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Abstract

In adverse acoustic conditions, speaker verification and
identification system rates degrade very significatively. In order
to compensate this effect, several techniques can be applied.
In this paper Phoneme Dependent Multi-Environment Models
based LInear Normalization, PD-MEMLIN, is presented as a
solution in order to clean signal in a early processing step. In
this algorithm, clean and noisy spaces are modelled by mixtures
of gaussians for each phoneme, and a linear transformation is
learnt with stereo data for each phoneme pair of gaussians: one
for the clean space and the other one for the noisy space. Some
experiments with Spanish SpeechDat Car database were carried
out in order to study the behavior of the proposed technique
in verification and identification tasks. With an UBM-GMM
verification system, important average improvement in Equal-
Error Rate (EER) is obtained (70.20%). The improvement in
identification task with a GMM system is 48.69%.

1. Introduction
When acoustic conditions are adverse, the accuracy of speaker
verification and identification systems rapidly degrades. In
order to compensate this effect, several techniques have been
developed [1]. Since verification and identification systems
are based on Gaussian Mixture Models, GMM, two kinds of
robust adaptation techniques can be developed: acoustic models
adaptation and feature vector normalization. The first one,
which only modifies the gaussian mixture models, can be more
specific, whereas, feature compensation, which modifies the
feature vectors, needs less data and computation time. In
GMM systems, in which each speaker has his own acoustic
model, feature normalization and acoustic model adaptation
can be simultaneously used: feature normalization clean firstly
the noisy signal, and after that, the speaker acoustic model is
retrained with normalized signal. However, in real dynamic
environments, it can be impossible to retrain speaker models
in all situations. In this cases, feature vector normalization
techniques are a good option in order to improve the accuracy
of the system.

Feature compensation algorithms can be divided into three
main kinds of techniques [2]: model-based compensation,
empirical compensation by direct cepstral comparison, and
compensation via cepstral high pass filtering. The first
group uses a mathematical model in order to represent
the environment, and the parameters of the supposed
environment are estimated with frames of degraded speech
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(like Vector Taylor Series for normalization, VTS, [3]
or Codeword Dependent Cepstral Normalization, CDCN,
[4]). Empirical compensation does not assume any defined
environment, and uses stereo data in order to determinate
the correspondent degradation (like multivariate gaussian-based
cepstral normalization, RATZ [3], Stereo based Piecewise
Linear Compensation for Environments, SPLICE [5], or Multi-
Environment Models based LInear Normalization, MEMLIN
[6]). Cepstral high-pass filtering does not obtain as good results
as the other kind of algorithms, but the computational cost is
almost zero (like Cepstral Mean Normalization, CMN, [2]).

In this paper, an empirical compensation technique is pre-
sented in order to improve speaker verification and identi-
fication GMM systems: PD-MEMLIN, Phoneme Dependent
Multi-Environment Models based LInear Normalization. This
stereo data based algorithm uses a Minimum Mean Squared Er-
ror, MMSE, estimator and the proposed linear transformations,
which are obtained in a training process, depend on clean and
noisy phoneme model gaussians. With this algorithm, a quick
feature vector adaptation to dynamic environments is obtained,
and it can be useful when it is not available an adapted speaker
model for each acoustic condition, as cars, for example.

This paper is organized as follows: in Section 2, a PD-
MEMLIN is presented. Verification and identification used
systems are studied in Section 3. The experiments carried
out with Spanish SpeechDat Car database [7] are explained in
Section 4, showing and discussing the results obtained. Finally
in Section 5, the conclusions are presented.

2. Phoneme Dependent MEMLIN

Phoneme Dependent Multi-Environment Models based LInear
Normalization is an empirical feature vector normalization
technique which uses stereo data in order to determine the
different linear transformations in a training process. The clean
feature space is modelled as a mixture of gaussians for each
phoneme. The noisy one is divided in several basic acoustic
environments and each environment is modelled as a mixture of
gaussians for each phoneme. The transformations are estimated
between a clean phoneme gaussian and a noisy gaussian of the
same phoneme, and this, for all basic acoustic environments.
This is shown in figure 1 for one environment.

2.1. MMSE estimator

Given the noisy feature vector for each time frame,t, yt,
the clean estimation vector,̂xt, can be calculated by MMSE
estimation, wherex is the clean feature vector:



Figure 1: Scheme of PD-MEMLIN transformations for one
environment.

x̂t = E[x|yt] =

∫

x

x · p(x|yt)dx. (1)

The problem is how is approximatedx and how the
probability density function (PDF) ofx givenyt, p(x|yt), can
be obtained. In order to calculate them, some approximations
can be applied.

PD-MEMLIN supposes that noisy space can be divided
into e basic environments. For each one, noisy feature vectors
follow a distribution of mixture of gaussians for each phoneme,
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PD-MEMLIN assumes that clean feature vectors model
follows a distribution of mixture gaussians for each phoneme:
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x , andse,ph
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is the independent term of the PD-MEMLIN

linear transformation function associated to clean phoneme-
depended gaussian and a noisy environment-phoneme-
depended gaussian. This can be shown in figure 2, where
the mismatch between noisy and clean data and the linear

Figure 2: Scheme of one pair of gaussians transformation for noisy
data.

compensation vector are shown for one pair of gaussians.
With this approximation, the equation (1) will be transformed
into expression (7), wherep(e|yt) is the probability of the
environment, given the noisy feature vectoryt; p(ph|yt, e)
is the probability of the phonemeph, given yt and e;
p(se,ph

y |yt, e, ph) is the probability ofse,ph
y , given yt, e, and

ph, and finally,p(sph
x |yt, e, ph, se,ph

y ) is the probability ofsph
x ,

givenyt, e, ph, andse,ph
y .

2.2. MMSE Parameters estimation

In order to calculate the estimator vector,x̂t, different variables
have to be obtained. Since some of them are dependent on
noisy feature vector each time, they are computed during the
verification or identification processes. The other ones have to
be calculated in a previous training process with stereo data.

The variables which need to be obtained are:p(e|yt),
p(ph|yt, e), p(se,ph

y |yt, e, ph), p(sph
x |yt, e, ph, se,ph

y ), and
r

s
ph
x ,s

e,ph
y

. The first three expressions need to be calculated in

speaker verification and identification, and the other ones are
learnt in a training process.

The probability of the environment,p(e|yt), is calculated
with an iterative solution. Each frame,t (t ∈ 1, ..., T ), a
noisy feature vector is available,yt. The calculation of the
environment weight in this moment will be, using (2), (3), and
Bayes theorem:

p(e|yt) = β · p(e|yt−1) + (1− β)
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whereβ is the memory constant.p(e|y0) is considered uniform
for all environments. Also,p(ph|yt, e) can be calculated using
(2), (3), and Bayes theorem:

p(ph|yt, e) =
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. (9)

p(se,ph
y |yt, e, ph) can be calculated using (2), (3), and

Bayes theorem:
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The use of clean and noisy phoneme dependent gaussian
linear transformations makes PD-MEMLIN be a more specific
normalization technique than other algorithms based on stereo
data as RATZ [3], which only uses clean gaussian models,
SPLICE [5], which uses noisy gaussian models, or MEMLIN,
which represents clean and noisy spaces as mixture of
gaussians, but does not use phoneme dependence [6].

3. Verification and identification systems
For the verification task, an independent text Universal
Background Model GMM was developed, UBM-GMM. The
input of the system is composed of the 12 normalized MFCC
with cepstral mean substraction, the first and second derivative
and the normalized delta energy, given a feature vector of
37 coefficients. A simple VAD based on energy is used in
order to verify only with speech signal. The average length of
the sentences used in verification and identification tasks is 3
seconds.

The universal background model is trained by Expectation-
Maximization, EM, algorithm [8], with four iterations.
The speakers gaussian models are retrained from UBM by
Maximum A Posteriori, MAP, algorithm [9].

Given a sequence of feature vectors of speakeri, Yi, an
UBM, λUBM , and the correspondent speaker model,λi, the
decision to determine if the speaker is right will be:

if
p(Yi|λi)

p(Yi|λUBM )

{
< θ ⇒ rejectλi,

≥ θ ⇒ acceptλi,
(15)

where p(Yi|λi) is the score ofYi, given the modelλi,
p(Yi|λUBM ) is the score ofYi, given the universal background
model, and finally,θ is the threshold, which is empirically
obtained when false accept rate and false reject rate are similar.

To identify, a GMM system is developed. The sameλi

speaker models are used, and for each speech utteranceYi, the
highest model score,p(Yi|λi), will determinate the estimation
speaker,̂i:

î = arg max
i

p(Yi|λi). (16)

4. Experiments
In order to study speaker verification and identification in
different acoustic conditions, a set of experiments have been
carried out using the Spanish SpeechDat Car database [7],
which has stereo data. Although this database is not properly
to verification ans identification tasks, because there is only
a long continuous session per speaker, however, the acoustic
situations are so different and dynamic that makes it interesting
to study the PD-MEMLIN behavior. Seven environments are
defined: car stopped, motor running (E1), town traffic, windows
close and climatizer off (silent conditions) (E2), town traffic and
noisy conditions: windows open and/or climatizer on (E3), low
speed, rough road, and silent conditions (E4), low speed, rough
road, and noisy conditions (E5), high speed, good road, and
silent conditions (E6), and high speed, good road, and noisy
conditions (E7).

All the utterances are 16 KHz sampled. The clean signals
are recorded with a close talk microphone (Shune SM-10A),
which is called Ch0, and the noisy signals are recorded by
a microphone placed on the car ceiling in front of the driver
(Peiker ME15/V520-1): it is called Ch2. The SNR range for the
clean signals goes from 20 to 30 dB, and for the noisy signals
goes from 4 to 14 dB. 12 MFCC and energy are computed each
10 ms using a 25 ms Hamming window.

The feature normalization technique is applied over the 12
MFCC and delta energy. Mixtures of 16 gaussians are used for
each phone dependent model.

The universal background model in verification is calcu-
lated with the training corpus of Spanish SpeechDat Car (218
speakers and 16108 sentences) and it is composed of 512 gaus-
sians. Testing corpus of the database is used to prove the verifi-
cation and identification systems. There are 91 speakers with
approximately 112 sentences: 50 selected from all environ-
ments to train the 512 gaussian speaker models and approxi-
mately 62 from all environments to test the systems. These 91
speakers are different from the 218 training corpus ones. The
results can be seen in table 1 and table 2, where E1,...E7 rep-
resent the different environments, EER is Equal-Error Rate, in
%, Ch0-Ch0 indicates the results when clean signal is used to
test and train the speakers and UBM models (clean models),
Ch0-Ch2 indicates the results when noisy signal is used to ver-
ify with clean models, Ch2-Ch2 uses noisy signal to test and
train the models,Ch0 − Ch2nor tests with normalized signal
and clean models, and Imp is the improvement obtained with
the performance ofCh0 − Ch2nor compared to the Ch0-Ch0
and Ch0-Ch2 margin in%.
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EER Ch0-Ch0 Ch0-Ch2 Ch2-Ch2 Ch0− Ch2nor Imp

E1 1.55 10.50 0.79 5.13 60.00

E2 1.21 26.73 4.70 9.58 67.20

E3 0.87 24.61 3.91 11.80 53.96

E4 0.89 27.42 2.08 6.15 70.17

E5 0.91 26.93 2.02 7.17 75.94

E6 1.08 35.00 2.71 9.71 74.56

E7 0.29 41.45 0.46 9.05 78.72

Total 1.06 26.50 3.29 8.64 70.20

Table 1: Verification results with PD-MEMLIN for each environment

Success rate E1 E2 E3 E4 E5 E6 E7 Total

Ch0-Ch0 99.6 99.65 99.57 99.15 100 100 100 99.69

Ch0-Ch2 65.35 13.44 27.65 12.60 10.72 11.67 0 22.02

Ch2-Ch2 98.03 95.52 91.06 97.89 96.52 87.55 100 94.89

Ch0− Ch2nor 86.22 61.37 49.36 68.90 44.34 56.03 48.93 59.84

Imp 60.93 55.60 30.19 65.05 37.66 50.22 48.93 48.69

Table 2: Identification results with PD-MEMLIN for each environment

The number of sentences used for each environment is: 254
for E1, 290 for E2, 235 for E3, 238 for E4, 254 for E5, 247
for E6 and 47 for E7. In verification, for each sentence, one of
the 91 possible speakers is considered as author of the sentence
each time; so, the system has to detect in each case if the speaker
is the right one, or not.

It can be observed in table 1 that noise produces an
important degradation in the behavior of the system: from
near 1%, EER falls down until 26%. If noisy signal is
treated with PD-MEMLIN, the improvement is significant,
obtaining 8.64% in false accept and false reject rates: this is, an
improvement of near 70%. Global results with all environments
and different thresholds are presented in figure 3, where Ch0-
Ch0 is represented with a solid line, Ch2-Ch2 is printed with a
dash line,Ch0 − Ch2nor with dash and dot line, and finally,
Ch0-Ch2 is printed with a dot line. The threshold is varied with
a step of 0.05.

In identification, which success rate results in% are in table

2, it can be observed that the use of noisy signal degrades the
behavior of the system and the results are very poor concerning
the ones obtained with clean signal: 99.69% versus 22.02%
(average results). Since PD-MEMLIN is used, the success rate
increases until 59.84%: this is an improvement of 48.69%.

Although the improvements, the results obtained with
normalized signal are far away from Ch2-Ch2. Anyhow, in
many cases noisy speaker models are not available because it is
not possible to retrain the models in all acoustic conditions. In
this sense, normalization techniques are a good approximation
to Ch0-Ch0 results. With verification and identification
results using PD-MEMLIN, it can be seen that the learnt
transformations in order to project from noisy space to clean
one are very general, loosing the speaker specificity. Since it is
very important in verification and identification tasks, speaker
clustering techniques can be used in order to define speaker-
dependent transformations. In this sense, similar projections
would be used for the same kind of speakers, the speaker
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Figure 3:Total verification results with all environments and different
thresholds.

specificity would not lose, and the results could be improved.

5. Conclusions
In this paper a stereo data based Cepstral normalization
technique, PD-MEMLIN, has been presented in order to
improve the verification and identification results with adverse
and dynamic acoustic conditions. The algorithm learns different
linear transformations for each pair of phoneme gaussians:
one of clean space and the other for noisy space. In order
to study the behavior of the technique, some experiments
have been carried out with Spanish SpeechDat Car database.
An UBM-GMM system is developed for verification, and a
GMM system for identification. The results show that noise
degrades seriously the accuracy of the systems. Pre-processing
the noisy signal with PD-MEMLIN in verification, a mean
improvement of 70.20% in EER is obtained. In identification,
the improvement using PD-MEMLIN reaches until 48.69%,
using clean speaker models. As a future work line to improve
these results, speaker dependent transformations are proposed.
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