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Tissue–Blood Exchange of Extravascular Longitudinal
Magnetization with Account of Intracompartmental
Diffusion

José R. Solera Ureña,1* Salvador Olmos,1 and Valerij G. Kiselev2

The joint effect of both extravascular water diffusion and tran-
scapillary water exchange on the longitudinal magnetisation
is evaluated theoretically for tissues with sparse capillary net-
works (e.g., the brain and myocardium). The spatio-temporal
profile of the extravascular longitudinal magnetisation is cal-
culated for the limiting case of a high blood concentration
of paramagnetic tracer resulting in negligible intravascular
magnetisation, hence in a net flux of magnetisation from the
extravascular tissue to its contained blood. A related parame-
ter, termed the effective extravascular depolarised volume, is
derived that quantifies the ensuing attenuation of the NMR sig-
nal and affords a taxonomy of exchange regimes. It is found that
the spatio-temporal pattern of magnetisation decay may devi-
ate strongly from that predicted by chemical exchange models
when the rate of transcapillary exchange is limited by slow diffu-
sive transport in the extravascular tissue but reproduces known
results in the case of fast extravascular diffusion. Magn Reson
Med 000:000–000, 2011. © 2011 Wiley-Liss, Inc.
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INTRODUCTION

Water exchange between physiologic compartments is
essential to tissue function and can be probed by MRI
using paramagnetic contrast agents. Compartmental water
exchange must be accounted for when quantifying the
effect of MRI tracers (1). The purpose of this work is to
evaluate theoretically the flux of extravascular longitu-
dinal magnetisation between a tissue and its contained
blood, with account of spin diffusion in the extravascu-
lar space. Specifically, we consider the limiting case of
negligibly low intravascular magnetisation produced by
a high concentration of paramagnetic blood-pool tracer,
resulting in a net flux of extravascular magnetisation across
the capillary wall and into the blood pool. The term
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tissue–blood exchange shall be used in the sequel with
this precise meaning. We begin by reviewing previous
work on the effect of paramagnetic blood-pool tracers and
extravascular water proton diffusion on the NMR signal.

Exogenous paramagnetic contrast agents (e.g., gadolin-
ium chelates and macromolecules) affect water magneti-
sation by increasing the local relaxation rate, as well as
through indirect, long-ranged susceptibility effects (1) that
reach virtually all tissue protons; as a result, complex
magnetic interactions ensue at the mesoscopic scale (ca.
1 − 100 µm) of cells and microvessels.

Relaxation effects: Blood-pool tracers increase the
local transverse and longitudinal relaxation rates of
plasma (as well as its magnetic susceptibility) through
electron-nuclear dipole interactions experienced by water
molecules diffusing near the tracer particles (2–4). Such
relaxation effects then propagate to adjacent physiologic
compartments through water proton exchange (5); whilst
plasma–erythrocyte water exchange is considered to be fast
(in the range of milliseconds) (1), tissue–blood exchange
can, at a given time, occur in one of several regimes, as
discussed in this work. Bauer and Schulten (5) used the
Bloch-Torrey equation (6) and the mean relaxation time
approximation (7) to determine the mean relaxation time
in whole tissue as a function of capillary density, capil-
lary water permeability and compartmental diffusivity. The
compartmental mean relaxation times were then incorpo-
rated into a pharmacokinetic model that accounted for tis-
sue perfusion and transcapillary water exchange (8). Based
on this model, a number of studies have demonstrated the
feasibility of T1-based measurements for the extraction of
transcapillary water exchange rates (9,10), perfusion rate
in in vivo animal models (11,12), and intracapillary blood
volume using blood-pool tracers (10,13).

Susceptibility effects: Magnetic susceptibility differ-
ences between blood and extravascular tissue induce long-
ranged magnetic field gradients, leading to a several-fold
increase in the effective transverse relaxivity of the tracer
in tissue relative to that of whole blood (14,15) and hence
to strong signal attenuation. The theory of susceptibility-
induced NMR signal dephasing, cf. Refs. 16–19 and refer-
ences therein, is not considered further in this study, which
is mainly concerned with the longitudinal magnetisation.

In chemical exchange theory, the Bloch equations
are augmented with first-order exchange terms (20,21);
intracompartmental diffusion is assumed to be much
faster than both magnetic relaxation and compartmen-
tal exchange (“well-mixed” assumption). Formulae for T1
and T2 can be found in, e.g., Refs. 21–23, with discussion
of important special cases. For a given exchanging
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species, a compartmental system is said to be in slow
chemical exchange if the difference between the water
relaxation rates in the exchanging compartments [i.e., the
MR relaxographic shutter speed (24)] greatly exceeds the
first-order exchange rates involved (9,24) and is said to be
in fast exchange in the opposite case, with a range of inter-
mediate cases. Knowledge of the exchange regime is key
because it dictates the choice of pharmacokinetic param-
eters that can be accurately extracted by T1-weighted
MRI measurements of transcapillary and transcytolemmal
exchange (24,25), as well as in contrast-agent based cellu-
lar imaging studies (26). Incorrect modeling of transcapil-
lary water exchange results in, e.g., inaccurate extraction
of tissue blood flow and volume estimates (8,27,28). The
chemical exchange model has been compared (29) with
classical Carr-Purcell diffusion theory, inner- and outer-
sphere theory and the magnetised cylinder model (see
Refs. 17 and 19, and references therein) for the case of
weak dephasing.

This brief review suggests that the role of extravascular
water diffusion in both susceptibility-induced NMR signal
dephasing and compartmental relaxation is well under-
stood theoretically. It appears, however, that the joint effect
of (intracompartmental) diffusion and (intercompartmen-
tal) exchange of spins on the longitudinal magnetisation
has, to date, not been addressed theoretically in the NMR
literature, the well-mixed assumption being prevalent in
most studies. In this work, we present a method that
describes the spatio-temporal evolution of the longitudinal
magnetisation in extravascular space and sets a mathemat-
ical framework for a more extensive treatment of tracer
kinetics in future studies.

METHODS

Physical model

Tissue–blood exchange is mediated by water diffusion;
this implies that magnetisation gradients are highest near
the tissue–blood interface. Thus, tissues with a low capil-
lary volume fraction (as is usually the case in physiologic
tissues) can be subdivided into multiple capillary–tissue
units, such that the total loss of magnetisation in the whole
tissue is equal to the sum of the magnetisation losses
in all such units. Following Krogh (30), a representative
capillary–tissue unit is modeled as a long cylindrical region
of radius A, embedding a coaxially placed capillary of
radius a; the radius of the pericapillary region is given
by A = aζ−1/2, where ζ is the capillary blood volume
fraction. The capillary wall is modelled as a thin semiper-
meable membrane with diffusional water permeability κ.
The extravascular region is assumed to be mesoscopically
homogenous on the MRI timescale and, for present pur-
poses, can be characterised by the apparent diffusivity
of water, Dev, and the longitudinal relaxation rate in the
absence of exchange, Rev (both assumed constant). The
difference in the extravascular longitudinal magnetisation
at equilibrium and at time t is denoted by ψev(r, t); its
spatio-temporal evolution is described by the Bloch-Torrey
equation (6):

∂ψev

∂t
= [Dev∇2 − Rev]ψev, [1]

and the flux conditions through the capillary wall and the
pericapillary boundary:

Devn∇ψev|r=a = κ[ψev − ψiv]r=a, [2]

Devn∇ψev|r=A = 0 [3]

(n is the unit outward normal). The zero-flux condition
at the pericapillary boundary implies that a spin imping-
ing on the outer boundary will be reflected back into the
pericapillary region; that is, all spins in the diffusion water-
shed are affected equally, on average, by the surrounding
capillary network, a reasonable modelling assumption.

In this study, we consider the limiting case of negligible
blood magnetisation resulting from a high concentration of
paramagnetic blood-pool tracer, i.e., ψiv � ψev in Eq. 2.
This constitutes our chief technical assumption. The phys-
ical content of this limiting case is specified next. First, the
mean residence time of water molecules in the well-mixed
blood compartment is given by:

τiv = Viv

κSiv
= a

2κ
, [4]

where Siv is the capillary surface area and Viv is the cap-
illary volume. [Fast intracapillary mixing is largely the
result of erythrocyte motion, ca. 1.5 µm ms−1 (31), rather
than intracapillary water diffusion]. Further note that the
product Rτiv, where R = Riv − Rev, gives the attenuation
of the longitudinal magnetic moment of such molecules
relative to the intravascular-to-extravascular exchange rate,
τ−1

iv ; hence, if

Rτiv � 1, [5]

an intravascular spin becomes, on average, fully relaxed
before it can (re)enter the pericapillary region. This phys-
ical reasoning is best illustrated by finding the density
in the well-mixed intravascular compartment, ψiv(t), that
ensues on application of a spatially uniform, but otherwise
arbitrary, extravascular density, ψev(t), with zero initial
conditions. In the frequency domain, we have:

ψiv(ω) = 1
−iωτiv + 1 + Rτiv

ψev(ω). [6]

Thus, the parameter Rτiv does measure the smallness of
ψiv(t). In practice, however, if the blood Larmor frequency
lies in the pass-band of the applied RF pulse, as is usu-
ally the case, then the condition ψiv � ψev may not hold
strictly, at least at times t � R−1. In the human brain, we
estimated Rτiv∼10−80 for steady state (∼3 mM) and peak
(∼18 mM) gadopentetate dimeglumine concentrations in
blood (32) at 1.5 and 3 T; see Ref. 33 and Fig. 5.3 in Ref.
34 for tracer relaxivities and T1 values, respectively. In
human myocardium, we estimated Rτiv ∼ 0.5–5 at 1.5 T
for intravascular contrast agent (Feruglose) concentrations
between 0.5–5 mg per body weight, see Ref. 10. For the
above examples, the ratio of intravascular-to-extravascular
magnetisation in brain tissue is low for a wide range of
tracer concentrations, including first-pass and recircula-
tion levels; in myocardium, this condition appears to be
less well satisfied.

In the limiting case of negligible intravascular magneti-
sation, the constant relaxation rate Rev enters into the
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expression of ψev(r, t) through the factor exp(−Revt), which
is left understood in the sequel for simplicity. Further note
that, in the case considered here, the effect of capillary
blood flow on exchange becomes immaterial.

Physiologic Parameter Values

Literature values for relevant physiologic parameters are
collected below for ease of reference.

a. Human brain cortex: capillary diameter, 2a = 6.5 µm;
mean intercapillary distance, 2A = 57 µm; capillary blood
volume fraction, ζ = 2.5% (average values obtained from
stereological data in Refs. 35 and 36); apparent diffusivity
of water, D = 0.8 µm2 ms−1 (37); capillary permeability-
surface area product for water in the central cortex, PS =
1.5 min−1 (38); from this, the capillary water permeability
is estimated as κ = 1.6 × 10−3 µm ms−1 from Eq. 16 below,
consistent with Ref. 39.

b. Myocardium: average capillary diameter, 5.6 µm;
capillary segment lengths average 100 µm, with a
strongly right-skewed distribution (40) (figures for dog
myocardium); intercapillary distance, 2A = 17.5–25 µm
(5,18,40); ζ ≈ 13% in human myocardium (10); D =
1–1.5 µm2 ms−1, see Refs. 5, 18, 28 and references therein;
and κ = 3.8–5.2 × 10−3 µm ms−1, see Applications section.

Definition of Effective Extravascular Depolarised Volume

The extravascular magnetisation, ψ(r, t), is a smooth func-
tion of both time and distance to the intravascular com-
partment, see Figs. 4 and 6 (the subscript ‘ev’ is dropped in
the sequel where no confusion arises). The magnetisation
gradient at the tissue–blood interface is proportional to the
flux of magnetic moment into the blood compartment, see
Eq. 2, which in turn results in decreased NMR signal, S(t).
Physically, the effective extravascular depolarised volume,
Λ(t), is proportional to the cumulative loss of extravas-
cular magnetic moment, hence to signal reduction in the
pericapillary region, as given by:

|S(t) − S(0)|
S(0)

= Λ(t)
Vev

, [7]

where Vev is the extravascular volume. This relation moti-
vates an operational definition of Λ(t) in terms of the
magnetisation density, G(r, r′, t), of a spin packet (i.e., a
point source of magnetisation) placed at position r′ in the
extravascular region at time t = 0. G(r, r′, t) is Green’s func-
tion (41) for Eqs. 1–3 in the extravascular region, and is also
known as the diffusion propagator. The initial magnetisa-
tion can be normalised to unity because in most tissues the
water proton density is nearly homogenous (5) and a uni-
form NMR excitation is assumed. Substitution of the NMR
signal

S(t) ∼
∫

ev
ψ(r, t) dnr, [8]

where

ψ(r, t) =
∫

ev
G(r, r′, t)ψ(r′, 0) dnr′, [9]

FIG. 1. Illustrating the definition of effective extravascular depo-
larised volume (one-dimensional case). Both the extravascular mag-
netisation ψ(x, t) (solid line) and the effective magnetisation (dashed
line) are shown schematically. The areas A and B are equal.

in Eq. 7, results in:

Λ(t) =
∫

ev

[
1 −

∫
ev

G(r, r′, t) dnr
]

dnr′, [10]

where all integrals are taken over the extravascular region.
A discussion of this result follows; detailed calculations of
ψ(r, t) and Λ(t) can be found in the Appendix.

Green’s function methods have been used in theoretical
work on susceptibility-induced signal dephasing (16–19).
The effective depolarised volume, as defined by Eq. 10,
is analogous to a quantity introduced by Yablonskiy and
Haacke (16) that represents the pericapillary volume in
which signal dephasing is strongest (17). In Fig. 1, the
“effective magnetisation”, ψeff (r, t), is equal to ψ(r, 0) ≡ 1
for |r| > Λ(t) and is zero elsewhere; hence, the total loss
of extravascular magnetic moment to time t is numeri-
cally equal to the product ψ(r, 0) · Λ(t). The inner integral
in Eq. 10 gives the normalised magnetisation of a spin
packet, Ψ(r′, t), where Ψ(r′, 0) = ∫

ev G(r, r′, 0) dnr = 1 and
Ψ(r′, t > 0) ≤ 1; thus, the term in brackets gives the fraction
of magnetisation lost in the extravascular region, and a fur-
ther integration yields the volume where the extravascular
NMR signal has become effectively depolarised by time t.

The plausibility of Eq. 10 is easily established for the two
extreme permeability cases: (i) with an impervious capil-
lary wall (κ = 0) the extravascular magnetic moment is
conserved; hence, the integral of G is equal to unity for all
t, which gives Λ(t) = 0, as expected; (ii) with a fully per-
meable capillary wall (κ = ∞), the extravascular magnetic
moment decreases steadily over time; hence, at long times
the integral of G vanishes and Λ(t) approaches Vev.

Using Eqs. 9, 10, the normalised, space-averaged extra-
vascular magnetisation may be written in terms of Λ(t) as:

〈ψ(r, t)〉 = 1
Vev

∫
ev

ψ(r, t) d2r = 1 − Λ(t)
Vev

. [11]

Summary of Monte Carlo Simulations

Computer simulations of tissue–blood exchange were per-
formed using MATLAB programs written in-house. Extravas-
cular diffusion was modelled by an ensemble of spin
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FIG. 2. Schematic diagram (arbitrary scale) of 2d exchange regimes
for the case a/A � 1 in terms of the normalised diffusion length
(ς = √

Dt/a) and the effective membrane thickness normalised to
capillary radius (�/a = D/aκ).

random walks consisting of independent, normally dis-
tributed steps with root mean squared length σ = √

4D∆t,
where ∆t is the time step. Spins eventually traversed the
capillary wall with permeability-dependent probability p,
given by:

p = min
{

2
√

π
κ∆t
σ

, 1
}

= min

{√
π∆t
τκ

, 1

}
[12]

(τκ is defined in Eq. 15 below) whereupon they were
removed from the ensemble, thus simulating full intracap-
illary relaxation. Equation 12 results by equating the flux
of magnetic moment (for zero intravascular magnetisation
and some constant, non-zero extravascular magnetisation)
computed in two different ways: “macroscopically”, as
per the definition of capillary permeability, Eq. 2, and
“microscopically”, by means of the probability distribution
associated to the random walk. It is assumed in Eq. 12 that
σ � a by allowing for a large number of diffusion steps.
The size of the simulation box was chosen as a trade-off
between the systematic error due to a finite box size, and
the need to keep an adequate spin density throughout the
simulation.

RESULTS

Extravascular Magnetisation and Effective Depolarised
Volume

The extravascular magnetisation and the effective extravas-
cular depolarised volume are given by Eqs. A7 and A8,
respectively (see Appendix). These expressions simplify
considerably for sparse capillary networks (a/A � 1),
e.g., in brain and, to a lesser extent, myocardial tissue.
The various tissue–blood exchange regimes are depicted
schematically in Fig. 2. The two most important limit-
ing cases, namely the permeability-limited regime and the
diffusion-limited regime, are discussed at length in the
sequel. As shown in Fig. 2, the following parameters enter
into the expressions of ψ(r, t) and Λ(t): first, the normalised

diffusion length,

ς =
√

Dt
a

, [13]

defines the timescale of exchange in sparse capillary
networks; the effective membrane thickness,

� = D
κ

, [14]

is the width of a tissue slab across which the given con-
centration difference at the tissue–blood interface, ∆ψ|r=a,
would ensue assuming steady flux conditions, see Eq. 2
and Fig. 3. Next, the normalised effective membrane thick-
ness �/a = D/aκ is the ratio of residence time to diffusion
time for water molecules. (Note that this ratio is the same
for both the intravascular and extravascular compartments,
see Eqs. 4, 29). Lastly, the permeation time is defined as:

τκ = �

κ
= D

κ2 . [15]

The ratio
√

t/τκ can be recast as (i) the ratio of flux per unit
magnetisation difference (= κ) to two-dimensional (2d) dif-
fusion rate (= √

D/t); (ii) the ratio of “permeation length”
(= κt) to diffusion length (∼ √

Dt); and (iii) the ratio of diffu-
sion length to effective membrane thickness. The capillary
permeability can be estimated from the measured capil-
lary permeability-surface area product per volume of tissue
if the mean capillary radius and capillary blood volume
fraction are both known, thus:

PS = κSiv

Viv + Vev
= 2κζ

a
= ζ

τiv
. [16]

One-Dimensional Case

The situation in which ψ(r, t) changes appreciably only
near the capillary wall is referred to in this work as the
one-dimensional (1d) case, because then the capillary wall
appears virtually flat to all the near-by diffusing spins (the
capillary radius thus becomes immaterial); the 1d case
is key in discussing two-dimensional (2d) exchange, as
explained in the next subsection.

FIG. 3. Illustrating the effective membrane thickness, �. The mag-
netisation profile ψ(x, t) (thick solid line) creates a steady flux across
the membrane. The dashed line shows the equivalent magnetisation
profile entering into the definition of �.
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FIG. 4. 1d extravascular magnetisation for the case a/A � 1 as
a function of both distance x from the capillary wall, normalised
to diffusion length (x/

√
Dt), and diffusion length normalised to the

effective membrane thickness (
√

Dt/�).

For sparse capillary networks, the 1d extravascular mag-
netisation is given by (Fig. 4):

ψ1d(x, t) = 1 − erfc
(

x − a√
4Dt

)

+ exp
(

− (x − a)2

4Dt
+ x ′2

)
erfc(x ′), [17]

where erfc(·) is the complementary error function and x ′ =
(x − a)/

√
4Dt + √

Dt/�. The magnetisation at the capillary
wall at both short and long times becomes:

ψ1d(a, t → 0) ≈ 1 − 2√
π

√
Dt
�

, ψ1d(a, t → ∞) ≈ 1√
π

�√
Dt

,

[18]

respectively. As seen in Fig. 4, the timescale of exchange
near the tissue–blood interface is set by the diffusion dis-
tance relative to the effective membrane thickness; for
typical capillary water permeabilities in myocardium and
brain (see Physiologic Parameter Values) the time point√

Dt/� = 5 corresponds to an observation time of 2 to
12 min, respectively. Moreover, at distances greater than
about three diffusion lengths, ψ1d(x, t) is hardly sensitive
to the flux near the capillary wall. Thus, for tissue–blood
exchange purposes, the sparsity condition for capillary
networks is more precisely formulated as: a,

√
Dt � A.

The effective 1d extravascular depolarised volume is
given by (Fig. 5):

Λ1d(t)
�

= 2√
π

√
t
τκ

+ exp
(

t
τκ

)
erfc

(√
t
τκ

)
− 1. [19]

It is easily checked that Λ1d(t) increases with κ and D, as
expected on physical grounds.

In the permeability-limited regime, fast diffusive motion
causes the flux of magnetic moment, hence also the
extravascular magnetisation, to remain almost stationary
near the tissue–blood interface; Λ1d(t) is thus expected

to be independent of D and to increase linearly with
time. At short times, the rate of tissue–blood exchange is
limited mainly by the capillary permeability, since only
the spins in the region adjacent to the capillary wall
have a non-negligible probability of traversing it. Based
on the preceding physical arguments, we define the 1d
permeability-limited regime by the condition

√
t/τκ � 1.

In this regime,

Λ1d(t) ≈ κt ⇒ Λ1d(t)
�

≈ t
τκ

, [20]

where the next leading term is of order (t/τκ)3/2.
In the diffusion-limited regime, extravascular diffusion

is a much slower process than capillary permeation; Λ1d(t)
is thus expected to correlate with the diffusion length and
to be largely independent of capillary permeability. Impor-
tantly, tissue–blood exchange at sufficiently long times is
also limited by diffusive transport. Thus, the 1d diffusion-
limited regime is defined by the condition

√
t/τκ � 1. In

this regime,

Λ1d(t) ≈ 2√
π

√
Dt − � ⇒ Λ1d(t)

�
≈ 2√

π

√
t
τκ

− 1, [21]

the next leading term being of order (t/τκ)−1/2.

Two-Dimensional Case

For sparse capillary networks, the 2d extravascular mag-
netisation is given by (Fig. 6):

ψ2d(r, t) = 2
π

∫ ∞

0

Y0(q′r ′)P(q′) − Q(q′)J0(q′r ′)
[P2 + Q2](q′)

× exp(−ς2q′2)
q′ dq′, [22]

where r ′ = r/a; ς is defined by Eq. 13; q′ = aq is the nor-
malised eigenfrequency; J0(·), Y0(·) are the Bessel functions

FIG. 5. Effective 1d depolarised volume normalised to effective
membrane thickness (Λ1d(t)/�) vs the normalised time (

√
t/tκ =√

Dt/�): analytical expression (Eq. 19) and Monte Carlo simulation
results.
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FIG. 6. 2d extravascular magnetisation vs normalised radius (r/a)
for different values of the normalised diffusion length

√
Dt/a corre-

sponding to the indicated observation times. Physiologic parameter
values are representative of human myocardium, see Physiologic
Parameter Values section; capillary water permeability, κ = 5.2 ×
10−3 µm ms−1. Numerical integration introduces an excess error of
about 0.2%.

of the first and second kind and order zero, respectively;
and

P(q′) = J0(q′) + (�/a) q′J1(q′), Q(q′) = Y0(q′) + (�/a)q′Y1(q′).

The effective 2d extravascular depolarised volume is
given by:

Λ2d(t) = 8a2

π

∫ ∞

0

1 − exp(−ς2q′2)
[P2 + Q2](q′)

dq′

q′3 . [23]

The quantities ς = Dt/a2 and �/a = D/aκ jointly character-
ize the various 2d exchange regimes, as discussed next (see
Fig. 2).

If the diffusion length is small relative to the capillary
radius (

√
Dt/a � 1), exchange is effectively confined to a

thin pericapillary region next to the tissue–blood interface
and thus appears one-dimensional, as discussed previ-
ously. The effective extravascular depolarised volume is
then related to its 1d counterpart by:

Λ2d(t) ≈ 2πaΛ1d(t). [24]

In the permeability-limited regime, the condition
√

t/τκ �
1 is equivalent to

√
Dt/a � �/a, hence substitution of Eq. 20

into Eq. 24 gives:

Λ2d(t) ≈ 2πaκt ⇒ Λ2d(t)
Aiv

≈ PS
ζ

t = t
τiv

[25]

with use of Eq. 4; Aiv is the capillary cross-sectional area.
Note that t/τiv � 1, by the conditions

√
Dt/a � 1 and√

t/τκ � 1. In the diffusion-limited regime, the condition√
t/τκ � 1 gives:

Λ2d(t) ≈ 4π1/2a
√

Dt ⇒ Λ2d(t)
Aiv

≈ 4π−1/2

√
Dt
a

. [26]

If the diffusion length is much greater than the capillary
radius (

√
Dt/a � 1) the exchange becomes essentially two-

dimensional and

Λ2d(t)
Aiv

≈ 2Dt/a2

ln(
√

4Dt/a) + �/a − γ
, [27]

where γ ≈ 0.5772 is Euler’s constant. If ln(
√

Dt/a) � �/a,
tissue–blood exchange is limited by diffusive transport; if
the reverse inequality holds, the exchange is limited by
the capillary permeability and Λ2d(t) is again given by
Eq. 25. Thus, in the permeability-limited regime, the for-
mula Λ2d(t) ≈ 2πaκt remains valid even at long diffusion
times.

Figure 7 shows excellent agreement between the analyt-
ical result, Eq. 23, and Monte Carlo simulations.

APPLICATIONS

Chemical Exchange Theory

If the diffusional motion of spins in the pericapillary
region is sufficiently fast relative to capillary perme-
ation, the extravascular magnetisation rapidly averages
out, effectively varying only with the time. Then, inte-
grating the Bloch-Torrey equation 1 over the pericapillary
cross-section yields:

dψev(t)
dt

= ψiv(t) − ψev(t)
τev

− Revψev(t), [28]

where ψiv(t), ψev(t) are space-averaged densities and the
mean residence time of water molecules in the pericapil-
lary region, τev, is given by:

τ−1
ev = 2πaκ

Aev
= PS

1 − ζ
. [29]

FIG. 7. Effective 2d depolarised volume normalised to the capillary
cross section (Λ2d(t)/Aiv) vs normalised squared diffusion length
(Dt/a2). Monte Carlo simulation results practically overlap with the
analytical result, Eq. 23. The asymptotic bounds (dashed lines) at
both short and long diffusion times are also shown. The curve
labelled ‘analytical’ was obtained by numerical integration of Eq. 23;
the long-time asymptote was obtained by piecewise analytical inte-
gration of Eq. 23, see Eqs. A25–A27; hence the slight discrepancy.
Physical model parameters are: a = 3.5 µm, D = 1.0 µm2 ms−1 and
κ = 5.0 × 10−2 µm ms−1.
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The first term on the right-hand side of Eq. 28 follows from:

1
Aev

∫
ev

D∇2ψev(r, t) d2r = D
Aev

[
2πr

∂ψev(r, t)
∂r

]A

a

= 2πaκ

Aev
[ψiv(a, t) − ψev(a, t)]

≈ ψiv(t) − ψev(t)
τev

, [30]

with use of the flux conditions, Eqs. 2, 3, and the fast
diffusion approximation. Equation 28 is the basic equa-
tion of intravascular–extravascular chemical exchange for
the longitudinal magnetisation. As expected, it expresses
the balance of extravascular magnetic moment, including
relaxation losses.

The condition |Riv − Rev|τiv � 1, see Eq. 5, implies
that the extravascular water undergoes slow transcapillary
exchange (23). The effective extravascular relaxation rate
is then approximately given by Rev + τ−1

ev , where Rev is the
relaxation rate in the absence of exchange (23). This fol-
lows at once from Eq. 28 for the particular case considered
in this work (i.e., ψiv � ψev). Note, for comparison, that the
increase in the longitudinal relaxation rate due to extrava-
sation of a paramagnetic tracer depends, in addition, on
the specifics of tracer compartmentalisation, concentration
and relaxivity value; see, e.g., Ref. 28 for an experimental
demonstration of the effect of transcapillary exchange on
tissue T1 in animal models using both intravascular and
extracellular contrast agents.

The theory presented herein also reproduces the above
result, as can be seen by rewriting the extravascular depo-
larised volume for the permeability-limited case, Eq. 25,
in terms of τev and substituting into the expression for the
average density, Eq. 11. Thus,

ψev(t)
ψev(0)

≈
(

1 − t
τev

)
exp(−Revt) ≈ exp

(
− t

τev
− Revt

)
.

[31]

The exponential approximation above is justified because
t/τev ∼ aκ/D in the diffusional steady-state, where aκ/D is
typically much smaller than unity.

In conclusion, the Bloch-Torrey model reproduces the
chemical exchange model of longitudinal magnetisation in
the limiting case of fast intracompartmental diffusion.

Estimation of the Effective Extravascular Depolarised
Volume by T1-based Methods

Donahue et al. (27,42) investigated the effect of tran-
scapillary water exchange on the quantification of tissue
blood volume using T1 and T1-weighted MR measure-
ments with intravascular tracers. By applying chemical
exchange theory in NMR measurements in a rat model and
in computer simulations of water exchange under various
conditions, these investigators showed that tissue blood
volume estimates are highly sensitive to exchange mod-
elling assumptions. For slow transcapillary exchange (i.e.,
magnetic relaxation dominates over capillary permeation
as per Eq. 5) and with a fully relaxed intravascular space
(i.e., the main technical assumption of the present study),

the apparent capillary blood volume fraction, ζapp, was
found to be (27):

ζapp = ζ

(
1 + TI

τ

)
, [32]

where TI is the pulse-sequence inversion time and

τ−1 = τ−1
iv + τ−1

ev [33]

is the net transcapillary water exchange rate (21). Equa-
tion 32 quantifies the effect of tissue–blood exchange on
tissue blood volume estimates. For sparse capillary net-
works, τ−1 = τ−1

iv to first-order in (a/A)2; hence, the relative
error between the true and apparent capillary blood volume
due to neglect of intracompartmental diffusion is given,
approximately, by TI/τiv, i.e., the normalised extravascu-
lar depolarised volume for the permeability-limited case,
see Eq. 25. Under the above-stated conditions, this is the
correction term provided by the model of tissue–blood
exchange with account of extravascular diffusion.

Signal Attenuation Due to Tissue-Blood Exchange

In this subsection, we estimate the contribution of tissue–
blood exchange to NMR signal attenuation (refer to Eq. 7) in
brain and myocardium; unless otherwise noted, all parame-
ter values are as given in the Physiologic Parameter Values
subsection; an echo time of TE = 10 ms for T1-weighted
imaging is used for reference.

Brain: at short measurement times, the transcapillary
exchange of magnetisation is strongly limited by the blood–
brain barrier permeability; see Fig. 2 with �/a ∼ 102

and
√

DTE/a ∼ 1. The effective depolarised volume thus
becomes Λ2d ≈ 2πaκTE, from which Λ2d/Aiv ≈ 1%.

Myocardium: Wacker et al. (10) estimated the transcap-
illary water exchange frequency (i.e., the permeability-
surface area product, PS) and the capillary blood volume
fraction, ζ, in patients with coronary artery disease. By
fitting steady-state measurements of the longitudinal relax-
ation rate in blood and myocardium at 1.5 T (intravascular
agent: Feruglose) to a model by Bauer et al. (8), these
authors obtained PS = 0.48 s−1 and ζ = 12.9%. Assum-
ing that it is the blood compartment that dominates the
rate of transcapillary water exchange, Eq. 16 gives κ =
5.2 × 10−3 µm ms−1. In another study, Judd et al. (28) used
a modified Krogh model of myocardial tissue consisting
of intravascular, interstitial and intracellular spaces (vol-
ume fractions: 6.25%, 18.75% and 75%, respectively). The
rate of transcapillary water exchange in the isolated, per-
fused rabbit heart was τ−1 = 2.7 s−1 from steady-state,
T1-weighted measurements at 4.7 T (intravascular agent:
polylysine-gadopentetate dimeglumine). Equation 16 then
gives PS ≈ ζτ−1 = 0.17 s−1 and κ = 3.8 × 10−3 µm ms−1 for
myocardial water. These permeability estimates result in
Λ2d/Aiv ≈ 3–4% in myocardium for an echo time of 10 ms.

Thus, the present model correctly predicts the well-
known fact that capillary water permeability remains the
main limiting factor in normal brain–blood exchange in
the presence of paramagnetic blood-pool tracers; this con-
clusion also holds for myocardial water exchange. It can
be concluded that, in the cases considered, the effect
of tissue–blood exchange on the NMR signal is clearly
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sub-dominant relative to the much stronger magnetic sus-
ceptibility effects.

DISCUSSION AND CONCLUSIONS

Model Accuracy

The validity of the capillary–tissue model described in
Physical Model section relies on considerations concerning
tissue morphometry and intercompartmental exchange. An
in vivo study of the cat brain cortex (31) revealed a highly
tortuous capillary network with significant interregional
variability. Nevertheless, the values of the mean diameter,
median radius of curvature, and median segment length
for cortical capillaries (5.1, 57, and 108 µm, respectively)
suggest that it is not unreasonable to model the individual
capillaries, or segments of them, as long straight cylinders,
each surrounded by a coaxial pericapillary region commen-
surate with the average capillary density. In fact, such a
model closely resembles the arrangement of capillaries in
striated muscle (30).

Further, it is crucial for the validity of the present model
of tissue–blood exchange that the depolarised volumes
associated with neighbouring capillaries do not overlap sig-
nificantly. This is supported by a low capillary volume frac-
tion in at least some tissues (ζ ∼2.5% and 10% in the brain
and myocardium, respectively); only at capillary junctions
do the depolarised volumes overlap somewhat, but the
overall effect is negligible because the length of a capillary
segment is, on average, much greater than the width of its
associated depolarised region. In addition, having negligi-
ble overlap between adjacent depolarised regions relies on
short observation times, such that

√
Dt � A; for example,

t � 100−1000 ms for myocardium and brain tissue, respec-
tively. Thus, for present purposes, if both the capillary
radius and extravascular diffusion length are much smaller
than the pericapillary radius, then the actual distribution
of intercapillary distances becomes largely irrelevant (note
that the pericapillary radius does not enter into any of the
equations in the Results section) and the same holds true of
the distribution of capillary orientations in sparse capillary
networks.

The above discussion suggests that our results should
remain valid even for complex three-dimensional capillary
networks. A definite advantage of the Krogh capillary–
tissue model is that it affords a tractable spatio-temporal
description of the extravascular magnetisation for highly
structured capillary beds (e.g., in myocardium). However,
for highly irregular 3d capillary networks, such a detailed
description is far less realistic; in this case, the space-
averaged density and the effective extravascular depo-
larised volume for a representative capillary–tissue unit
become the relevant quantities (these are mutually related
through Eq. 11).

Concluding Remark

In this work we have theoretically evaluated tissue–blood
exchange with account of extravascular diffusion in the
limiting case of fast intravascular relaxation. First, we
have calculated the time- and position-dependent longitu-
dinal magnetisation in the extravascular region of a typical

Krogh capillary–tissue unit. Next, the effective extravascu-
lar depolarised volume has been obtained. This quantity is
a direct measure of the NMR signal loss caused by tissue–
blood exchange and can be experimentally determined by
T1-based methods, at least in permeability-limited cases.
The present method overcomes a potential limitation of
chemical exchange models by accounting for intracompart-
mental diffusion.

The supporting mathematical framework (see the App-
endix for details) can be extended to assess intravascular-
to-extravascular flux of tracer, for example in arterial
spin labeling and dynamic contrast-enhanced MR imaging
methods. It can also be used to study diffusion of oxygen
in a Krogh capillary–tissue unit (30,43,44).

APPENDIX: MATHEMATICAL FRAMEWORK

The extravascular magnetisation and the effective extravas-
cular depolarised volume are calculated using a Green’s
function approach (41) for the case ψiv � ψev. Putting
ψ(r, t) = f (r) exp(−λt) in the Bloch-Torrey equation 1 yields
the Sturm-Liouville eigenfunction equation:

[wf ′]′ + wq2f = 0, [A1]

where w = 1 in the 1d case and w = r in the 2d case, with
the boundary conditions [2, 3]:

Df ′|r=a = κf |r=a, Df ′|r=A = 0. [A2]

The eigenvalues, λm, and spatial eigenfrequencies, qm, are
related by:

q2
m = λm − Rev

D
. [A3]

Green’s function in the extravascular region is written as:

G(r, r′, t) =
∞∑

m=−∞

fm(r)f *
m(r′)

‖fm‖2 exp(−λmt), [A4]

where the 2d eigenfunction norm accounts for the cylin-
drical symmetry:

‖fm‖2 =
∫

ev
f *
mfm d2r =

∫ 2π

0
dφ

∫ A

a
f *
mfmrdr, [A5]

where the asterisk denotes complex conjugation. Equa-
tion A4 satisfies the diffusion equation and the given
boundary conditions, as well as the initial condition
G(r, r′, 0) = δ(r − r′), whence:∫

ev
G(r, r′, 0) dnr = 1. [A6]

Termwise integration of G(r, r′, t) in the extravascular
region, which is permissible by the uniform convergence
(41,45), and substitution into Eq. 9 yields the extravascular
magnetisation:

ψ(r, t) = lcκ
D

∞∑
m=−∞

f *
m|r=afm(r)

‖fm‖2

exp
( − Dtq2

m

)
q2

m
, [A7]
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where lc = 2πa. A further integration with account of the
normalisation condition [A6] and substitution into Eq. 10
yields the effective extravascular depolarised volume:

Λ(t) =
(

lcκ
D

)2 ∞∑
m=0

|fm|2r=a

‖fm‖2

1 − exp
( − Dtq2

m

)
q4

m
. [A8]

In the above equation, the fm are real-valued eigenfunc-
tions, hence the non-negative range of index m.

In arriving at Eqs. A7, A8, the following identity has been
used: ∫

ev
fm(r) d2r = lc

q2
m

f ′
m|r=a = lcκ

Dq2
m

fm|r=a. [A9]

Equations A7, A8 must in general be handled numerically.
They simplify considerably, however, for the case of sparse
capillary networks (a/A � 1), as discussed in the next
subsections.

One-Dimensional Case

In the 1d case, the wavelike eigenfunctions of Eq. A1 are
given by:

fm(x) = exp(−iqmx) − exp(iqmx + i2δq) [A10]

for a ≤ x ≤ A and m = 0, 1, 2 . . ., where qm is defined by
Eq. A3 and δq is the so-called scattering phase. From the
boundary condition at the capillary wall, Eq. 2, it follows
that:

δq = −aqm + tan−1 �qm, [A11]

where � = D/κ, see Eq. 14. The zero-flux condition at
the pericapillary boundary yields the non-linear eigenfre-
quency relation:

Aqm + δq = (m + 1/2)π. [A12]

Green’s function can be written as:

G(x, x ′, t) =
∞∑

m=0

sin(qmx + δq) sin(qmx ′ + δq)
‖fm‖2 exp

( − Dtq2
m

)
,

[A13]

where the eigenfunction norm is:

‖fm‖2 = 1
2

[
A − a + �

1 + �2q2
m

]
. [A14]

Integrating Eq. A13 yields ψ1d(x, t), which becomes Eq. 17
for a/A � 1. Next, the extravascular depolarised vol-
ume follows from Eq. 10. Integrating G(x, x ′, t) with use
of Eqs. A11, A12 gives:

∫ A

a

∫ A

a
G(x, x ′, t) dx dx ′ =

∞∑
m=0

1
‖fm‖2

exp
( − Dtq2

m

)
q2

m

(
1 + �2q2

m

) .

[A15]

The normalisation condition [A6] gives Vev =∫ A
a

∫ A
a G(x, x ′, 0) dx dx ′, hence finally:

Λ1d(t) =
∞∑

m=0

1
‖fm‖2

1 − exp
( − Dtq2

m

)
q2

m

(
1 + �2q2

m

) . [A16]

For sparse capillary networks, letting A → ∞ in Eq. A16
with use of Eqs. A12, A14 results in:

Λ1d(t) = 2
π

∫ ∞

0

1 − exp(−Dtq2)
1 + �2q2

dq
q2 , [A17]

which can be analytically integrated to yield Eq. 19.

Two-Dimensional Case

The eigenfunctions of Eq. A1 can be written (assuming
cylindrical symmetry) as:

fm(r) = cos δqJ0(rqm) + sin δqY0(rqm), [A18]

for 0 < a ≤ r ≤ A and 0 ≤ φ < 2π. The scattering phase δq

results from the boundary condition at the capillary wall,
Eq. 2, thus:

tan δq = − J0(aqm) + �qmJ1(aqm)
Y0(aqm) + �qmY1(aqm)

. [A19]

The zero-flux condition at the outer tissue boundary gives:

cos δqJ1(Aqm) + sin δqY1(Aqm) = 0. [A20]

For sparse capillary networks, the large-argument asymp-
totic expressions for J1(·) and Y1(·) may be used, since A
is then the highest-order infinite in the calculation. This
results in:

Aqm = (m + 1/4)π + δq + O[A−1]. [A21]

Proceeding as in the 1d case, the extravascular magneti-
sation and the effective extravascular depolarised volume,
Eqs. 22, 23, are obtained for the case of sparse capillary
networks. These expressions cannot in general be analyti-
cally integrated for arbitrary values of �/a and the time. The
regimes of short and long diffusion times are both discussed
in the next two subsections.

Two-Dimensional Exchange at Short Diffusion Times

The main result is: Λ2d(t) ≈ 2πaΛ1d(t), Eq. 24. A compar-
ison between Eqs. 23 and A17 shows that the effective 2d
depolarised volume can be recast as Λ2d(t) = 2πa[Λ1d(t) +
ε(t)], where ε(t) can be neglected for sufficiently small t. The
details of the proof suggest that the largest spectral content
of Λ2d(t) lies in the eigenfrequency range: max{1/a, κ/D} <

q < 1/
√

Dt, with κ �= 0. Moreover, it can be proved quite
generally that Λ2d(t) ≈ lcκt at short times, where lc is the
perimeter of the capillary cross section. The proof uses
the definition of Λ2d(t), the diffusion equation and Green’s
theorem (41,45). From Eqs. 1, 9, 10:

−dΛ2d(t)
dt

=
∫

ev

∂Ψ(r, t)
∂t

d2r =
∫

ev
D∇2Ψ(r, t) d2r, [A22]

where Ψ(r, t) = ∫
ev G(r, r′, t) dr′ is the magnetisation of a

spin packet. Use of Green’s theorem and the boundary
conditions [2, 3] gives:

dΛ2d(t)
dt

=
∮

c
Dn∇Ψ(r, t) ds −

∮
ev

Dn∇Ψ(r, t) ds

=
∮

c
|j| (a, t) ds = κ

∮
c
Ψ(a, t) ds, [A23]
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where n is the unit outward normal. The above expression
shows that Λ(t) results from integration of the normalised
magnetic moment lost to time t, as expected. At small t,
Ψ(a, t) = 1 + O[tα] (see for example Eq. 18), thus:

dΛ2d(t)
dt

= lcκ + O[tα] ⇒ Λ2d(t) = lcκt + O[tα+1].
[A24]

Two-Dimensional Exchange at Long Diffusion Times

Λ2d(t) is estimated by piecewise integration of Eq. 23 with
use of the appropriate asymptotic expressions for the Bessel
functions and the [1 − exp(−ς2q2)]q−3 term. First, for 0 ≤
q < 1/

√
Dt:

Λa(t) = 4Dt cot−1

[
2
π

(
ln

√
4Dt
a

+ �

a
− γ

)]
. [A25]

If ln(
√

Dt/a) + �/a � 1, the estimate cot−1 z = z−1 + O[z−3]
affords the simpler expression:

Λa(t) ≈ 2πDt

ln(
√

4Dt/a) + �/a − γ
. [A26]

Next, for 1/
√

Dt ≤ q < 1/a:

Λb(t) ≈ πDt

[ln(
√

4Dt/a) + �/a − γ]2 + T0 + T , [A27]

where T collects terms of order Dt[ln(
√

4Dt/a)]−m (m ≥ 3)
and T0 decreases rapidly with �/a. Lastly, Λc(t) = 4a2[1 −
(�/a) cot−1(�/a)] for 1/a ≤ q < ∞. It is seen that the right-
hand term in Eq. A25 is dominant for all �/a. Thus, at long
diffusion times the spectrum of Λ2d(t) lies mainly in the
range of eigenfrequencies 0 < q � 1/

√
Dt.
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