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Abstract—In this paper, an analysis of HRV during decreases
in the amplitude fluctuations of PPG (DAP) events for OSAS
screening is presented. 268 selected signal segments around the
DAP event were extracted and classified in 5 groups depending
on SaO2 and respiratory behavior. Four windows around each
DAP are defined and temporal evolution of time-frequency HRV
parameters were analyzed for OSAS screening. Results show a
significant increase in sympathetic activity during DAP events
which is higher in cases associated with apnea.

DAP events were classified as apneic or non apneic using a
linear discriminant analysis from the HRV indexes. The ratio of
DAP events per hourrDAP and the ratio of apneic DAP events per
hour raDAP were computed. Results show an accuracy of 79% for
raDAP (12% increase with respect torDAP) a sensitivity of87.5% and
a specificity of 71.4% when classifying 1-hour polysomnographic
excerpts. As for clinical subject classification, an accuracy of 80%
(improvement of 6.7%), a sensitivity of 87.5% and a specificity of
71.4% are reached. These results suggest that the combination of
DAP and HRV could be an improved alternative for sleep apnea
screening from PPG with the added benefit of its low cost and
simplicity.

Index Terms—Sleep apnea, children, heart rate variability,
pulse photopletysmography, time-frequency, decreases in the
amplitude fluctuations of PPG.

I. I NTRODUCTION

OBSTRUCTIVE Sleep Apnea Syndrome (OSAS) is one
of the most common sleep pathologies with high preva-

lence among the general population, whit levels reaching
values as high as 4% for men, 2% for women and 3% for
children [1]. Generally, sleep apnea goes undiagnosed, since
painful symptoms do not appear and patients do not seek
medical aid. The most common sleep apnea indicators are
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General de Araǵon (DGA), Spain, through Grupos Consolidados GTC
ref:T30.

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

daytime sleepiness, irritability, tiredness, low concentration
and impaired learning [2]. Those factors generally have more
serious consequences such as social problems and job and
traffic accidents. In addition, OSAS produces hyperactivity and
reduced capability to perform mental tasks during childhood
[3]. Severe OSAS generates diurnal hypertension and many
other potentially fatal cardiovascular effects [4], [5].

OSAS consists in an interruption of the airflow to the lungs
produced by an upper airways occlusion. This is accompanied
by a decrease of blood oxygen over time and mechanical
respiratory efforts that are intensified in order to reopen upper
airways. If these efforts are not sufficient and the hypercapnia
level is dangerous, an arousal is generated to reactivate all the
peripheral systems and respiration is restored. This episode
may recur hundreds of times in a single night, with serious
health implications [6].

Polysomnography (PSG) is the gold standard procedure for
sleep apnea diagnosis. PSG consists in an overnight recording
of different electrophysiological signals. The most common
signals recorded are electroencephalogram, electromyogram,
electrooculogram, electrocardiogram, airflow and oxygen sat-
uration. The acquisition and analysis of those signals requires
human experience and specialized equipment. The latter re-
quirements and the reduced number of sleep centers makes
sleep diagnosis a very expensive procedure. In addition, sleep
diagnosis produces a psychological impact in case of child
patients [7]–[9].

In the last decade, application of different techniques for
home sleep apnea monitoring has been extensively developed
[10]. These techniques range from the most sophisticated
technology, such as video recording, to simple measures such
as Photopletysmography signal (PPG). PPG waveform and its
relation with physiological systems have been widely studied
for clinical physiological monitoring, vascular evaluation and
autonomic behavior. PPG is an easily acquired measurement
and provides a measure of the tissue blood volume, which is tie
related to arterial vasoconstriction or vasodilatation generated
by the autonomic nervous system (ANS) and modulated by the
heart cycle. Indeed, PPG envelope amplitude decreases as a
consequence of vessel constriction generated by the activation
of the sympathetic nervous system. Amplitude reduction in
PPG occurs when an apnea event takes place due to sympa-
thovagal balance changes [11], [12].

On the other hand, another electro-physiological signal very
broadly studied for apnea diagnosis is heart rate variability
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(HRV). HRV represents fluctuations in the heart rate related
to ANS control. HRV exhibits frequency components from
0 to 0.5 Hz, which could be associated to the autonomic
nervous system branches. The frequency components between
0.15 and 0.5 Hz represent the vagal tone, frequencies in
this band are known as high frequency components (HF).
Frequencies from 0.04 to 0.15 Hz manifest the activation of
both parasympathetic and sympathetic nervous system and
these are labeled low frequency components (LF). Finally,
frequencies between 0.0033 and 0.04 give information of the
slow processes such as thermoregulation. Since the relative
participation of parasympathetic and sympathetic nervous in
the low frequency component is uncertain, the ratio between
HF and LF is defined as the sympatho-vagal balance [13].

Detection of sleep apnea from PPG [14] and HRV [15]–
[18] have been explored independently in the literature. Decre-
ments in the amplitude fluctuations of PPG (DAP) events
are markers of sympathetic discharge, because sympathetic
activity increases produce vasoconstriction which is reflected
in the PPG signal by decreases in the signal amplitude fluc-
tuation [19], [20]. When apnea occurs, sympathetic activity
increases [11], [12], therefore DAP events could indirectly
quantify apneas during sleep. However, other physiological
events such as movements and deep inspiratory gasp produce
sympathetic activation and consequently decrements in PPG
envelope amplitude [21], which are unrelated to apnea. As
respiration modulates HR, a HRV analysis could be useful
in distinguish whether DAP events are related to apnea or to
other different events. So, the apnea identification by applying
detection of decrements in the amplitude fluctuations of PPG
(DAP) as reference point and further spectral parameters
analysis of the HRV around this point could offer an integrative
procedure which represents an alternative solution to define
apnea episodes and obtain more specific apnea screening.

The aim of this study is to analyze the sympatho-vagal
balance during DAPs related and not related to airflow reduc-
tions, oxygen desaturations and no apnea episodes in normal
and pathologic children. The dynamics of the sympatho-vagal
balance is obtained by the analysis of spectral parameters
of the HRV applying a Time-Frequency representation called
Smooth Pseudo Wigner-Ville Distribution. Furthermore, com-
parison between apnea screening using only PPG and the
combination of PPG and HRV is carried out. Section II
introduces materials and methods. Section III presents the
results which are discussed in section IV. Finally section V
shows the conclusions.

II. M ATERIALS AND METHODS

A. Data

One complete night polysomnography recordings from 21
children were used in this study. Age of the children ranges
around4.47±2.04 years. Children were referred to the Miguel
Servet Children’s Hospital in Zaragoza for suspected sleep-
disordered breathing. EEG with electrode positions C3, C4,
O1 and O2, chin electromyogram, ECG with leads I and
II, eye movements, airflow and chest and abdominal respi-
ratory efforts were recorded by a digital polygraph (BITMED

EGP800), according to the standard procedure defined by
the American Thoracic Society [22]. PPG and arterial oxy-
gen saturation (SaO2) were measured continuously using a
pulse oximeter (COSMO ETCO2/SpO2 Monitor Novametrix,
Medical Systems). Signals were stored with a sample rate of
100 Hz, only ECG signals were sampled at 500 Hz. OSAS
evaluation from PSG data were scored by clinical experts using
the standard procedures and criteria [1]. Ten children were
diagnosed with OSAS and eleven were diagnosed as normal.

B. Decreases in the amplitude fluctuation of PPG (DAP)
detection

During sleep, apnea or arousal events increase sympathetic
tone generating arterial vasoconstriction. Transient sympa-
thetic activations are reflected as DAP [19], [23]. In order
to identify DAP events, we applied a detection algorithm
based on detecting the envelope reduction of the PPG [14]. A
summary of the algorithm steps is presented next. PPG signal
(xp(n)) is detrended (xp

DC
(n)) by removing the mean value

obtained with a moving average filter. Artifacts were detected
in xp

DC
(n) by an algorithm based on Hjorth parameters and

the artifacted signal segments were rejected. The envelope
x
E
(n) of xp

DC
(n) is obtained at the artifact free signal

segments by:

x
E
(n) =

√√
√
√ 1

Np

n∑

k=n−(Np−1)

x2p
DC
(k) (1)

WhereNp is the number of samples in two cardiac cycles.
This was selected according to the results in Gil et. al. [14].
A DAP event is identified at timen when x

E
(n) is lower

than a pre-defined adaptive threshold and this situation has a
minimum duration. This adaptive threshold is updated when
neither DAP event nor artifacts are present and is calculated as
a percentage of the mean of the lastLp non artifacted samples
of the envelopex

E
(n).

C. DAP clustering criteria related to apnea signs

Medical diagnosis consisted in classifying the available
records in the database in two groups: normal or pathologic.
DAP events for each recording were detected with the proce-
dure described in section II-B and [14] at the PPG signal.
Segments from ECG, PPG, SaO2, air flow and abdominal
effort centered at the DAP event onset and lasting 5 minutes
were extracted, and from here denoted as DAP events. From
these events, those who had clear signatures were taken to
obtain five different groups with uniform patterns based on
the gold standard criterion for defining sleep apneas [1]. DAP
event is classified into: Group 1 (G1) when SaO2 decreases by
at least 3% and there is not a clear reduction in airflow signal.
Group 2 (G2) when airflow decreases by at least 50% with
respect to the baseline for a minimum duration of 5 seconds.
Group 3 (G3) when airflow reduces by more than 50% from
base line and is accompanied by a reduction in SaO2 of at
least 3%. Group 4 (G4) when DAP event correlated neither to
airflow reduction nor SaO2 decrement. Finally, Group 5 (G5)
when DAP events are related neither to apneas nor to SaO2
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Fig. 1. DAP events examples. The DAP event onset and end (as given by the detector) are marked with dashed lines.
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TABLE I
NUMBER OF DAP EVENTS IN EACH GROUP

Clinical DAP group
Diagnosis G1 G2 G3 G4 G5 Total
Normal 4 32 5 76 31 148
OSAS 44 21 33 11 11 120
Total 48 53 38 87 42 268

decrements but a change in respiration occurs. Figure 1 shows
typical examples of airflow, abdominal efforts, SaO2, PPG and
ECG for the different groups. G1, G2 and G3 can be merged in
a single group named Ga (apneic group) as well as G4 and G5
can also be regrouped in a single set, Gn (non apneic group).
A total of 268 DAP events were extracted. Table I shows a
summary of the DAP events in each group.

Notice that G2 group has a comparable number of events
belonging to subjects clinically classified as normal or OSAS,
while more could have been expected for OSAS. The reason
could be that oxygen desaturation is a leading parameter for
clinical diagnosis, so these G2 events, which do not have a
strong impact on SaO2, do not necessarily lead to OSAS label
explaining this apparent inconsistency.

D. HRV analysis

Inverse interval functiondIIF(tj) [24] denoting the heart rate
time series were extracted from the ECG segments by an
automatic QRS detector [25] providing thetj beat location for
everyjth beat.dIIF(tj) series were re-sampled at 2 Hz by cubic
spline interpolation. Resulting time series, were detrended by
subtracting the mean value. Subsequently, analytic signals
from each segment were obtained by applying the Hilbert
transform to the detrended series. After that, Time-Frequency
representation was used to decompose the signals in their
different frequencies at each time. Then, the time evolution of
the heart rate variability indexes was evaluated: total power,
from 0.0033 to 0.5 Hz (PT); very low frequency power,
from 0.0033 to 0.04 Hz (PVLF); low frequency power, from
0.04 to 0.15 Hz (PLF); high frequency power, from 0.15 to
0.5 Hz (PHF); and low to high frequency ratio (RLF/HF). The
representations and the spectral indexes were obtained using
the absolute values of the time-frequency distributions.

Time-Frequency analysis presents interesting mathematic
features to analyze short time series with high time-frequency
resolution. In our study, a good time resolution is required
because apneas in children present rapid changes. Therefore,
Cohen’s class time-frequency distributions were considered.
This class obeys the property of time and frequency shift
invariant [26]. Cohen’s class is defined by the next equation:

Cx(t, f) =

∫ ∫
φ(t− t′, τ)x(t′ −

τ

2
)x(t′ +

τ

2
)e−2πfτdt′dτ

(2)
Where φ(t − t′, τ) is a function labeled kernel andx(t)

is the analytic signal to be analyzed. The kernel properties
define the distribution properties. A specific kernel univocally
defines a distribution. The kernel is a bi-dimensions filter, the
purpose of which is to eliminate noisy energy components
generated by the quadratic nature of the distribution. Those

spurious components are known as cross-terms, and disturb
the energy signal interpretation in the time-frequency plane.
In this study, the kernel used for minimizing the cross-term
errors effect was the Smooth Pseudo Wigner-Ville Distribution
(SPWVD). This distribution was introduced by Martin W. and
Flandrin P. in 1985 [27] and is characterized by independent
smoothing functions in time and in frequency, originated by
ϕ(t) andη( τ2 )η

∗(− τ2 ) windows respectively.

φ(t, τ) = ϕ(t)η(
τ

2
)η∗(−

τ

2
) (3)

The SPWVD parameters were selected in order to allow us
to evaluate the spectral components of the heart rate variability
with high time and frequency resolution [28], and on the
basis of recommendations and experimental results reported
in previous studies [29], [30]. For smoothing in time,ϕ(t), a
Hamming window of 10.5 seconds was selected, whereas for
smoothing in frequency,η( τ2 ), a Hamming window of 64.5
seconds was used.

E. Statistical Analysis and Classification

1) Statistical Analysis:In order to quantify the evolution
of autonomic variations when a DAP event is associated or
not associated to airflow decrements, SaO2 reductions or to
nothing, four time windows were defined in specific time
intervals related to DAP events onset. Figure 2 shows the mean
of thedIIF sequences when DAP is related or not related to an
apneic episode, as well as the windows defined in relation
to DAP event. Time 0 s is assigned to DAP onset. The
time windows are defined as follows: a) Reference window
(wr) is located 15 seconds previous to the DAP event onset
with a duration of 5 s. b) DAP episode window (wd) is
found two seconds before the DAP onset and lasting 5 s.
c) Post DAP event window (wp) located 15 seconds after
DAP onset and lasting 5 s. d) Global window (wg) starting
at 20 seconds previous to the DAP onset, lasting 40 s and
containing the others windows. Mean absolute values in the
time windows were computed fordIIF sequences,PVLF, PLF,
PHF andRLF/HF as well as for the normalized versions with
respect to the total powerPVLFn , PLFn and PHFn . Kruskal-
Wallis non parametric statistic approach was performed in two
cases: one, to compare the time variations among windows of
HRV parameters, and the other, to compare differences among
groups for each parameter and window. Post-hoc analysis was
applied to determine which pairs had statistic differences (p
< 0.05).

2) Features Sets:From the grouped groups were extracted
a series of features in order to select a set of them that
could provide separation between normal (apneic unrelated)
and apneic (apneic related) DAP events. The set of features is
formed by the mean and the variance within the four different
windows (wr, wd, wp andwg) referred to the DAP detection of
dIIF , PLFn , PHFn , RLF/HF indexes. In addition, for each index the
difference between reference,wr, and DAP episode window,
wd, as well as betweenwr and post DAP event window,wp,
was computed. In order to reduce the biovariability indIIF

temporal indexes, signal were first normalized by subtracting
the mean value and dividing by the variance during the



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, MONTH 2008 5

wr wd wp

wr wd wp

Ga

Gn

d
IIF

(H
z)

d
IIF

(H
z)

Fig. 2. dIIF mean± S.D. for apneic (Ga≡ G1+G2+G3) and non-apneic
(Gn≡ G4+G5) DAP events. Analysis windows (r reference, d DAP episode,
p post DAP event). Dashed line at reference time indicate DAP onset.

complete (5 minutes) DAP event. Spectral indexes normalized
with respect to the total power were used. Features are denoted
as either X

w

n , σXwn or ΔX
w1−w2
n where the overline and

σ denote the mean and variance respectively,X the main
index, withX ∈ {dIIF , PLF, PHF, RLF/HF}, the subscriptn the
normalized version and the superscriptw the analysis window
(wr for reference,wd for DAP episode,wp for post DAP event
and g for global),Δ indicate a differential index and in this
casew1 andw2 denote the two windows involved. A total of
34 features were extracted.

3) Classifier: A linear discriminant analysis was used to
separate between DAP events related and not related to apnea
episodes (Ga and Gn). Let yi = [y1i, y2i, ..., ydi] be a row
vector withd values where each column represents a feature
value from ith DAP. And suppose we wish to assignyi to
classk of the c possible classes, then the discriminant value
fk for each class is evaluated from the following equation:

fk = μkΣ
−1yTi −

1

2
μkΣ

−1μTk + log(πk) (4)

where T represents the transpose andμk is the row mean
vector obtained from the wholeNk training vectors belonging
to classk. In order to evaluateμk let N , be the total number
of yi in the training set, thenμk is obtained by:

μk =
1

Nk

Nk∑

i=1

yik (5)

For an LD classifierΣ represents the pooled covariance and
its is evaluated as:

Σ =
1

N − c

c∑

k=1

Nk∑

i=1

(yik − μk)
T (xik − μk) (6)

πk represent the prior probability thatyi belongs to a classk.
A practical way to evaluateπk is :

πk =
Nk

N
(7)

Finally yi is assigned to the class,k with higherfk.

TABLE II
PSGFRAGMENTS CLASSIFICATION

Clinical PSG fragmentsclassification
diagnosis #subjects #fragments #normal #doubt #pathologic
Normal 10 46 42 4 0

Pathologic 11 59 28 20 11
Total 21 105 70 24 11

4) Selection and Transformation of the Features:Feature
selection can be addressed in different ways, it being pos-
sible to evaluate it by statistical analysis of features, wrap
methods, Principal Component Analysis or Factor Analysis.
Wrap methods consist in selecting the features based on the
classifier performance by gradually adding one more feature
and selecting the combination which provides the highest
classification accuracy. The wrap method was used in this
work.

F. Clinical Study

To evaluate the improvement of adding HRV information for
OSAS diagnosis based on PPG, a clinical study was carried
out. The available one night PSG recordings described in
section II-A were split into 1-hour length fragments. These
one hour PSG fragments were labeled as control, doubt or
pathologic based on SaO2 desaturation in order to later be
able to evaluate the classifier accuracy for these fragments.
To establish this separation, a baseline levelβ corresponding
to the SaO2 signal mode of the entire night recording, was
considered [14]. In all recordingsβ ≥ 97%. Total time
intervals with SaO2 signal belowβ−3%, tβ−3, was calculated
for each fragment. PSG fragments were classified according
to the following criteria:

tβ−3 < 0.9 minutes control
0.9 minutes< tβ−3 < 3 minutes doubt

tβ−3 > 3 minutes pathologic
(8)

This implies a minimum of5% of the time with evident
oxygen desaturation to be considered as pathologic, which
corresponds to a severe OSAS criteria in children [31] of 18
apneas/hour having a mean duration of 10 seconds. For control
group the threshold corresponds to 5 apneas/hour. Table II
shows the classification for these PSG fragments.

Now the objective is to classify these one hour fragments
based on the DAP per hour ratio. This classification will be
done both just with the DAP coming from the DAP detector
in section II-B,rDAP, and with those classified as apneic DAP
events with the methodology presented in II-E,raDAP. For
training the classifier, DAP events in II-C selected from groups
G1 to G5, were used. ROC curves were calculated for both
indexes and the optimum thresholds in terms of maximizing
sensitivity (Se) and specificity (Sp), were established. In addi-
tion, Wilcoxon non parametric statistical analysis was carried
out for both indexes in order to evaluate their discriminant
power between groups.

Since we are interested in having a label attached to a
patient, we need a rule to determine when a patient with
a given number of pathological fragments is considered as
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TABLE III
KRUSKAL-WALLIS ANALYSIS RESULTS OF STATISTICAL COMPARISON AMONG GROUPS FOR EACH FEATURE. FIRST ROW IS THEp VALUE TEST. THE

REMAINING ROWS SHOW A NUMBER(OR NUMBERS) INDICATING WHICH GROUP (OR GROUPS) HAS STATISTICAL DIFFERENCES WITH THE GROUP

ASSOCIATED TO THE ROW(FIRST ROW ELEMENT).

σdwrIIFn
σ
d
wd
IIFn
σ
d
wp
IIFn
σ
d
wg
IIFn

dIIF
wr
n dIIF

wd
n dIIF

wp
n dIIF

wg
n ΔdIIF

wr−wd
n ΔdIIF

wr−wp
n

p 0,015 <0,0001 0,085 0,0002 0,194 <0,0001 0,309 0,48 <0,0001 0,435
G1 - - - - - 4 - - 4 -
G2 - 4 5 - - - 4 - - 4 -
G3 - 4 5 - 5 - 4 - - 4 -
G4 - 2 3 - 5 - 1 2 3 5 - - 1 2 3 -
G5 - 2 3 - 3 4 - 4 - - - -

P
wr
LFn

P
wd
LFn

P
wp
LFn

P
wg
LFn

ΔP
wr−wd
LFn

ΔP
wr−wp
LFn

P
wr
HFn

P
wd
HFn

P
wp
HFn

P
wg
HFn

ΔP
wr−wd
HFn

ΔP
wr−wp
HFn

p 0,0039 0,017 0,0047 0,0006 0,297 0,484 <0,0001<0,0001 <0,0001 <0,0001 0,032 0,218
G1 - - - - - - 4 4 4 4 - -
G2 - - - 4 - - 4 4 4 5 4 - -
G3 4 4 4 4 - - 4 4 4 5 4 5 - -
G4 3 3 3 2 3 - - 1 2 3 5 1 2 35 1 2 3 1 2 3 - -
G5 - - - - - - 4 4 2 3 3 - -

R
wr
LF/HF R

wd
LF/HF R

wp
LF/HF R

wg
LF/HF ΔR

wr−wd
LF/HF ΔR

wr−wp
LF/HF P

wr
VLFn

P
wd
VLFn

P
wp
VLFn

P
wg
VLFn

ΔP
wr−wd
VLFn

ΔP
wr−wp
VLFn

p <0,0001<0,0001<0,0001<0,0001 <0,0001 0,341 0,0007 <0,0001 <0,0001 <0,0001 0,38 0,668
G1 4 4 - 4 4 - 4 4 4 4 - -
G2 4 4 4 4 4 - 4 4 4 4 - -
G3 4 4 4 5 4 5 - - 4 4 4 4 - -
G4 1 2 3 5 1 2 35 2 3 5 1 2 3 1 2 - 1 2 3 1 2 35 1 2 3 1 2 3 - -
G5 4 4 3 4 3 - - - 4 - - - -

a pathologic subject. For that, the percentage of time under
pathologic fragments based onrDAP and raDAP was analysed.
The threshold for this percentage was selected for maximizing
Se and Sp. From the total of 21 children, six subject were
excluded because only less than 4 hours had ECG and PPG
signals of acceptable quality, so 15 registers were included in
this study corresponding to 8 OSAS and 7 normal according
to clinical diagnosis.

III. R ESULTS

A. Statistical Analysis Results

Table III shows Kruskal-Wallis analysis results of statistical
comparison among groups for each feature. First row is thep
value test. The remaining rows show a number (or numbers)
indicating which group (or groups) has statistical differences
with the group defining the row.

Figure 3 shows mean and standard errorof dIIFn, σdIIFn

and spectral indexes obtained by smooth pseudo Wigner-
Ville distribution. Letters refers to the temporal windows
analyzed during DAP (r reference, d DAP episode, p post DAP
event). From the top to the bottom, mean heart rate(dIIFn),
standard deviation heart rate (σdIIFn

), low frequency (PLFn ),
high frequency (PHFn ) and low to high frequency ratio (RLF/HF)
of heart rate. All the spectral parameters were normalized with
respect to the total power at each time. * refers top < 0.05
between windowswr and wd and § to p < 0.05 between
windowswd andwp.

The best features to classify between Ga and Gn obtained
by the wrap methodwereP

wg
HFn

, R
wg
LF/HF, σdwdIIFn

andΔdIIF

wr−wd
n ,

having an accuracy of 68.77%, aSe = 70.5% and aSp =
68.46%.

TABLE IV
PSGFRAGMENTS CLASSIFICATION RESULTS

PSG Fragmentsclassification Subjectsclassification
Index S (%) Sp (%) Accuracy(%) S (%) Sp (%) Accuracy(%)
rDAP 81.8 64.3 66.7 75 71.4 73.3
raDAP 72.7 80 79 87.5 71.4 80

B. Clinical Study Results

Results regarding PSG fragments and subject classification
are shown in Table IV. The inclusion of HRV information
improves the PSG fragments classification accuracy in12.3%,
reaching a 79%, and obtaining values of72.7% and 80%
for sensitivity and specificity, respectively. In addition, the
Wilcoxon statistic analysis shows a higher discriminant power
between pathologic and normal forraDAP (p = 0.0061) than for
rDAP (p = 0.0225). ROC curves in Fig. 4, varying thresholds
in rDAP andraDAP, demonstrate the advantage of including HRV
information. As for subject classification, the improvement in
accuracy is6.7%, reaching a 80%, and obtaining values of
87.5% and71.4% for sensitivity and specificity respectively.

IV. D ISCUSSION

Analysis of autonomic control during decreases in the am-
plitude fluctuation of photopletysmography signal in children
was presented. Table III shows statistical differences among
G1, G2 and G3 (Ga) with respect to G4 and G5 (Gn) for
most of the features, confirming the association made in
section II-C based on the apnea physiology. As for time
features,ΔdIIF

wr−wd
n evidence a higher rise indIIFn for DAP

associated with apneic events (Ga) than for DAP without apnea
connection (Gn). Respiration modulates HR, HF being the
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Fig. 3. dIIFn± SE;σdIIFn
± SE and spectral indexes obtained by smooth pseudo Wigner-Ville distribution. Window refers to the temporal windows analyzed

during DAP (r reference, d DAP episode, p post DAP event). From the top to the bottom, mean heart rate(dIIFn), standard deviation heart rate (σdIIFn
), low
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Fig. 4. ROC curves forrDAP (dashed line) andraDAP (solid line). Bullet dots
indicate the points where the global results are presented.

component which mainly reflects the respiratory process. Our
hypothesis is that this modulation is different among groups
and at the different temporal windows, these differences being
the parameters used to distinguish among groups. Results
show that differences (higherPLFn and lowerPHFn values)
appear in frequency features for all groups with respect to
G4 during all time references (wr, wd, wp andwg) indicating
a predominance of the sympathetic system during apnea, in
agreement with [11], and the fact that different respiratory
patterns appear. AsPHF presents higher values in G4 and
important significant statistical differences with Ga, thefeature
P
wg
HFn

was the first selected by the wrap method for feature
selection, section II-E4.

Figure 3 shows increments in thedIIF signal during the DAP
event window for all groups, except G4. Time evolution of
frequency features shows similar patterns in all groups, an
increase inPLFn and RLF/HF and a decrease inPHFn during
DAP, indicating an activation of the sympathetic branch of
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the ANS followed by a recovery period. However, increments
in the dIIF signal during the DAP event window turn out to
be statistically significant with respect to reference and post
DAP event window only for groups 1, 2 and 3. This means
that changes are better marked for apneic events as indicated
ΔdIIF

wr−wd
n in Table III. PLFn reveals significants increments

only during the DAP event window in G1 and G2 with respect
to reference window and G1, G4 and G5 with respect to the
post DAP event window. DAP event window shows reduction
in the PHF for all groups, however significances are found in
G1, G2 and G5. RLF/HF also presents significant differences in
those groups, but with an increment in the DAP event window.

Our main findings were: an increase in sympathetic activity
occurs during DAP events, in concordance with [19]. When
DAP events are not associated to either respiratory events or
SaO2 decrements, heart rate variability shows just a slight
alteration and its spectral power is more shifted to the high
frequency component. On the contrary, DAP events associ-
ated to apnea produce a stronger variation in heart rate and
spectral power is concentrated in the low frequency range.
These results suggest that sympathetic activation is deeper
in case of association with apnea. The statistical differences
between DAP events associated with apnea and those without
association indicate that HRV analysis is useful to discriminate
between these two groups of events. This has led to better
specificity in apnea detection, as corroborated by the clinical
study in section III-B.

Photopletysmography signal carries information related to
the cardiovascular function as well as blood gases concentra-
tion. This signal presents interesting characteristics that can be
used to detect apneic episodes. However, its high sensitivity
could produce misdetections and overestimate apneic episodes.
Generally, in most of the studies PPG has been directly related
with the cardiac function, giving as a result a measure of the
Pulse Transit Time (PTT) [32]–[34]. PTT gives a quantitative
measure of the time that a pulse wave needs for passing from
one arterial to another, and is evaluated as the time interval
between the ECG R peak and the start of the corresponding
PPG wave. PTT decreases after an apneic event due to a
sympathetic activation related to arousal which produces heart
rate increment, higher stroke volume and vasoconstriction,
which in turn generate pulse wave acceleration [35]. However,
some other physiological events such as slow paced breathing
[36] and deep inspiratory gasp [37] also induce variation in the
PTT that could be mistaken for sympathetic activations. How-
ever, this integration loses important information that could
be obtained from the heart rate spectral parameters. Heart rate
dynamics and spectral parameters offer time and frequency
information that discriminates between small cardiovascular
variation and more severe ones, as when an apneic episode
occurs.

Heart rate control oscillates in a specific range of fre-
quencies. These frequencies characterize autonomic nervous
system control, that is activated or inhibited as a result of
feedback mechanisms. Under constant conditions such as rest,
autonomic control is very regular and RR sequence shows
a stationary pattern. This situation allows the application of
techniques such as Fourier transform to obtain the spectral

components of the time series. However, under conditions of
rapid change such as sit to stand and sleep apnea, autonomic
control adapts speedily to satisfy the system requirements, so
the RR sequence shows non-stationary behavior. Under such
conditions, more sophisticated techniques of signal processing
are required to analyze the time evolution of the autonomic
control mechanism. Different approaches have been devel-
oped to deal with this problem. Time-Frequency [26], Time-
Varying [38] and Time-Scale [39] analysis are some of the
most powerful tools. In our study, a good time resolution is
required because apneas in children present rapid changes.
Therefore, Cohen’s class time-frequency distributions were
considered. For minimizing the cross-term errors effect of
these quadratic distributions the Smooth Pseudo Wigner-Ville
Distribution was used. The smoothing functions defining the
kernel were selected in order to allow us to evaluate the
spectral component of heart rate variability with high time
and frequency resolution [28].

This methodology could be evolved if the spectral parame-
ters of the heart rate could be extracted from the PPG. In this
way, only acquisition of one signal could be enough to analyze
sleep apnea episodes. Since PPG signal is a very simple, cheap,
and easy to acquire measure, PPG presents great potential
for home apnea monitoring, reducing the cost of wearable
devices and complex technology for analysis. Processing of
PPG signals could be implemented in real time and with a
very low computation cost.

Our results fall within the reported interrater reliabilities for
sleep scoring [40], where the mean epoch by epoch agreement
between five scorers was 73%, and within the inter-observer
agreement on apnea-hypopnea index (AHI) using portable
monitoring of respiratory parameters [41], where the AHI
agreement scored by 8 physicians was 73% measured by
intraclass correlation coefficient.

Many studies have been carried out for OSAS screening
attempting to reduce PSG cost and complexity. Different
techniques have been proposed, oximetry-based screening
being one of the most widely suggested for both the adult
and pediatric population. Although these methods have high
sensitivity, they tend to have very low specificity [42]. In
addition, a confounding factor in children is that obstructive
events frequently do not lead to significant oxyhemoglobin
desaturation. Pulse oximetry in children has the same limita-
tion as in adults [43]. Brouillette et al [44], in an extensive
study involving 349 children, obtained a positive predictive
value of 97%, but the negative predictive value was only
53%. Other approaches based on ECG [15] have shown very
good results for adults, achieving perfect scores of 100%
in accuracy for subjects classification. However, few ECG-
based studies are aimed at children, for which physiology is
different and important differences in sleep disorders exist
[22], [31]. Shouldice et al [45] reported a sensitivity of
85.7% and a specificity of 81.8% in an ECG-based study
on children by adapting previous research on adults where
information of ECG-derived respiratory signal was included.
Cardiorespiratory sleep studies that typically include 2 or more
signals have also been considered. These studies have been
shown to be sensitive to OSAS, but mostly in adults [46].
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Some other alternatives, such as nap studies, clinical history,
sonography or videography exist [43].

In summary, in terms of sensitivity and specificity, the re-
sults of our proposed method are similar to [45] or better than
[3], [43], [44] currently investigated alternatives for OSAS
screening in children. However, performance improvement to
reach the accuracy of adult methods would be desirable, and
extended studies are needed to corroborate the potential of our
method in diagnosing sleep disorders in children.

V. CONCLUSION

In conclusion, our results suggest that an increase in
sympathetic activity occurs during DAP events. When DAP
events are not associated to either respiratory events or SaO2

decrements, heart rate variability shows slight alterations, and
its spectral power is more shifted to the high frequency
component. On the contrary, DAP events associated to apnea
produce strong variation in heart rate and spectral power is
concentrated in the low frequency range. These results suggest
that sympathetic activation is deeper in case of association with
apnea.

The ratioraDAP present an increase of 12% in accuracy for
classifying 1-hour polysomnographic segments with respect
to rDAP, reaching 79% and obtaining values of 72.7% and
80% for sensitivity and specificity, respectively. As for subject
classification, the improvement in accuracy is6.7%, reaching
80%, obtaining values of87.5% and71.4% for sensitivity and
specificity respectively. Consequently, HRV analysis improves
the utility of PPG signal in sleep disorder diagnosis, so that
the combination of DAP and HRV could be an alternative
for sleep apnea screening with the added benefit of low cost
and simplicity. Nevertheless, extended studies are needed to
corroborate the potential of PPG signal in conjunction with
HRV analysis in diagnosing sleep disorders.

REFERENCES

[1] American Thoracic Society, “Cardiorespiratory sleep studies in chil-
dren,” Am. J. Respir. Crit. Care Med., vol. 160, pp. 1381–1387, 1999.

[2] D. P. White, “Sleep apnea,”Proc. Am. Thorac. Soc., vol. 3, pp. 124–128,
2006, doi: 10.1513/pats.200510-116JH.

[3] American Academy of Pediatrics, “Clinical practice guideline: Diagnosis
and management of childhood obstructive sleep apnea syndrome,”
Pediatrics, vol. 109, pp. 704–712, 2002.

[4] T. Young, P. E. Peppard, and D. J. Gottlieb, “Epidemiology of obstructive
sleep apnea,”Am. J. Respir. Crit. Care Med., vol. 165, p. 12171239,
2002.

[5] F. J. Nieto, T. B. Young, B. K. Lind, E. Shahar, J. M. Samet, S. Red-
line, R. B. D’Agostino, A. B. Newman, M. D. Lebowitz, and T. G.
Pickering, “Association of sleep-disordered breathing, sleep apnea, and
hypertension in a large community-based study,”JAMA, vol. 283, pp.
1829–1836, 2000.

[6] C. Guilleminault, A. Tilkian, and W. C. Dement, “The sleep apnea
syndromes,”Annual Review of Medicine, vol. 27, pp. 465–484, 1976.

[7] D. W. Beebe and D. Gozal, “Obstructive sleep apnea and prefrontal
cortex: towards a comprehensive model linking nocturnal upper airway
obstruction to daytime cognitive and behavioral deficits,”J. Sleep Res.,
vol. 11, pp. 1–16, 2002.

[8] D. J. Gottlieb, R. M. Vezina, C. Chase, S. M. Lesko, T. C. Heeren,
D. E. Weese-Mayer, S. H. Auerbach, and M. J. Corwin, “Symptoms
of sleep-disordered breathing in 5-year-old children are associated with
sleepiness and problem behaviors,”Pediatrics, vol. 112, pp. 870–877,
2003.

[9] R. D. Chervin, K. H. Archbold, J. E. Dillon, P. Panahi, K. J. Pituch, R. E.
Dahl, and C. Guilleminault, “Inattention, hyperactivity, and symptoms
of sleep-disordered breathing,”Pediatrics, vol. 109, pp. 449–456, 2002.

[10] W. W. Flemons, M. R. Littner, J. A. Rowley, P. Gay, W. M. Anderson,
D. W. Hudgel, R. D. McEvoy, and D. I. Loube, “Home diagnosis of
sleep apnea: A systematic review of the literature,”Chest, vol. 124, pp.
1543–1579, 2003.

[11] V. K. Somers, M. E. Dyken, M. P. Clary, and F. M. Abboud, “Sympa-
thetic neural mechanisms in obstructive sleep apnea,”J. Clin. Invest.,
vol. 96, pp. 1897–1904, 1995.

[12] V. A. Imadojemu, K. Gleeson, K. S. Gray, L. I. Sinoway, and
U. a. Leuenberger, “Obstructive apnea during sleep is associated with
peripheral vasoconstriction,”Am. J. Respir. Crit. Care. Med., vol. 165,
pp. 61–66, 2002.

[13] A. Malliani, “The pattern of sympathovagal balance explored in the
frequency domain,”News Physiol. Sci., vol. 14, pp. 111–117, 1999.

[14] E. Gil, J. M. Vergara, and P. Laguna, “Detection of decreases in
the amplitude fluctuation of pulse photoplethysmography signal as
indication of obstructive sleep apnea syndrome in children,”Biomed.
Signal Process. Control, 2008, doi:10.1016/j.bspc.2007.12.002.

[15] T. Penzel, J. McNames, P. de Chazal, B. Raymond, A. Murray, and
G. Moody, “Systematic comparison of different algorithms for apnoea
detection based on electrocardiogram recordings,”Medical Biological
Engineering Computing, vol. 40, 2002.

[16] K. Dingli, T. Assimakopoulos, P. Wraith, I. Fietze, C. Witt, and N. Dou-
glas, “Spectral oscillations of rr intervals in sleep apnoea/hypopnoea
syndrome patients,”Eur. Respir. J., vol. 22, pp. 943–950, 2003.

[17] F. Roche, J. M. Gaspoz, I. C. Fortune, P. Minini, V. Pichot, D. Duverney,
F. Costes, J. R. Lacour, and J. C. Barthlmy, “Screening of obstructive
sleep apnea syndrome by heart rate variability analysis,”Circulation,
vol. 28, 1999.

[18] F. Roche, V. Pichot, E. Sforza, I. Court-Fortune, D. Duverney, F. Costes,
M. Garet, and J. C. Barthlmy, “Predicting sleep apnoea syndrome from
heart period: a time-frequency wavelet analysis,”Eur. Respir. J., vol. 22,
pp. 937–942, 2003.

[19] M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability
of the photoplethysmographic signal-a potential method for the evalu-
ation of the autonomic nervous system,”Physiol. Meas., vol. 19, pp.
93–102, 1998.

[20] R. P. Schnall, A. Shlitner, J. Sheffy, R. Kedar, and P. Lavie, “Periodic,
profound peripheral vasoconstriction-a new marker of obstructive sleep
apnea,”Sleep, vol. 22, no. 7, 1999.

[21] J. Allen, “Photoplethysmography and its application in clinical physio-
logical measurement,”Physiol. Meas., vol. 28, 2007, doi:10.1088/0967-
3334/28/3/R01.

[22] American Thoracic Society, “Standards and indications for cardiopul-
monary sleep studies in children,”Am. J. Respir. Crit. Care Med., vol.
153, pp. 866–878, 1996.

[23] Y. Mendelson, “Pulse oximetry: Theory and applications for noninvasive
monitoring,” Clinical chemistry, vol. 38, no. 9, pp. 1601–1607, 1992.

[24] L. Sörnmo and P. Laguna,Bioelectrical Signal Processing in Cardiac
and Neurological Applications, ser. ISBN: 0-12-437552-9. Academic
Press, Elsevier, 2005.

[25] J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, “A
wavelet-based ecg delineator: Evaluation on standard databases.”IEEE
Transactions on Biomedical Engineering, vol. 51, no. 4, pp. 570–581,
2004.

[26] L. Cohen, “Time-frequency distributions a review,”Proc. IEEE, vol. 77,
pp. 941–981, 1989.

[27] W. Martin and P. Flandrin, “Wigner-ville spectral analysis of nonsta-
tionary processes,”Acoustics, Speech, and Signal Processing, vol. 33,
pp. 1461–1470, 1985.

[28] M. O. Mendez, A. M. Bianchi, N. Montano, V. Patruno, E. Gil, C. Man-
taras, S. Aiolfi, and S. Cerutti, “On arousal from sleep: time-frequency
analysis,” Med. Biol. Eng. Comput., 2008, doi 10.1007/s11517-008-
0309-z.

[29] S. Pola, A. Macerata, M. Emdin, and C. Marchesi, “Estimation of
the power spectral density in nonstationarycardiovascular time series:
assessing the role of the time-frequencyrepresentations (tfr),”IEEE
Trans. Biomed. Eng., vol. 43, pp. 46–59, 1996.

[30] L. T. Mainardi, A. M. Bianchi, and S. Cerutti, “Time-frequency and
time-varying analysis for assessing the dynamic response of cardiovas-
cular control,”Crit. Rev. Biomed. Eng., vol. 30, pp. 175–217, 2000.

[31] C. L. Marcus, “Sleep-disordered breathing in children,”Am. J. Respir.
Crit. Care Med., vol. 164, pp. 16–30, 2001.

[32] D. Pitson, N. Chhina, S. Knijn, M. van Herwaaden, and J. Stradling,
“Changes in pulse transit time and pulse rate as markers of arousal
from sleep in normal subjects,”Clin Sci (Lond), vol. 87, pp. 269–273,
1994.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, MONTH 2008 10

[33] J. E. Naschitz, S. Bezobchuk, R. Mussafia, S. Sundick, D. Dreyfuss,
et al., “Pulse transit time by r-wave-gate infrared photoplethysmography:
Review of the literature and personal experience,”Journal of Clinical
Monitoring and Computing, vol. 18, pp. 333–342, 2004.

[34] D. Pitson, A. Sandell, R. van den Hout, and J. Stradling, “Use of the
pulse time as a measure of inspiratoy effort in patients with obstructive
sleep apnea,”Eur. Respir. J., vol. 8, pp. 1669–1674, 1995.
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