposed techniques in this work need an unsuper-
vised training phase (no transcription is used), so these methods
can provide user friendly solutions for ASR applications as they
do not require active enrollment by the speakers.

Although satisfactory performance was obtained with
PD-MEMLIN in previous works, in this case a two-class sim-
plified version (CD-MEMLIN) is applied as a starting point in
order to use an unsupervised stereo data based training process.
Thus, it is assumed that each acoustic class (silence/speech) of
clean and noisy spaces can be modeled with GMMs and a linear
transformation which is trained for each pair of Gaussians. This
method has been shown to be more effective than techniques
based on similar framework, e.g., SPLICE or MEMLIN, be-
cause the mapping space associated with each CD-MEMLIN
transformation is more constrained and has less uncertainty.

Also, a study of the cross-probability model of CD-MEMLIN
(the a posteriori probability of the clean model Gaussian given
the noisy model Gaussian) has been provided. Qualitative re-
sults have demonstrated that this model is a critical point in
CD-MEMLIN, and important improvements can be obtained
if it is properly estimated. In this paper, we propose a solution
which consists of modeling the noisy feature vectors associated
with each pair of Gaussians with a GMM. This approach applied
over CD-MEMLIN defines the CD-MEMLIN with Cross-Prob-
ability Model based on GMMs (CD-MEMLIN-CPM), which
provides a consistent improvement over CD-MEMLIN.

Finally, in order to compensate for some kinds of degrada-
tions such as rotations, an online unsupervised hybrid compen-
sation technique has been proposed in this work. The hybrid
solution is composed of the combination of a feature vector
normalization/adaptation technique (CD-MEMLIN-CPM in
this case) and an acoustic model adaptation technique based on
a set of linear transformations. Clean and normalized spaces

are modeled following both GMMs, so that a linear transfor-
mation is defined for each pair of Gaussians (clean model and
normalized model). The linear transformations are estimated
with clean and CD-MEMLIN-CPM-normalized training data
by linear regression. Thus, in testing, each CD-MEMLIN-CPM
normalized frame is decoded using augMented stAte space
acousTic dEcoder (MATE). In order to use MATE decoder the
reference acoustic models are expanded using the linear trans-
formations. The results show that the hybrid solution clearly
overcomes the performance of the proposed feature vector nor-
malization/adaptation techniques because the clean reference
acoustic models are mapped into the normalized space, even
beating the performance of ETSI AFE with Spanish SpeechDat
Car and Aurora 2 databases. Finally, it can be observed that the
proposed hybrid solution and ETSI AFE are compatible, ob-
taining very competitive results for clean condition evaluation
with Aurora 2 database when they are combined (near 90%
average word accuracy). Furthermore, it has been observed
that just a few Gaussians per basic environment are needed to
obtain satisfactory results.

However, some of the most satisfactory techniques we have
presented in this work have three main limitations: the com-
putational cost, the need for stereo data in the training process
and the limited improvement under unseen recognition environ-
ments.

The high computational cost of the hybrid solution is because
of the MATE decoder, which can be seen as a 3-D Viterbi be-
cause it is composed of three axes (time, states, and linear trans-
formations) instead of the standard two axes (time and states). In
order to minimize the computational cost, classic pruning tech-
niques can be considered to remove the unlikely paths. Also, a
reduced number of linear transformations can be used without
seriously decreasing the performance as it has been shown. On
the other hand, the cross-probability model based on GMMs
also increases the computational cost with respect to the solu-
tions based on a priori cross-probability model. In this case,
only the GMMs associated with the most probable a priori pair
of Gaussians should be computed, so the computational cost
would be dramatically reduced.

Sometimes, stereo training data are not available. In these sit-
uations, standard empirical feature vector normalization/adap-
tation techniques cannot be applied and a nonstereo training
process has to be developed. Some non stereo (“blind”) solu-
tions have been presented in previous works [9], [10] to over-
come this weakness. However, the final performance is not satis-
factory. Thus, to develop a competitive “blind” training process
for the techniques we have introduced in this work is one of the
research lines in which we are working on.
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Although satisfactory performance is obtained for the pro-
posed hybrid solution based on CD-MEMLIN-CPM in medium
and high SNR scenarios with Aurora 2 database (specifically
with set A), the results are not as satisfactory for unseen condi-
tions (set B and set C).

APPENDIX |
ESTIMATION OF ROTATION MATRICES

Let a set of clean and normalized training stereo
data to learn the corresponding linear transformations
(X,X) = A{x,%x1);. (X, Xe)s 5 (X, %)}, with
t = 1,...,T. Thus, the mean weighted square error §,, is
defined for each pair of Gaussians s, and s; as

€= 3 plsubee)plos ) T (= A (5~ A) )

(B.1)

In order to estimate the linear transformation A, ., the de-

fined mean weighted square error (B.1) is minimized with re-
spectto A 5., applying some basic matrix properties

s, 5. .9
e S WO
Sz,8% + Sz,8%
X [T [xe(0)" =%e(x0)" (As,00)"
- Asz,Sert()A(t)T
A xi(x) " (As )]
=0. (B.2)
Thus,

T
1 N N N
0= T Z:P(SHXQP(SHXt) (_Xt(xt)T - Xt(Xt)T
+Asm,sixt(xt)T + Asm,sixt(xt)T) - (B3)
Finally, it is obtained the corresponding expression for A;_ .

T
A, s, = ZP(SHXt)P(SMﬁt)&t(Xt)T
t

T

> p(salxe)p(ss|&e)xe(x)" | . (BA)

-1
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logical speech.
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