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Abstract. Practical uses of step-index plastic optical fibres often involve 
layouts with complex three-dimensional bends, especially in short-distance 
applications with small spaces available (automotive industry, robotics, etc.). 
Therefore, the simulation of optical links with arbitrary non-planar geometries 
becomes of great interest. This paper employs a new computer program 
capable of simulating light propagation in such configurations to draw some 
conclusions in situations of practical interest. 

1 Introduction 
 Many practical uses of step-index plastic optical fibres (SI POFs) involve layouts in 
which complex three-dimensional bends are needed (e.g. automotive industry, robotics, 
some LANs and sensors, etc.) [1]. Although quite precise computational simulations of 
light propagation in straight and circular POF sections have already been carried out 
[2,3], planar bends often have a variable curvature (e.g. in the form of a sine, or even 
shapes that cannot be expressed with an analytical expression), and many bends are 
not even planar, i.e., their fibre symmetry axes have a torsion. This tends to add some 
difficulty to the problem. The automotive industry, with its optical network through POF 
called MOST, provides many examples of this kind of 3-D optical link configurations for 
which no computational simulation tool developed until now is flexible enough. 
Therefore, we have developed a computer program based on the ray-tracing method 
that is able to simulate arbitrarily complex non-planar layouts, with two aims: firstly, to 
predict the behaviour (bend losses, bandwidth, etc.) of specific links with a given 
geometry at the design stage; and secondly, to try to draw rule-of-thumb conclusions 
that may be valid in a wider variety of situations, i.e., at an even earlier stage of design, 
when link geometry is not yet fully determined. In this paper we focus on bend losses in 
3-D situations of practical interest, including the possibility of having perturbations in the 
ideally circular cross-section geometry along the POF axis.  

 As a first simple example, we carry out computational simulations to compare power 
losses in POFs bent in the shape of helices with those obtained along planar circular 
arcs, maintaining the local radius of curvature and the distance covered, to check to 
what extent the torsion present in a helix affects the results. A second analysis is that of 
the combined effect of two consecutive bends depending only on their relative positions 
in space, while keeping their respective radii and arc length constant. In the third place, 
we simulate attenuation incurred in practical installations in which bends of different 
radii can be found along the optical link, showing and explaining that the position of 
emitter and receiver usually cannot be interchanged without modifying bending losses. 
Finally, the field of sensing devices also provides many cases in which the ability to 
simulate arbitrary geometries can be of great value. For instance, a pressure sensor 



based on the deformation of the fibre [4] can be easily simulated by the program, as will 
be done to illustrate its capabilities. 

2 Modelling three-dimensionally bent POFs with variable cross-section 
 We will now describe the implementation of the simulation program very briefly. It 
allows to apply the ray-tracing method to the simulation of light propagation in SI POFs 
of very flexible geometry –namely, of fibre axes following practically any 3D trajectory 
and of cross sections whose size, shape and orientation are also allowed to vary in a 
very general way. This can be applied to any reasonable fibre geometry that could be 
found in practice. 

 For the sake of flexibility, it is very convenient to define the fibre geometry as a 
separate software module (typically a “function” written in a programming language). 
The propagation of light rays is calculated in another, independent function. The former 
returns the centre c of the fibre symmetry axis, its tangent t, the cross section main axes 
x and y, the half-axes a and b, and the degree of homogeneity m, as a function of a 
certain parameter p, which could be the distance along the fibre axis or any other one. If 
m = 2, the cross-section is an ellipse; if, additionally, a = b, it is a circle, according to: 

    + =   
   

1
m m

x y
a b

 (1) 

as proposed by [5]. 

Cross-sections with different equations than (1) are almost as easy to implement, but 
we will use this one. To calculate the ray reflection points, the following slack function 
can be defined and calculated in a straightforward manner for any value of p: 
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where x(p) and y(p) are the local coordinates of the intersection point of the ray with the 
plane given by p. The slack S(p) provides a certain measurement of the distance of a 
point on the ray to the surface of the fibre core. Its value is positive inside the core, and 
negative for points outside it. Therefore, the following reflection point is at the plane 
given by the first root of S(p) = 0. 

 Each time a ray reaches the core-cladding interface, a generalized Fresnel 
transmission coefficient T for curved interfaces [6] can be employed to calculate the 
fraction of power radiated by the ray into the cladding. The remarkable feature of the 
power transmission coefficient is that it depends only on the radius of curvature in the 
plane of incidence and the inclination with respect to the normal to the fibre surface. To 
a first approach, a possible simplification that yields very similar results [6] is to consider 
T = 1 for refracting rays and T = 0 otherwise. Our results in this paper correspond to this 
approach. In addition, the length of the ray path is recorded in order to apply the fibre 
attenuation coefficient due to material absorption [7]. Eventually, the powers of all the 
rays reaching the end of the fibre are added to obtain the total output power. 

3 Results 
 Our goal has been to simulate the attenuation induced when a typical SI POF is bent 
forming curves of practical interest, so as to evaluate the influence of the most important 
geometric parameters in each configuration. Specifically, we have chosen usual values 
for the core radius (490µm) and for the core and cladding refractive indices (1.492 and 



1.402 respectively), yielding a numerical aperture (NA) of 0.5. The emission angle of the 
light source in our simulations is 40 degrees, corresponding to an NA of 0.34. This is 
smaller than the POF NA, so no significant losses will appear in a short POF section 
unless this is bent. The POF attenuation coefficient is 0.16dB/m. 

 For example, we have found computationally that losses in a helix are very similar to 
those in a circle provided that the local radius of curvature and the distance covered are 
the same, although the torsion present in the helix does play some small role in bend 
losses. For the simulations, we have employed a helix expressed in Cartesian 
coordinates as { x = a cos p, y = a sin p, z = b p } with a = r +ρ, where r is the radius of a 
cylinder around which the fibre is bent, ρ is its core radius, and p is the angle rotated 
around the cylinder. In this case, the local radius of curvature of the fibre axis is given 
by R = (a2

 + b2) / a. In Fig. 1 we have plotted with dashed lines the results obtained for 
helices in which b / a = tan(45), and with solid lines those corresponding to circle arcs of 
the same length and bend radius R, for which r has been reduced appropriately. 

 
Figure 1. Attenuations for helices with b / a = tan(45) (dashed), and for circle arcs of the 
same length and bend radius R (solid), for three different fibre lengths. 

 As could be expected, the results are similar for helical and circular arcs of equal 
lengths and radii, although the difference is greater when the local radius of curvature is 
small. For bend radii greater than 20mm, radiation losses are small and in all three 
cases the attenuation is due almost exclusively to material absorption. 

 Fig. 2 illustrates the combined effect of two consecutive 90º circular bends of 
constant radii and arc length, allowing only their relative positions in space to vary. The 
second bend does not necessarily belong to the same plane as the first one, but to a 
plane making an angle ϕ with it, as shown in Fig. 2 (top). 

 The reason for choosing this configuration is that, as is well known, two coplanar 
bends of opposite concavities tend to attenuate considerably more than the same bends 
with equal concavities. However, if 3-D layouts are considered, there is a continuum of 



configurations between these two extreme cases, corresponding to angles ϕ = 0 and 
ϕ = π in Fig. 2, so a more detailed study has been carried out. As expected, the 
attenuation for intermediate values of ϕ increases monotonously from ϕ = 0 to ϕ = π. 
Moreover, the maximum rate of variation occurs in the vicinity of ϕ = 90º, as marked with 
a “∆” in the figure. 
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Figure 2. Attenuation in two consecutive 90º circular bends of constant radii and arc length, 
as a function of the angle ϕ between their containing planes, for three different bend radii. 

 In Fig. 3 we show part of a possible layout that could be found in small spaces such 
as in cars, robots, etc. It should be noted that the three bends are of different radii, 
which makes the attenuation different depending on the sense in which light 
propagates. This point has been studied and the results presented in Table 1. 

 
Figure 3. Part of a typical layout in small spaces (cars, robots…) with the POF bent with 
three different radii, to illustrate the effect of the relative positions of the bends. 



 It can be seen in Fig. 3 that bend radii of successive bends decrease when 
propagation takes place in the sense from A to B, while they increase from B to A. The 
broader the input power angular distribution at the entrance of a bend, the greater the 
radiation loss tends to be, so it is no wonder that, in this case, the total attenuation is 
higher from A to B than vice versa. This is because power loss in R3 is greater than in 
any other of the bends, irrespectively of the propagation sense, but with a significant 
difference between the two senses (see Table 1) because R1 and R2 have broadened 
the angular power distribution from A towards R3. 

 

LIGHT PROPAGATION → 
ATTENUATION… ↓ 

From A to B From B to A 

…introduced by R1 0.06dB 0.05dB 
…introduced by R2 0.08dB 0.19dB 
…introduced by R3 1.68dB 1.42dB 
…TOTAL 1.82dB 1.66dB 

 
Table 1. Attenuation produced in the different bends in the layout of Fig. 3, as well as the 
total attenuation, for both senses of propagation. R1 = 50mm, R2 = 20mm, R3 = 10mm. 

 
 However, we cannot conclude that attenuation from A to B is always higher than the 
opposite for any radius R2. On the contrary, when R2 is sufficiently small, e.g. 10mm, 
this second curve induces the greatest loss in both senses (see Table 2), determining 
which sense is better from the point of view of minimum attenuation, which now turns 
out to be from A to B. Therefore, it is the curve introducing the greatest losses rather 
than the last one that tends to determine the influence of interchanging the position of 
emitter and receiver. 

 

LIGHT PROPAGATION → 
ATTENUATION… ↓ 

From A to B From B to A 

…introduced by R1 0.06dB 0.06dB 
…introduced by R2 1.90dB 2.44dB 
…introduced by R3 1.76dB 1.42dB 
…TOTAL 3.72dB 3.92dB 

 
Table 2. Attenuation produced in the different bends in a layout nearly equal to that of Fig. 3, 
only differing in the radius R2 of the second cylinder. R1=50mm, R2=10mm, R3=10mm. 

 
 Finally, a pressure or displacement sensor could be modelled, to a first approach, as 
a POF in the shape of a sine whose amplitude experiments small variations depending 
on the displacement of the mould it passes through (Fig. 4, left). We have 
computationally simulated it for n = 4, 5 and 5 periods respectively, obtaining the results 
in Fig. 4 (right). It can be seen that there is a region of amplitudes where the slope of 
the attenuation is near to its maximum, and therefore the sensitivity is optimum. It 
corresponds to a minimum radius of curvature of the sine of about 10mm, as shown in 
the upper line of the same figure. It can also be noticed that, as the number of sine 
periods increases, the sensitivity improves as well. 



    
Figure 4. Attenuation against sine amplitude in a simplified displacement sensor. 

 Another possibility of the program is simulating arbitrary variations in the fibre cross-
section geometry: half-axes a and b, and the degree of homogeneity m in Eq. (1). To 
illustrate the usefulness of this capability we have simulated small periodic perturbations 
in the amplitude of both half-axes (deviating from the core radius ρ) and in the value of 
m (deviating from the circular and elliptical case m = 2). These perturbations are 
schematically shown in Fig. 5. 
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Figure 5. Periodic perturbations in the cross-section parameters a, b and m of Eq. (1). The 
variations of a and b are independent. 

Several simulations with random amplitudes Aa, Ab, Am, and random periods Ta, Tb, Tm 
of the perturbations have been carried out. The main conclusion that can be drawn is 
that the attenuation is rather sensitive to perturbations in m. For instance, with constant 
values Ta = 501µ m, Tb = 782µ m, Tm = 597µ m, Aa = 0.31µ m and Ab = 0.09µ m, if Am = 0, 
the attenuation only changes from 0.026dB in the unperturbed case to 0.027dB; 
however, if Am = 0.008, the attenuation increases up to 0.046dB. 

5. Conclusions 
 A new computer program developed by the authors has been used to simulate light 
propagation in step-index plastic optical fibres of very general 3-D geometry. The results 
obtained show its usefulness to predict the attenuation of specific links with a given 
geometry, and to draw rule-of-thumb conclusions that may be valid in a wide variety of 



situations, including random perturbations due to imperfections in the fibre cross-
section. 
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