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Abstract

In intensity modulated radiation therapy (IMRT), intensity maps are computed
from prescribed doses to target volumes, adding dose restrictions to the
surrounding tissues. Those intensity (fluence) maps are discretized into
matrices of natural numbers and translated to sequences of multileaf collimator
(MLC) leaf movements, which will finally deliver the computed x-ray
intensities. A unidirectional leaf sequencing algorithm that controls the shape
of the segments and reduces leaf motion time for step-and-shoot dose delivery
is presented. The problem of constructing segments in controlling its shape was
solved by synchronizing right leaves motion. This is done without increasing
the number of segments, or the total number of monitor units, and taking into
account the unidirectional leaf motion and the interleaf collision constraints.
The method was tested using random matrices and a clinical case planned
with the PCRT 3D R© planning system. Compared to other unidirectional leaf
sequencing methods, the proposed algorithm performs very similarly. But, in
addition, the segment shape control produces segments with smoother outlines
and more compact shapes, which may help to reduce MLC-specific effects
when delivering the planned fluence map. Finally, as a result of imposing
unidirectionality, this algorithm can be extended for sliding window segment
generation.

1. Introduction

Intensity modulated radiation therapy (IMRT) is an external radiotherapy technique for cancer
treatment. A computer-controlled linear accelerator equipped with an MLC is used to deliver
precise radiation doses of x-rays to a malignant tumour, or specific areas within a tumour.
The radiation dose is designed to conform to the three-dimensional shape of the tumour,
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as a summation of individual non-uniform intensity radiation patterns from different angles
(Artacho et al 2007, Lorente et al 2006).

An MLC contains two opposite banks of metal leaves. For each row, there is one leaf
located to the left and another located to the right. Those leaves may move inwards or outwards
to cover spatial positions, shaping the beam. It can be used in static mode (SMLC) (Galvin
et al 1993) or step-and-shoot, and in dynamic mode (DMLC) or sliding window (van Santvoort
and Heijmen 1996).

The SMLC mode consists of discrete steps, the leaves do not move while the beam is
on, whereas in the DMLC mode, the beam is on while the leaves are continuously moving at
variable speed. In the SMLC mode, the non-uniform intensity radiation patterns are discretized
into fluence matrices, whose elements are naturals. The beam produced by a linear accelerator
is uniform. Thus, a segmentation method is needed for delivering these non-uniform patterns,
since it sequences the fluence matrix in different shaped beams (segments) with different beam
weights (Kalinowski 2006).

The MLC segmentation problem is a difficult combinatorial problem. The optimal
solution is the one which minimizes the whole treatment time, and the solution is not unique.
There are three factors in this treatment time: the total beam-on time or monitor units (MU),
the verification and recording cycle (V&R), and the MLC leaf motion time, which is directly
related to the number of segments (NS). The delivery time is approximately equal to the total
number of monitor units (TNMU), plus the bigger of the other two factors (Siochi 1999).

There are many SMLC segmentation algorithms (Galvin et al 1993, Bortfeld et al 1994,
Xia and Verhey 1998, Siochi 1999, Dai and Zhu 2001, Crooks et al 2002, Kalinowski 2006).
Each one has different properties and performance but, in general, a segmentation method is
designed to minimize only one factor MU or NS, while keeping the other one at a reasonable
value. The V&R factor is usually not taken into account because it depends on the MLC
model used. It should be noted that achieving the optimal solution for the target factor is not
guaranteed.

1.1. MLC-specific effects

In general, the algorithms published assume that an MLC can deliver exactly the desired
intensity map as is, without considering the MLC-specific effects such as the head scattering
or the leaf transmission. This assumption can lead to significant discrepancies between the
desired and the delivered intensity maps (Hansen et al 1998, LoSasso et al 1998, Cho and
Marks 2000, Seco et al 2001, Azcona et al 2002).

There are several published solutions for DMLC segmentations of this problem (Convery
and Webb 1998, Dirkx et al 1998). In these works, leaf transmission, collimator scatter
and tongue-and-groove effects are considered, because the input intensity map is modified
according to the difference between the desired and the delivered maps, including previous
MLC-specific effects. These methods were designed for DMLC, and they cannot be extended
to SMLC, as pointed out by Yang and Xing (2003), which proposes an equivalent solution
adapted to the static mode. These solutions have a serious drawback, because the modelling
and verification of MLC-specific effects is quite difficult and expensive.

On the other hand, two new methods or ways of planning doses for step-and-shoot IMRT
were published: the direct aperture optimization (DAO) (Shepard et al 2002) and the direct
machine parameter optimization (DMPO) (Hardemark et al 2003). Both articles discuss
the problem of considering the optimization and the delivery (segmentation) as separated
problems. This approach causes the differences between the desired and the delivered maps,
because the MLC-specific effects cannot be included in the optimization. The proposed
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solution in both cases is to merge the optimization and the segmentation steps into a single
one. This solution is probably the best one, but it has the drawback of coupling the optimization
and the segmentation. Thus, it is not valid for conventional IMRT planning systems without
completely changing their implementation.

1.2. The segment shape constraint

The approach adopted in this work is based on the results and conclusions of Hansen et al
(1998), LoSasso et al (1998), Budgell et al (2000) and Cho and Marks (2000). The use
of a large number of segments with complex shapes can increase collimator artefacts. In
this situation, there are usually segments with small fields (or unbalanced X–Y axis) and low
number of MUs. This is a problem for accurate dose calculation. The output for these segments
must be carefully computed and corrected by the dose calculation algorithm, considering the
MLC-specific effects. Therefore, those segments introduce tough requirements for geometric
accuracy of the MLC and dosimetric accuracy of the linear accelerator.

The number of segments or their MUs are not subject to changes, unless the DAO or
the DMPO approaches are used, because the traditional leaf sequencing algorithms cannot fix
the NS or constrain the MUs (the MU value directly depends on its segment, so the segment
computation should consider the eventual associated weight as a new restriction). However,
the segment shape can be influenced imposing a constraint for leaf synchronization. This
leaf synchronization can be controlled by the algorithm, in order to balance shape uniformity
versus NS or TNMU increase regarding the original solution.

1.3. Summary

The contribution of this work is a SMLC segmentation method incorporating:
(1) unidirectionality (Bortfeld et al 1994, Siochi 1999) for reducing the leaf motion time,
(2) the interleaf collision constraint, so it can be used in MLCs with motion constraints,
(3) a leaf synchronization constraint for controlling segment shape, generating segments with
smoother outlines and more compact shapes and (4) two different criteria for minimizing either
the NS or the TNMU, opposite to the single criterion usually available on other algorithms.
The first criterion is a new one proposed in this work for the reduction of NS, and the second
one is described in Engel (2005) and Kalinowski (2006) and it obtains segmentations with the
optimal TNMU.

2. Method

Usually, a segmentation method decomposes a fluence matrix in different segments plus
weights on an iterative process, and each iteration can be divided into two steps. The first step
is the computation of a segment (matrix of ones and zeros, understood as a mask) for a given
fluence matrix, using a set of constraints. The second step is the computation of the weight
associated with the obtained segment, following only one fixed criterion to minimize the NS
or the TNMU. Finally, the segment multiplied by the weight is subtracted from the fluence
matrix, generating a residual matrix that will be the input fluence matrix for the next iteration.

The proposed algorithm allows the user, at the beginning of the process, to select which
criteria will be used, in order to minimize the NS or the TNMU depending on the desired
target. The pseudocode in appendix A2 illustrates this process.

This section will be divided into three subsections explaining preliminary definitions, the
computation of segments (Sk) and the computation of weights (αk).
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2.1. Definitions and notation

A similar notation and definitions as given by Kalinowski (2006, 2004) and Engel (2005) is
used.

Definition 1. Let A be a natural number matrix with M rows and N columns representing a
given fluence matrix. Let S be a segment; a segment is a matrix with the same dimensions as
its fluence matrix A but formed only by [0, 1] naturals. When a given position in the segment
is equal to 0, it means this position is covered by a leaf. When it is equal to 1, it means this
position is letting pass radiation. The segmentation (or decomposition) of A is expressed as

A =
NS∑
k=1

αk · Sk, (1)

where αk > 0 is the weight accounting for a relative beam on time for the kth segment. Those
weights are directly proportional to the MU to be delivered. NS, as mentioned before, is the
number of segments.

Definition 2. Let Ak be the residual matrix obtained when αk−1 · Sk−1 is subtracted from
Ak−1, i.e.,

A1 = A

A2 = A1 − α1 · S1

...

Ak = Ak−1 − αk−1 · Sk−1−→
0 = Ak − αk · Sk.

Definition 3. In order to simplify the notation, the A matrix is expanded assuming that two
zero rows and two zero columns are added at the boundaries,

Rows: a0,j = aM+1,j = 0 j ∈ [1, . . . , N ]
Columns: ai,0 = ai,N+1 = 0 i ∈ [1, . . . ,M].

Definition 4. Let lk,i and rk,i denote the position of the left and right leaves at the ith row in
the kth segment,

1 � lk,i � rk,i + 1 � N + 1 k ∈ [1, . . . , NS], i ∈ [1, . . . ,M] ,

where positions lk,i to rk,i are ‘opened’ and exposed to radiation, while the left leaf at positions
[0, . . . , lk,i − 1] and right leaf at positions [rk,i + 1, . . . , N + 1] are blocking radiation.
The case of a row filled with zeros (totally closed) is included because it is allowed that
lk,i = rk,i + 1. Figure 1 shows lk,i and rk,i values for an example segment.

Definition 5. In a given row, there is a local peak at column p if both columns p − 1 and
p + 1 have a lower value. When a set of contiguous repeated numbers is found, only the first
one is taken into account and repetitions are ignored. Note that using definition 4, columns
0 and N + 1 are filled with zeros, and they must be taken into account. Table 1 shows some
examples of peak detections. The number of local peaks in the ith row can be expressed as

peaksi (A) = |{x ∈ N : ∃p ∈ [1, . . . , N ], ∃q ∈ [2, . . . , N + 1] :

x = q ∧ p < q ∧
A(i, p − 1) < A(i, p) ∧ A(i, q) < A(i, p) ∧
∀ s : p < s < q : A(i, p) = A(i, s)}}.| (2)
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Figure 1. Values for lk,i and rk,i in a hypothetical segment. In light grey left leaves and in dark
grey right leaves are shown.

Table 1. Local row peak examples. The underlined elements are the peaks.

1 peak 2 peaks

(1 3 2 1) (1 2 1 2 2)
(1 2 2 1) (1 3 2 3 4)
(1 2 2 3) (3 2 4 2 1)
(5 4 3 1) (3 3 2 3 3)

2.2. Segment computation (Sk)

The generation of the Sk segment is driven by a set of constraints applied at the same time on
the Ak fluence matrix. Once the segment has been computed, a routine for solving collisions
not predictable by the ICC constraint is used, and the eventual segment is obtained.

2.2.1. Basic constraints. The leaf-sequencing algorithm is designed to meet two basic
constraints: unidirectionality and interleaf collision constraint. For simplicity it is assumed
that the leaf motion is from left to right, but it is straightforward to reverse the direction.

Unidirectionality. This ensures that no new maxima would be created in the ith row, and
therefore, the right leaf would not move backwards (from right to left),

Sk(i, j) =
{

1 if ∀ x ∈ [1, . . . , j − 1] : Ak(i, j − x) � Ak(i, j)

0 otherwise

i ∈ [1, . . . ,M], j ∈ [1, . . . , N ]. (3)

Example 1. Consider the linear decomposition of a little test matrix using only this constraint.(
3 1 1
1 1 2

)
︸ ︷︷ ︸

A

=
(

1 0 0
1 1 1

)
︸ ︷︷ ︸

S1

+

(
1 0 0
0 0 1

)
︸ ︷︷ ︸

S2

+

(
1 1 1
0 0 0

)
︸ ︷︷ ︸

S3

.

This constraint can be understood as a single row sliding window (or queue) that moves
from left to right for each row independently. It adds (pushes) a new position to the window
front only if it has equal or greater intensity than those currently inside. It removes (pops) the
last position at the window back if it has intensity 0. More than one position can be added or
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removed at the same time. Note that unidirectionality does not prevent collisions; the second
mask of example 1 is a clear example.

Interleaf collision constraint. This does not allow the overlapping of opposite leaves in
adjacent rows, which is basically a dependence among adjacent sliding windows,

Sk(i, j) =
{

1 if ∀ x ∈ [1, . . . , j − 1] : Ak(i ± 1, j − x) − x + 1 � Ak(i, j)

0 otherwise

i ∈ [1, . . . ,M], j ∈ [1, . . . , N ]. (4)

Example 2. In order to illustrate the meaning of this equation, it is applied on the little
example together with unidirectionality. The upper row is the fluence matrix decomposed in
segments and weights (no weight means it is equal to 1). The lower row is the residual matrix
associated with each segment,(

3 1 1
1 1 2

)
=

(
1 0 0
1 0 0

)
+

(
1 0 0
0 0 0

)
+

(
1 1 1
0 1 1

)
+

(
0 0 0
0 0 1

)
(

2 1 1
0 1 2

)
→

(
1 1 1
0 1 2

)
→

(
0 0 0
0 0 1

)
→

(
0 0 0
0 0 0

)
.

Equation (4) always ensures ICC. Although, in some cases, this restriction can be relaxed
preserving ICC while reducing the NS. The relaxation is only for the mathematical constraint
just as it is formulated, because sometimes it is too restrictive, but the real constraint will
always be fulfilled. The softening is done adding a new variable called ‘subtraction’ and
represented by r ,

Sk(i, j) =
⎧⎨
⎩

1 if ∀ x ∈ [1, . . . , j − 1]∀r ∈ [0, . . . , j ] :
Ak(i ± 1, j − x) − x + 1 − r � Ak(i, j)

0 otherwise

i ∈ [1, . . . ,M], j ∈ [1, . . . , N ]. (5)

The initial value of r is set to N . The algorithm decreases its value iteratively as long as
the segmentation process finishes without results, because an ICC violation occurs at some
point of the segmentation and it is not solvable by the basic collision routine (as explained in
section 2.2.3). This minimization continues until the first value (and the highest) of r fulfilling
the ICC is found, and the segmentation process ends successfully. If the eventual value of r is
equal to 0, this constraint is equivalent to the one described in equation (4), and it means the
reduction of the NS is not possible.

The higher the r value is, the lower the NS will be, because r weakens the ICC, allowing
the right leaf to advance, even if current fluence value is lower than the compared neighbour
ones.

Example 3. To illustrate the effect of equation (5) in the segmentation process, the modified
constraint is applied on the example 2 matrix with r = 1. The lower row is the residual matrix
associated with each segment,(

3 1 1
1 1 2

)
=

(
1 0 0
1 0 0

)
+

(
1 0 0
0 1 1

)
+

(
1 1 1
0 0 1

)
(

2 1 1
0 1 2

)
→

(
1 1 1
0 0 1

)
→

(
0 0 0
0 0 0

)
.

In this case, when A2 is segmented, the second row can be included and it yields to a
segmentation with one less segment.
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d

(a) (b) (c)

Figure 2. d variable on a hypothetical segment: (a) original segment with d represented graphically
as an arrow, (b) d � 2 and (c) d � 1.

2.2.2. The segment shape constraint. A new variable called ‘depth’ and represented by
d is added. It provides a certain degree of control over the segment shape, by limiting the
difference between the adjacent leaves at the right side. As the ICC (section 2.2.1), it is a
dependence among adjacent rows. Figure 2 illustrates the effect of d. Using the definition of
rk,i previously given in definition 4:

|rk,i − rk,i±1| � d d ∈ [0, . . . , N ]. (6)

The initial value of d is set to 0 and the algorithm maximizes it iteratively under the
condition of keeping a maximum NS or TNMU according to the selected criterion. To
be precise, when the subtraction value has been optimized, the segmentation process starts
again with the subtraction value fixed and varying d. If the segmentation process fails with
d = n, n ∈ [0, . . . , N], it is repeated with d = n + 1, because the lower the d value is, the
smoother is the segment outline, but the higher is its NS or TNMU. This iterative process
continues until the first value of d that meets the maximum NS or TNMU is found. Section
2.3.4 explains in detail the relation between the d variable and the NS and TNMU. The
pseudocode in appendix A1 formalizes this process.

2.2.3. General interleaf collision detection and solving. The ICC introduced in
section 2.2.1 can be understood as a way of synchronizing the advance of the queues generated
by the unidirectional constraint. The proposed constraint ensures that every single row is
synchronized with its adjacent ones, but this is not enough to ensure no ICC violation on the
whole segment. Thus, a routine for a global check is needed. Let A be an example fluence
matrix, and α1 · S1 its segmentation,

A =
⎛
⎝0 0 0 5 5

0 0 0 0 0
5 5 0 0 0

⎞
⎠ = 5 ·

⎛
⎝0 0 0 1 1

0 0 0 0 0
1 1 0 0 0

⎞
⎠ = α1 · S1.

Segment S1 fulfils the proposed unidirectionality and interleaf collision constraints, but
the algorithm faces an unsolvable conflict if only these rules are applied. Therefore, these
situations should be fixed using an algorithm like the following one: (1) find the row whose
right leaf is behind any other right leaf in the segment, i.e. the smallest rk,i , in the case of draw,
the row whose left leaf has the smallest lk,i is chosen, (2) use previous row index as the starting
point for iterating with decreasing row indices (upwards) applying equation (7). Then, the
same procedure is applied with increasing row indices (downwards) applying equation (8). At
the end, any row violating the ICC must be closed,

Upwards: if rk,i < (lk,i−1 − 1) → lk,i−1 = rk,i + 1; rk,i−1 = rk,i; (7)

Downwards: if rk,i < (lk,i+1 − 1) → lk,i+1 = rk,i + 1; rk,i+1 = rk,i . (8)



576 J M Artacho et al

2.2.4. The tongue-and-groove constraint. The tongue-and-groove design of the MLCs causes
an underdose effect in a narrow band at the overlapping region between two adjacent rows.
This effect can be removed from the segmentation methods introducing the tongue-and-groove
constraint (TGC) (van Santvoort and Heijmen 1996, Siochi 1999, Kalinowski 2006).

The TGC also smoothes segment outlines and compact segment shapes, so it can be used
in a similar way as the segment shape constraint proposed in section 2.2.2. However, this
constraint increases, in average, the NS and the TNMU (van Santvoort and Heijmen 1996,
Kalinowski 2004) and the increase cannot be controlled, as it is done with the proposed shape
constraint in section 2.3.4.

For the ONS and the OTNMU algorithms, the TGC can be introduced following the same
formulation described in Kalinowski (2004).

A(i, j) � A(i + 1, j) ∧ S(i, j) = 1 ⇒ S(i + 1, j) = 1 : i ∈ [1, . . . ,M − 1], j ∈ [1, . . . , N ]

A(i, j) � A(i − 1, j) ∧ S(i, j) = 1 ⇒ S(i − 1, j) = 1 : i ∈ [2, . . . ,M], j ∈ [1, . . . , N ].

(9)

Equation (9) ensures that if a fluence value is smaller than its column neighbours (i + 1
or i − 1), it should be exposed at the same time as them. Thus, it can be guaranteed that the
tongue-and-groove region, at least, receives the smaller dose.

2.3. Weight computation (αk)

The αk weight associated with the Sk segment is generated using a criterion for minimizing
the NS or the TNMU. The proposed method allows us to select which criterion will be used
before the segmentation process starts, and it cannot be changed during the execution. A novel
criterion for the minimization of the NS is proposed and the criterion for obtaining optimum
TNMU is taken from Kalinowski (2006) and Engel (2005).

First, the general strategy for computing weights is explained, and then each criterion is
explained in detail.

2.3.1. Minimization criteria. The selection of one criterion or another would depend on the
desired factor to be minimized, the NS or the TNMU. They are used in the computation of
the αk weight associated with the Sk segment. On both criteria, the procedure to obtain the
candidate weights and search for the best one is the same:

(i) The kth candidate weights are obtained as the naturals in the range between 1 and the
minimum fluence value (represented by ω) in the kth fluence matrix when the kth mask is
superimposed. Alternatively, ω can be understood as the lowest fluence value among the
lk,i in opened leafs,

ω = x ∈ N : {∃i ∈ [1, . . . , M] : lk,i � rk,i ∧ x = Ak(i, lk,i)}
∧ {∀p ∈ [1, . . . , M] : (lk,p � rk,p) ⇒ x � Ak(p, lk,p)}
k ∈ [1, . . . , NS]. (10)

Let � be the set with all the fluence values between 1 and ω,

� = {x ∈ N : 1 � x � ω}. (11)

(ii) The mask is multiplied with all the weights in the � set and subtracted from the current
fluence matrix, so as to compute a set pair: weight and its residual matrix,

∀ β ∈ � : A
β

k+1 = Ak − β · Sk. (12)
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(iii) Lastly, for each pair, the criterion selected is applied and if the current pair is better than
previous ones, its candidate weight becomes the new temporary αk weight.

Intuitively, the best choice is the highest weight in the � set, because it is the one
delivering the larger dose. However, this way of proceeding is not the best, because smaller
values may reduce better the value heterogeneity of the fluence matrix, facilitating subsequent
segmentations and consequently achieving faster segmentations than a ‘greedy’ approach.

2.3.2. Optimizing NS (ONS). The objective is to minimize the number of segments (NS) and
note that the optimal NS does not imply the optimal TNMU.

The weight α at iteration k is the natural value reducing the biggest number of row local
peaks at Ak , i.e. Ak+1 will tend to have fewer peaks than Ak . The idea behind this criterion is
that the fewer peaks in a row, the faster it is segmented. Thus, the fewer row local peaks in a
matrix, the faster its segmentation is done.

As explained in section 2.3.1 a list of pair: candidate weight and its residual matrix will
be computed. For each residual matrix, the total number of local row peaks is computed
summing the local peaks of each row,

peaks(A) =
M∑
i=1

peaksi (A). (13)

The residual matrix with the fewer peaks will determine the candidate weight that becomes
the final αk ,

αk = β ∈ � : {Ak+1 = Ak − β · Sk}
∧{∀ γ ∈ � : A

γ

k+1 = Ak − γ · Sk ∧ peaks(Ak+1) � peaks
(
A

γ

k+1

)}
. (14)

Example 4. Let ω = 2 be the lowest fluence value for the first segment of a given fluence
matrix. Thus, � = {1, 2} are the candidate values. After computing A

β=1
2 = A1 − (1 · S1)

and A
β=2
2 = A1 − (2 · S1) the algorithm decides β = 2 is the best choice, and it becomes the

final α1 value, because peaks
(
A

β=1
2

) = 27 and peaks
(
A

β=2
2

) = 20.

2.3.3. Optimizing TNMU (OTNMU). The objective is to minimize the following summation:

T NMU =
NS∑
k=1

αk. (15)

The weight α at iteration k is computed in an equivalent way as defined in Kalinowski
(2006) and Engel (2005):

(i) The TNMU complexity of a row, denoted as ci(A), is the optimal TNMU for the ith
(single) row segmentation (Kalinowski 2006, Engel 2005),

ci(A) =
N∑

j=1

max(0, ai,j − ai,j−1) i ∈ [1, . . . ,M], j ∈ [1, . . . , N ]. (16)

(ii) The TNMU complexity of a matrix, denoted as c(A), is the optimal TNMU for its
segmentation (Kalinowski 2006, Engel 2005),

c(A) = maxi (ci(A)) i ∈ [1, . . . ,M]. (17)
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(iii) Using the TNMU complexity property, the algorithm knows in advance the optimal TNMU
for a residual matrix. Therefore, the algorithm can use this property to select the candidate
weight plus residual matrix with minimum value, achieving the optimal segmentation in
terms of MU. Equation (18) formulates the process using previous equation (17) and the
� set defined in equation (11),

αk = β ∈ � : {Ak+1 = Ak − β · Sk}
∧{∀ γ ∈ � : A

γ

k+1 = Ak − γ · Sk ∧ β + c
(
Ak+1

))
�

(
γ + c(A

γ

k+1

)}
. (18)

Example 5. Using example 4 for the ONS. This time, the algorithm could decide β = 1 is the
best choice, because c

(
A

β=1
2

) = 50, c
(
A

β=2
2

) = 52 and therefore 1 + 50 < 2 + 52.

2.3.4. Segment shape constraint relaxation. Summarizing, the segmentation process
described in this work consists in two main steps. First, the segmentation of the fluence
matrix is done several times, optimizing iteratively the subtraction value, but not using the
shape constraint. Second, another loop of segmentations is executed, using the subtraction as
a constant for optimizing the depth value, and improving segment shapes.

The optimization of the depth variable is done in the following way. The eventual NS or
TNMU (depending on the criterion selected) of the subtraction optimization is stored as the
‘stop’ value. The lower the depth value, the more synchronized the left leaves will be, but this
would also yield bigger NS or TNMU. The depth variable starts set to 0 and the segmentation
is carried out imposing this maximum depth. If the segmentation process reaches the stop
value without finishing, it means that the depth condition is too restrictive, and it should
be increased. This iterative process continues until a value of depth is found that obtains a
segmentation with equal NS or TNMU than the stop value. This condition can be relaxed by
increasing the stop value by a percentage (equation (19)); therefore, the result will be better
in terms of shape, but worse in terms of NS or TNMU,

stop = original + (original · percentage). (19)

Example 6. Let the original NS be 22 and the percentage be 10%, which implies that the
second step can produce segmentations up to 24 segments. In the first case, without softening
the stop value, depth can be 4. In the second case, it may be reduced to 3 or 2.

3. Results

From now on, the proposed algorithm with different criteria will be referred as separate
algorithms (OTNMU and ONS) due to the differences found in results and behaviour.

3.1. Compared segmentation methods and settings

The results section will show the performance of OTNMU and ONS against the leaf sequencing
methods described in Galvin et al (1993), Bortfeld et al (1994), Xia and Verhey (1998), Siochi
(1999), Kalinowski (2006).

The method published in Siochi (1999) is a combination of two algorithms applied in two
steps embedded in an iterative optimization process. The first step is called extraction. It is
based on Galvin et al (1993), and its output is a pure non-unidirectional SMLC segmentation.
The second step is called rod pushing (RP). It is a geometrical reformulation of the sweep
technique described in Bortfeld et al (1994), and its output is a unidirectional segmentation.
Both methods are combined in an iterative optimization process, which is driven by a formula
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that measures the treatment time in a realistic way, taking into account the TNMU, the leaf
motion time and the V&R.

Only the rod pushing (RP) technique was implemented for comparison, discarding the
extraction part. There were two reasons for this decision: (1) the ONS and OTNMU can be
compared with another unidirectional method; also, the RP with ICC (and without the tongue-
and-groove constraint) is optimum regarding the TNMU (Kalinowski 2006)[p 1016], and (2)
there are not enough details in the original paper to reproduce accurately the implementation
of the whole optimization process.

Finally, three remarks have to be considered: (1) although (Galvin et al 1993, Bortfeld et al
1994) algorithms were designed without the ICC, in Xia and Verhey (1998) they were modified
to include this constraint and compare in a fair way, because the ICC increases the number of
segments by approximately 25% on both algorithms. (2) Unidirectional segmentations with
RP and the proposed algorithms are done in both directions, from left to right and from right
to left, and the best solution is selected. (3) The results are divided into two groups, depending
on the constraints applied. The ICC group only uses this constraint. The TGC group uses the
ICC plus the TGC.

3.2. Data and experimental setting

The methodology proposed by Xia and Verhey (1998), also used in Que (1999) and Kalinowski
(2006), is followed:

(i) 1000 15 × 15 matrices were segmented, each having random natural values from 0 to
L. The algorithms described in Xia and Verhey (1998) and RP were implemented, but
only the second one was used in the testing. The results for Galvin et al (1993), Bortfeld
et al (1994), Xia and Verhey (1998), Kalinowski (2004, 2006) were taken from Xia and
Verhey (1998), Kalinowski (2004, 2006). This experiment will allow us to compare the
proposed algorithm with the others from the statistical point of view.

(ii) A clinical case generated from the PCRT 3D R© (Técnicas Radiofı́sicas, S.L. C/Gil de
Jasa, 18E, 50006 Zaragoza, Spain, www.trf.es) planning system, with five coplanar and
equiangular beams, is used to compare results between the RP (Xia and Verhey 1998),
OTNMU and ONS in a real prostate cancer case. The comparison has two objectives:
(1) comparing in a real clinical case that can be substantially different from random
generated matrices and (2) comparing with well-known methods; one unidirectional (RP)
and another non-unidirectional (Xia and Verhey 1998).

3.3. Experiment with random matrices

Tables 2 and 3 gather the results of the test with random matrices showing the NS and the
TNMU, respectively.

3.4. Experiment with a IMRT planning for a real prostate cancer

The fluence matrices obtained for a real case of prostate cancer from the PCRT 3D R© treatment
planning system are now considered. The tumour is irradiated from five different coplanar
and equiangular beams (36◦, 108◦, 180◦, 252◦ and 324◦) in a 72 Gy plan. The dose–volume
constraints used were very similar to the described in Memorial Sloan-Kettering Cancer Center.
Departments of Medical Physics and Radiology (2003). For the rectum and the bladder, the
constraint was 70% of the volume receives < 40% of the prescription dose.
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Table 2. Average NS. OT = OTNMU and ON = ONS.

Non unidirectional Unidirectional

ICC TGC ICC TGC

L Gal Xia Kal Kal Bor RP OT ON RP OT ON

3 13.4 13.3 12.6 15.5 17.7 15.2 15.6 15.6 16.4 16.4 16.4
4 20.4 18.6 14.5 18.0 22.8 19.1 19.7 19.6 20.9 20.8 20.7
5 20.4 19.0 16.0 20.5 27.9 22.8 23.6 23.3 25.2 25.0 24.8
6 21.5 20.3 17.2 22.6 32.8 26.5 27.4 27.0 29.4 29.2 28.8
7 27.1 20.0 18.2 24.3 37.9 30.1 31.4 30.6 33.6 33.3 32.6
8 28.2 24.3 19.1 25.7 42.8 33.7 35.0 33.9 37.7 37.4 36.3
9 28.3 24.3 19.9 27.0 47.8 37.1 38.6 37.1 41.7 41.4 39.9

10 28.9 25.7 20.7 28.3 52.6 40.6 42.3 40.3 45.6 45.3 43.3
11 30.9 25.7 21.3 29.5 57.6 43.9 45.8 43.2 49.4 49.1 46.6
12 34.8 27.0 21.9 30.5 62.4 47.2 49.1 46.2 53.2 52.8 49.8
13 35.5 26.9 22.5 31.4 67.3 50.5 52.5 49.0 56.8 56.5 52.9
14 35.6 26.9 23.0 32.2 72.2 53.6 55.7 51.7 60.3 60.0 56.0
15 35.9 26.7 23.5 33.1 77.1 56.7 58.9 54.6 63.7 63.5 59.0
16 41.7 30.0 24.0 33.9 82.0 59.7 62.1 57.2 67.1 66.8 61.8

Table 3. Average TNMU. OT = OTNMU and ON = ONS.

Non unidirectional Unidirectional

ICC TGC ICC TGC

L Gal Xia Kal Kal Bor RP OT ON RP OT ON

3 19.7 19.5 15.4 16.6 17.7 15.4 15.7 15.7 16.5 16.5 16.5
4 40.5 29.6 19.5 21.2 22.8 19.6 19.9 19.9 21.1 21.0 21.0
5 40.1 30.9 23.6 25.8 27.9 23.6 24.0 24.1 25.7 25.3 25.4
6 44.2 46.8 27.6 30.3 32.8 27.7 28.1 28.3 30.1 29.7 29.8
7 67.1 45.6 31.7 34.9 37.9 31.7 32.2 32.5 34.6 34.1 34.3
8 72.3 63.4 35.7 39.2 42.8 35.8 36.3 36.7 39.1 38.4 38.8
9 72.3 67.1 39.8 43.6 47.8 39.8 40.3 40.8 43.6 42.7 43.1

10 76.5 68.6 43.8 48.2 52.6 43.8 44.4 45.1 48.1 47.1 47.7
11 81.4 68.6 47.7 52.9 57.6 47.8 48.5 49.2 52.5 51.4 52.1
12 106.8 101.1 51.8 57.2 62.4 51.8 52.5 53.3 57.0 55.7 56.4
13 101.1 100.6 55.7 61.7 67.3 55.8 56.5 57.5 61.4 60.0 60.9
14 112.7 100.0 59.8 66.0 72.2 59.8 60.6 61.6 65.8 64.3 65.4
15 116.0 98.0 63.8 70.6 77.1 63.8 64.6 65.8 70.3 68.6 69.7
16 154.5 124.9 67.7 74.8 82.0 67.8 68.7 69.9 74.7 72.9 74.0

Table 4 shows the NS and the TNMU for the full set of fluence matrix segmentations.
OTNMU and ONS use the subtraction variable r , and variable d with percentage = 0%. Thus,
the optimization of d is done without increasing the NS or the TNMU originally obtained with
the r variable.

3.4.1. Segment shape comparison. In this section, the segment shapes between Xia and
Verhey (1998), RP, OTNMU and ONS are compared. The third beam (180◦) segmentation
from a previous real case is used, because all the unidirectional methods segment it from left
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Table 4. NS and TNMU obtained for each beam in a real prostate cancer case.

NS TNMU

36◦ 108◦ 180◦ 252◦ 324◦ Total 36◦ 108◦ 180◦ 252◦ 324◦ Total

ICC
Xia 36 13 32 15 31 127 267 108 194 80 214 863
RP 25 13 32 13 28 111 92 86 80 64 106 428
OTNMU 26 14 31 13 29 113 92 86 80 64 106 428
ONS 25 14 28 11 25 103 96 88 126 64 142 516

TGC
RP 32 15 32 12 33 124 138 86 86 69 135 514
OTNMU 30 26 33 13 33 135 117 86 81 69 111 464
ONS 29 16 31 11 34 121 143 97 95 80 154 569

to right, and it will help to see the differences when comparing. The fluence matrix to be
considered is ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 40 40 40 40 40 40 0 0 0 0 0 0 30 40 40 40 40 40 40 40 40 0
0 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 0
0 40 40 40 40 40 40 40 40 37 22 28 11 40 40 40 40 40 40 40 40 13 0
0 40 40 40 40 40 40 32 27 22 25 30 17 36 30 40 40 40 40 40 40 0 0
0 0 40 40 40 40 40 40 32 33 20 29 29 37 40 40 40 40 40 40 40 0 0
0 0 0 0 40 40 40 40 29 24 31 27 38 40 40 40 40 40 40 0 0 0 0
0 0 0 0 0 0 40 40 27 32 18 26 40 40 40 40 40 0 0 0 0 0 0
0 0 0 0 0 0 40 40 40 40 39 40 40 40 40 40 40 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 15 40 40 40 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

First, the segmentations obtained by Xia and Verhey (1998) and RP methods are shown
in figure 3, and the segmentations obtained by the ONS and the OTNMU without d are shown
in figure 4. If only the r variable is used, the algorithms try to obtain segmentations with less
NS but not with better shapes. Thus, it is important to remark that some segment shapes in
figure 3 and 4 have:

(i) Quite irregular shapes, e.g. first and second row segments in RP and OTNMU.
(ii) Several disconnected subsegments, e.g. from 16th to 25th segment in RP, OTNMU and

ONS.
(iii) Rather small areas, especially in the Xia and Verhey (1998) method with most of the

segments being tiny apertures. Although the last ones of the dynamic methods are
relatively small as well.

Second, figure 5 illustrates how adding the d variable can control and improve segment
shapes, getting more regular outlines with less disconnected subsegments, especially when it
is compared from 16th segment onwards in this figure with the same range of segments in
figures 3(a) and 4. The d variable was optimized using the NS or TNMU obtained when the
r variable was computed.

It is possible to reduce the value of d with the purpose of getting even more regular shapes.
This is done by relaxing the stop value using the percentage variable of equation (19). The
OTNMU segmentation in figure 5(b) has d � 5, relaxing the TNMU by 10% as maximum,
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Figure 3. Segmentation of the 180◦ beam fluence matrix using RP and Xia and Verhey (1998)
algorithms. (a) RP segmentation with 33 segments and 80 MU. (b) Xia and Verhey (1998)
segmentation with 32 segments and 194 MU.
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Figure 4. OTNMU and ONS segmentations not using segment shape control for the 180◦ beam
fluence matrix. (a) ONS segmentation with 28 segments and 126 MU when r = 23. (b) OTNMU
segmentation with 31 segments and 80 MU when r = 23.
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Figure 5. OTNMU and ONS segmentations using segment shape control for the 180◦ beam
fluence matrix. (a) ONS segmentation with 28 segments and 126 MU when r = 23 and d � 2.
(b) OTNMU segmentation with 31 segments and 80 MU when r = 23 and d � 5.
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Figure 6. OTNMU segmentation with 34 segments and 86 MU when the TNMU is relaxed to
reduce d, obtaining r = 23 and d � 3.

the result is a segmentation with d � 3 at the cost of 6 MU (7% more than the original).
If a segmentation with d � 2 or lower is desired, the percentage could be increased. See
figure 6 and compare with figure 5(b) the second and fifth rows, where the differences are more
evident.

Finally, figure 7 illustrates the influence of the TGC on the segment shapes. The effect is
similar to the one seen in figure 5 using the proposed segment shape constraint.

4. Discussion

Analysing the random test results in tables 2 and 3, it can be concluded that the proposed
algorithms show good behaviour in terms of NS and TNMU, when comparing with other
unidirectional segmentation methods, such as Bortfeld et al (1994) and the RP. In particular,
the OTNMU gives almost identical results as the RP, whereas the ONS is slightly better than
the RP and the OTNMU regarding the NS, but worst than both with respect to the TNMU, as
one would expect.

The same behaviour can be observed in table 4 when looking at the real case test regarding
both criteria for the RP, the OTNMU and the ONS, whereas the Xia and Verhey (1998) results
in terms of the NS are not as good as those seen in the random test. However, the most
remarkable difference is the improvement in the segment shapes observed in figures 5 and 6
compared to figures 3 and 4. The segment shape constraint has the properties of reducing the
severe and intricate blocking, smoothing segment outlines and compacting segment shapes.
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Figure 7. Example of the TGC applied on the OTNMU and RP algorithms, showing its influence on
the segment shape. (a) OTNMU segmentation with 33 segments and 81 MU. (b) RP segmentation
with 32 segments and 86 MU. The segmentation was from right to left.
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Those properties come from the fact that limiting the difference between a right leaf and
its adjacent leaves: (a) synchronizes their motion, creating a smoother segment ‘front’ (and
outline), (b) contributes to the reduction of disconnected subsegments, minimizing the number
of interleaved closed rows and (c) unidirectionality plus leaf motion synchronization will tend
to avoid situations where the shape has a short Y-axis and a long X-axis (e.g. only two opposite
leaves opened). The motion of one leaf depends on its adjacent leaves; one leaf (or a small
set of leaves) could not advance much more than their neighbours. Thus, the segment will be
more compact and regular as can be seen when comparing the latest segments in figures 3(a),
4 and 5.

The leaf synchronization achieved in figure 5 is obtained without increasing the NS or the
TNMU. However, if it is still not enough, there is the possibility of relaxing the stop value for
the NS or the TNMU, e.g. 5% more NS or MU, and get even better shapes, but it is not worth
increasing it too much. Otherwise, segment shapes may be ‘perfect’ but the segmentation will
not be feasible in practice, due to the increase in delivery time. There is a trade-off between
both factors, shape versus NS and TNMU.

Finally, similar results were obtained in terms of shape when using the TGC, as can be
seen comparing figures 7 and 5. However, table 4 shows that this constraint increases the NS
and TNMU more than 10% and 8%, respectively, on each algorithm. In addition, the TGC
influence on the NS or TNMU is quite unpredictable and cannot be limited or controlled.

5. Conclusions

A new MLC segmentation algorithm has been developed. For the computation of segments, a
novel constraint for controlling the segment shapes has been added and two basic restrictions
are considered, unidirectionality and the interleaf collision. The segment shape control will
generate compact and regular shapes, unidirectionality will minimize leaf movements, thus
reducing one treatment time factor, and the interleaf collision constraint will make suitable the
proposed algorithm for MLCs with motion constraints.

For the computation of segment weights, the algorithm offers the possibility of selecting
between two different criteria. The first criterion is a novel one proposed in this paper for
minimizing the NS, and the second one is taken from Kalinowski (2006) and Engel (2005) for
obtaining the optimal TNMU.

The results show that the algorithm works well compared to other published algorithms,
having the bonus of shape control plus the criteria selection. Moreover, it is being transferred
to the PCRT 3D R© commercial software.
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Appendix A. Segmentation algorithm pseudocode

The following pseudocodes correspond to the main steps of the segmentation process:
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Algorithm 1. Main function. Optimization of r and d variables.

function SEGMENTATION(A, criterion, percentage): returns S, α

r ← N ; d ← N ; collision ← true; max ← 0 � Subtraction optimization
while r � 0 ∧ collision do

< collision, auxS, auxα >← decomposition(A, r, d, criterion, max)
if collision then

r ← r − 1
end if

end while

d ← 0; collision ← false � Depth optimization
max ← compute Maximum(S, α, criterion, percentage)
while d � N ∧ ¬collision do

< collision, auxS, auxα >← decomposition(A, r, d, criterion, max)
if ¬collision then

S ← auxS; α ← auxα
else

d ← d + 1
end if

end while

end function

Algorithm 2. Function computing the segmentation of a fluence matrix with given parameters.
A, S and α are vectors containing the results for each iteration.

function DECOMPOSITION(F, r, d, criterion, max): returns collision, S, α

k ← 1; A(k) ← F ; collision ← f alse

lrP os ← initializeLeaf Positions(A(k))

while A(k)〉0 ∧ ¬collision do

< collision, S(k) >← computeSegment (A(k), r, d, lrP os)

if ¬collision then

switch criterion
case NS

αk ← computeNSWeight (A(k), S(k))

case T NMU

αk ← computeT NMUWeight (A(k), S(k))

end switch

A(k + 1) ← A(k) − α(k) · S(k)

if max 
= 0 then � Checking stop condition
switch criterion � Collision boolean is used to stop, if necesary
case NS

collision ← (k > max) � Checking max. NS
case T NMU

collison ← (sum(α) > max) � Checking max. TNMU
end switch

end if

k ← k + 1
end if

end while

end function
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