
Testbed for Measuring Protocols and Real-Time Applications

 Jose Saldana, José Ruiz-Mas, Eduardo Viruete, Jenifer Murillo, Julián Fernández-
Navajas and José I. Aznar

Communication Technologies Group and the Aragon Institute of Engineering Research
Dpt. IEC Ada Byron Building, CPS Univ. Zaragoza

50018 Zaragoza
{jsaldana, jruiz, eviruete, jenifer.murillo, navajas, jiaznar}@unizar.es

Abstract

This paper presents a Xen virtualization-based
testbed for wired and wireless networks. Although
big test infrastructures have been developed by
research groups around the world, smaller testbeds
can also be interesting, especially for the first
stages of deployment of new systems and
protocols. It is a hybrid testbed, as it includes
simulation and emulation tools. But there exists a
previous offline simulation stage, in order to avoid
computer load, which could limit the maximum
number of hosts to be included into the scenario.
Two uses of the testbed are presented, one for
wireless networks which deploys some handover
measures with MIPv4, and the first tests of a
distributed Call Admission Control (CAC) for an
IP Telephony system. The uses show that
measurements obtained with our testbed are
similar to the ones published by other groups
using real machines.

1. Introduction

Although in its beginning the Internet was a re-
search infrastructure, nowadays it has become an
operational environment, and it is not mainly used
as an experimental platform. Many universities
and R&D departments that work on protocols and
distributed applications need to verify their
behavior in realistic conditions. Sometimes, tests
are very difficult to carry out because of the
number of machines that are required.
 There are various possibilities to solve this
problem. One of them is the use of simulation
tools (e.g. Opnet, ns-2), which allow the making
of controlled and repeatable measurements with
low costs. They have two drawbacks: the first one
is computational load, especially when the
network scenario consists of a large number of

machines. The second one is their lack of
accuracy, because they have specific implemen-
tations of protocols, not allowing the use of what-
ever applications and Operating Systems (OS).
 Another option is the use of real hardware,
including the protocol stack of the OS. This can
be a good solution, but also a large number of test-
beds and emulators [1] have been deployed. Some
of them are hybrid, combining the advantages of
simulation, emulation and real equipment tests.
 In the present work we explain the
deployment of a testbed that emulates a network
by means of virtualization, allowing us to im-
plement a set of virtual nodes in one physical ma-
chine. Nodes participating in the communication
will be virtual machines adequately connected.
 This paper also presents two different uses of
our testbed for both wired and wireless networks.
They will be useful to validate the testbed,
comparing our results with the ones obtained by
other groups using real hardware. These compa-
ratives will show the utility of the testbed, espe-
cially in the first steps of the development of new
systems and distributed applications. Our tool in-
cludes a first offline simulation and scenario gene-
ration stage, in order to avoid scalability problems
caused by the need of real-time simulations.
 In the next section we will talk about related
work. In section 3 the architecture and
components of the testbed are presented. The next
section explains two uses of the testbed. This
paper ends with the conclusions section.

2. Related Work

In recent years, many large scale network
experiment facilities have been started around the
globe [2], [3]. These environments are usually
shared by research groups in different countries.
Some of them integrate emulators to imitate the
behavior of system elements, e.g. the movements

of the machines, or the quick changes of the radio
channel. One of these big platforms is PlanetLab
[4], which allows deploying and evaluating new
protocols and services. Each node runs a virtual
machine monitor that isolates services and
applications from one another.
 In an emulation-based experiment, the system
we want to measure is represented by some
surrogate systems, and by other systems used as
real [1]. Some parts of the test have a bigger level
of abstraction than others. Some of them are
simulated and some of them are real. As network
emulation combines real elements with abstracted
ones, it must run in real time.
 We have notice of many hybrid test platforms.
They simulate a part of the system and emulate
other parts. EMWin [5] has an emulated MAC
layer, imitating the radio link in a wired testbed.
NCTU [6] is able to simulate protocols of wired
and wireless IP Networks. The traffic generation
nodes are emulated. The traffic is captured by the
simulator, and it calculates the influence of the
traffic on the wireless part.
 Some emulators like vBET [7] have used User
Mode Linux (UML), which is a virtualization
solution. The virtual nodes are connected via a
simulated network, which is below the driver of
the network card.
 The main advantage of virtualization is that
virtual machines use actual implementations of
protocols and OS. Thus, the used traffic is exactly
the same as in real applications. And it is very
easy to establish an isolated environment, so the
same traffic patterns can be repeated a lot of
times, in the same or different network conditions,
providing repeatability. Finally, synchronization
can be easily obtained, as all the virtual machines
are in the same physical one.
 The main disadvantages are that network be-
havior has to be emulated, because virtual bridges
have no bandwidth limits, and the need of mo-
nitoring the processor load of the main machine. If
the processor load is very high, delays can be
produced by that cause, and not by the network.
 Xen is a paravirtualization solution, which
requires the guest OS to be specifically compiled
to run in the virtual machine. Some works have
made a comparative between virtualization
platforms [8], and they have showed the good
behavior of Xen in terms of overhead, linearity
and isolation between virtual machines.

3. System Architecture

The testbed uses different kinds of emulation in
each level of the protocol stack. First, each node is
emulated via a virtual machine. One of our aims is
to provide a network scenario that can be run in a
commodity PC or in a small LAN.
 Two different tools are used to emulate link
level: the Linux tool Traffic Control (tc) and
Mackill. tc is used as a way to emulate the
different bandwidths of network links. It has some
parameters as limit/latency, rate and burst. Fig. 1
includes a scheme of its behavior.
 Mackill is used to emulate visibility of the
nodes. It is a part of APE (Ad hoc Protocol
Evaluation) testbed [9]. It consists of a kernel
module that adds a MAC filter to the protocol
stack, and drops packets coming from certain
addresses (Fig. 1). During test time, packets
proceeding from non-visible nodes are discarded.
Mackill reads the information of node’s visibility
from a previously generated file in order to emu-
late mobility. As it is not a part of the standard
Linux, Mackill requires a kernel recompilation.
Traffic shaping is applied when packets are sent,
while traffic dropping is applied to packets once
they have arrived to the virtual network card.
 To emulate the IP level behavior, we have
used the NetEm tool [10]. Internally, it is
implemented with two nested packet queues.
When packets are en-queued, they are time
stamped with a send time, and put into the holding
queue. Concurrently, a timer moves packets from
the first queue to the nested one. This allows to
introduce controlled delays, packet losses,
duplication and reordering with different
distributions and statistics.
 We have created two networks: one for
control and another for tests. Control network
allows the access to nodes, in order to obtain the
desired traffic measures, avoiding the interference
with test network.
 The system is used in three stages (Fig. 2).
First of all, an offline scenario generation phase
has to be deployed. A simulation tool has to be
used in order to obtain the time moments when
some events will occur. The final goal of this
phase is a set of files which include the parameters
that will be used during the emulations, e.g. the
positions of each node in discrete time moments,
the moments of call arrival, etc

Figure 1. Network model

Figure 2. Testbed usage stages scheme

 The testbed should be able to emulate a series
of parameters of real networks. The scenario
configuration sub-stage is in charge of setting the
correct parameters of each node and network
element: kind of networks, number of nodes,
bandwidth, packet size, and protocols.
 In the second stage, the nodes and the
different levels are emulated. The scenario is built
and traffic is generated, using different statistical
distributions of inter-departure time and packet
size. We have obtained log files with the sending
and receiving times of each packet. These files
will be used in the next stage.
 As we are trying to avoid calculations during
the development of the test, departure and arrival
time of each packet have to be analyzed after the
end of the test. By this way we will be able to
measure objective Quality of Service (QoS)
parameters as One-way delay (OWD), Round-trip
time (RTT), jitter, packet loss, etc., that we can
use to calculate MOS (Mean Opinion Score) or
other subjective parameters related to QoE.
 We have used a machine with the Operating
System CentOS 5. The version of the Linux core
is 2.6.18-8.1.15. It has a Core 2 Duo at 2.40 GHz
processor, 2MB of Cache level 2, and 4GB RAM.
Virtual machines also run CentOS 5. The version
of Xen is 3.03-25.0.4.
 It is necessary to monitor the machine’s
processor during the emulations to assure that it
has not a heavy processing charge. In that case,
delay times could be caused by processor delays

instead of network delays. We have used top and
mpstat, which is a part of the sysstat package.

4. Testbed usage examples

4.1. Wireless mobility. Handover latencies

In the first usage example we use a network
simulator to generate the random movements of
the hosts by a scenario, and traffic is sent between
virtual machines while movements are emulated.
MIPv4 mobility protocol has been used, and some
measurements of handover delays for multimedia
flows have been obtained.
 We have modified AnSim [11] for the
implementation of the simulation sub-stage. It is
an application that allows the user to generate the
random movements of the nodes. The user can
tune some parameters: attenuation level, mobility
model, scenario file, number of nodes, etc. It is
also possible to select some hotspots of the
Random Waypoint Model (RWM).
 We have added to AnSim new functionalities,
such as fixed nodes, and the possibility to specify
which node will act as a router for the others. We
can define different kinds of links to connect
nodes, each one with its speed and peculiar para-
meters, thus emulating mobility in a scenario with
a network infrastructure.
 With the obtained off-line simulation of the
nodes’ movements, Mackill filters at MAC level
the packets that come from a node which has no
visibility with the node that is executing. In our
testbed, the input of the application is the
movement file generated by the simulator of
nodes’ movements. Recently we have improved
the loss model, in order to include not only free
space path loss but ground reflected wave as well.
 We have built a scenario (Fig. 3) able to
emulate the pass of a node from a network to
another while a multimedia session is on. This
scenario should allow a wide set of measurements,
so we will be able to compare different situations.
 MIPv4 introduces mobility agents to provide
service to nodes that are not in its original
network. There is a Home Agent (HA) that pays
attention to the traffic of the home nodes that are
out of the network. The Foreign Agent (FA)
handles the traffic of nodes from other networks

Figure 3. Mobility scenario

that are currently visiting its network. The Mobile
Node (MN) is outside its original network; and
finally, the Correspondent Node (CN) is
communicating with the MN.
 In this stage, each simulated node has been
translated to a virtual machine and the calculated
movements of the nodes are emulated with the
correspondent tool for dropping packets that go
between two nodes which have no visibility.
 We have used Dynamics-Hut implementation
of MIPv4. It is able to work in MN and FA
decapsulation modes, and has the possibility of
reverse or triangle tunneling.
 Let us see a graph obtained during a handover
with a packet cadence of 12 ms. The information
bandwidth is 28 kbps. We have selected this
packet cadence because we need accuracy to
measure times between 80 and 100 ms. In Fig. 4
we can observe the OWD during a handover. In
this case, 7 packets have been lost. Thus, we can
estimate handover time in 84 ms. OWD increases
after the handover due to tunneling.
 We have also done some handover time mea-
surements, based on packet loss, to compare FA
and MN decapsulation. Sending UDP packets of
42 bytes every 10 ms, to emulate a VoIP session,
we have obtained in the first case 9.2 lost packets
average, and 9.4 packets with MN decapsulation.
We have measured 10 handovers for each case.
We conclude that there are not great differences
between the two operation modes. These times fit
with [12] in a similar case. In that study the
measured handover time of MIPv4 was 104.5 ms.
 An interesting comparison is also the
difference between handovers that occur when the
MN goes from its Home Network to the Foreign
Network (direct handover), and the inverse ones.
Logically, we can expect handovers to be faster in
the second case, as less signalling is required

when the MN returns to its home network. We
have sent the same traffic that in the previous
case. In the inverse case we have lost 1.9 packets.
As can be seen, inverse handovers are faster.

4.2. Distributed IP Telephony system

IP Telephony services represent an interesting
solution for enterprises since they not only imply
savings, but also availability and security features.
VoIP is a real-time service in which delay and
packet loss directly impair calls’ quality, and users
demand a QoS similar to the one guaranteed for
PSTN. Currently we are working on a Call
Admission Control (CAC) for a SIP-based IP
Telephony system, which implementation and
first tests are being developed in the virtualization
testbed. In this case, the testbed will not emulate
wireless networks, so tools for simulating mobility
and visibility are not necessary.
 The IP Telephony system corresponds to an
enterprise with several central offices placed in
different countries. We assume that it does not
have control over the Internet, nor over network
parameters and the infrastructure, so an end-to-
end approach has to be used. New incoming call
acceptance paradigm consists of, while accepting
the call, the remaining ongoing calls are not
affected in terms of QoS. The PBX is configured
within the centralized data centre. Furthermore,
Internet is used for telephone traffic delivery
among offices, instead of dedicated lines. Fig. 5
shows the different elements in the scenario.
 There is a local agent in each office, which is
in charge of the CAC. When it receives an
INVITE from the PBX, it accepts or rejects it,
depending on the number of established calls in
that moment. There is a maximum number of

One Way Delay

0

10

20

30

40

50

60

70

80

90

176 181 186 191 196 201 206 211 216 221

packet number

O
W

D
 (

m
s)

Figure 4. One Way Delay during a handover

Figure 5. IP Telephony system

simultaneous calls, which is the main parameter of
the CAC. For calls with destination in PSTN, a
redirection can be used if the local gateway is
busy. Although SIP messages go to the PBX, RTP
traffic is directly sent from one phone to another.
 Matlab has been used to obtain the moments
of phone calls and their durations during a busy
hour. Different traffic distributions are being
tested in order to emulate the telephone traffic
between different branch offices of an enterprise.
 The software tools chosen for the developed
scenario should be free, and require low
computational load, due to the fact that they run
within a virtualized environment. For the system’s
PBX we have selected Asterisk 1.6. OpenSIPS
1.4. has also been used, as it is a SIP proxy which
includes redirect option and can use external
databases in order to implement CAC decisions.
Finally, PJSUA 1.0. has been used for the soft
phones and gateways. Expect Linux tool is used in
order to manage it, establishing and hanging the
calls in the adequate moment, depending on the
times generated with Matlab. They can be exe-
cuted by the testbed with different network beha-
viors, e.g. with and without local agent, different
traffic distributions, different number of users, etc.
 Office routers have a connection of 1 Mbps.
The tc buffer discards packets that spend more
than 110 ms in it. NetEm adds 40 ms in central
offices and 20 ms in data centre. Each RTP call
has a bandwidth of 24 kbps at IP level.
 Background traffic has the next size
distribution [13]: 50% of packets are of 40 bytes,
10% of 576 bytes and 40% of 1500 bytes, all of
them at IP level. This traffic has been used in

order to saturate the access link of each central
office. We have used UDP instead of TCP, in
order to avoid the effect of TCP flow control.
Thus, the background traffic is always the same,
making the system work in the worst case.
 Log files are analyzed after the execution in
order to obtain graphs of QoS parameters. Fig. 6
(a) and 6 (b) show the behavior of the system in
terms of OWD and packet loss. These curves are
the upper bound for the values in case the maxi-
mum number of calls of the CAC is set to each
value. They are represented as a function of back-
ground traffic, so each curve has a different mo-
ment in which total traffic gets above the band-
width limit. The existence of a queue that discards
packets spending more than 110 ms implies an
upper bound for OWD.
 Fig. 6 (c) shows the MOS [14]. It can be seen
that in the case of 20 calls, the system only
achieves a value of 3.5 if background traffic is
smaller than 700 kbps. With 15 calls this limit is
900 kbps, and in other cases this happens when
the offered traffic is above the bandwidth limit.

5. Conclusions

This paper describes a testbed that uses Xen in
order to include a set of virtual machines in a
physical one. It is used in three stages: it begins
with the scenario generation. After that, simulated
nodes are translated to virtual ones, and traffic is
sent and captured in the emulation phase. Thus, it
is a hybrid testbed as it uses simulation and
emulation. Finally, captures are analyzed offline
in order to obtain measures of QoS parameters.

Two uses of the testbed have been presented:
the first one simulates a mobility scenario, and ob-
tains handover latencies with MIPv4. The second
use shows how the testbed can be useful for the
deployment of a distributed system, such as a
CAC for IP Telephony. It has also been shown
that the testbed has flexibility to deploy different
tests, with both wired and wireless networks.

Acknowledgments

This work has been partially financed by Cheque
Tecnológico 2009/2010 Project, of Aragon I+D
Agency, of the Government of Aragon, and Cáte-
dra Telefónica Project, of University of Zaragoza.

One Way Delay

0

20

40

60

80

100

120

140

160

180

200

400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150

background traffic (kbps)
(a)

O
W

D
 (

m
s)

1 call

5 calls

10 calls

15 calls

20 calls

Packet Loss

0

1

2

3

4

5

6

7

400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150

background traffic (kbps)
(b)

P
a

c
k

e
t L

o
s

s
 (%

)

1 call

5 calls

10 calls

15 calls

20 calls

Mean Opinion Score

2,5

2,7

2,9

3,1

3,3

3,5

3,7

3,9

4,1

4,3

400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150

background traffic (kbps)
(c)

M
O

S

1 call

5 calls

10 calls

15 calls

20 calls

Figure 6. One Way Delay, Packet Loss and MOS
of RTP traffic

References

[1] E. Göktürk, “A stance on emulation and
testbeds”, in Proc. 21st European Conference
on Modelling and Simulation ECMS 2007.

[2] J. S. Turner, “A proposed architecture for the
GENI backbone platform”, In Proc.
Architecture for Networking and
Communications Systems, 2006.

[3] A. Gavras, A. Karila, S. Fdida, M. May, M.
Potts, “Future internet research and
experimentation: the FIRE initiative”, ACM
SIGCOMM Computer Communication
Review, v.37 n.3, 2007.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S.
Karlin, S. Muir, L. Peterson, T. Roscoe, T.
Spalink, M. Wawrzoniak, “Operating System
Support for Planetary-Scale Network
Services”, in Proc. of the 1st USENIX/ACM
Symposium on Networked Systems Design

and Implementation (NSDI '04), San
Francisco, CA, 2004.

[5] P. Zheng, L. M. Ni, “EMWin: emulating a
mobile wireless network using a wired
network”, In Proceedings of the 5th ACM
international Workshop on Wireless Mobile
Multimedia, Atlanta, 2002.

[6] S. Y. Wang, “Using the innovative NCTUns
3.0 network simulator and emulator to
facilitate network researches”, Testbeds and
Research Infrastructures for the Development
of Networks and Communities,
TRIDENTCOM 2006. 2nd International
Conference on, pp.4-184, Barcelona, 2006.

[7] X. Jiang, D. Xu, “vbet: a vm-based emulation
testbed”, in Proc. of the ACM SIGCOMM
workshop on Models, methods and tools for
reproducible network research
MoMeTools’03, ACM Press, pp. 95–104,
New York, 2003.

[8] B. Quetier, V. Neri, F. Cappello, “Selecting A
Virtualization System For Grid/P2P Large
Scale Emulation”, in Proc. of the Workshop
on Experimental Grid testbeds for the
assessment of large-scale applications and
tools EXPGRID'06, Paris, 2006.

[9] H. Lundgren, D. Lundberg, J. Nielsen, E.
Nordströ, C. Tschudin, “A Large-scale
Testbed for Reproducible Ad hoc Protocol
Evaluations”, in Proc. IEEE Wireless
Communications and Networking Conference
WCNC'02, 2002.

[10] S. Hemminger, “Network Emulation with
NetEm”. In Proceedings of Linux Conference
AU, Canberra, 2005.

[11] H. Hellbrück, S. Fischer, “Towards analysis
and simulation of ad-hoc networks”, in
ICWN02: Proceedings of the International
Conference on Wireless Networks, pages 69–
75, Las Vegas, 2002.

[12] A. Cabellos-Aparicio, H. Julian-Bertomeu, J.
Núñez-Martínez, L. Jakab, R. Serral-Gracià, J.
Domingo-Pascual, “Measurement-Based
Comparison of IPv4/IPv6 Mobility Protocols
on a WLAN Scenario”, in Proceedings of
Networks UK HET-NET Ilkley, UK, 2005.

[13] Cooperative Association for Internet Data
Analysis “NASA Ames Internet Exchange
Packet Length Distributions”.

[14] “The E-Model”, http://www.itu.int/ITU-
T/studygroups/com12/emodelv1/calcul.php

