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ABSTRACT: This paper shows the application of an analogue-digital electronic neural processor to extend the linear
output range of an angular position sensor, compensating the output drift due to temperature variations in a range of 
60 K degrees.  The system consists of two stages: the first one compensates temperature drifts; then, the second
module extends the linear output range.  The complete system gives a linear output, independently of the temperature
in the range of 293-353 K, with an accuracy of 2 degrees. Low power and low size make these circuits valuable to
implementing the �smartness� part of smart sensors. 

INTRODUCTION

Temperature effects on sensors response must be 
corrected in order to extend its application range.
Moreover, most of sensors show a linear response in a
limited range of its span. The use of adaptive circuits
based on artificial neural networks makes possible to
modify the compensating circuit behaviour, tuning its
parameters according to new requirements.  Thus, 
selecting the suitable parameters, an adaptive electronic 
circuit will improve the operation of a sensor, extending
the linear response independently of temperature drift.
Giant magneto-resistive devices (GMR) [1] are sensors
that present a resistance which is dependent on its
position within a magnetic field.  This feature makes
GMR sensors useful in angular position detection. 
However, this behaviour is linear in a limited range
(Fig. 1).  When a wider linear range is required, a
conditioning circuit must be included in the signal
processing path.
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Fig. 1. Giant magneto-resistive sensor behaviour 

Artificial Neural Networks (ANNs) are computing tools 
based on the operation of biological neurons [2]. ANNs

are composed of small processing elements, called 
artificial neurons, highly interconnected and arranged in
layers.  The system operation is adjusted using a
training process where input-output data samples from
the desired task are iteratively presented, adjusting the
network weights that connect inputs from a neuron layer
with the preceding neuron layer outputs.  When size, 
power consumption and speed are main requirements,
electronic analogue implementation is a suitable
selection for these systems [3] [4] [5]. Moreover,
current-mode analogue circuits give better results at
lower bias, reducing the power consumption [6].
As it was proposed in previous works [7] [8],
implementation of reliable long-term and mid-term
weights using digital registers as storage elements,
combined with analogue processing electronics can
improve dramatically the system features. 
This paper shows the application of a current-based
mixed-mode adaptive processing circuit applied to
extending the linear range of a GMR sensor. Moreover,
the system compensates the error drift due to
temperature variations in a range of 60 K. Results show
a minimum angular position accuracy of 2 degrees. 
Next section shows the processing architecture, building
blocks and processing stages.  Following, its application
of a GMR sensor is presented, showing partial results
and final output, comparing to the original sensor
behaviour.

PROCESSING SYSTEM FEATURES 

The processing electronics is based on a current-mode
circuit previously presented in [8].  Fig. 2a shows the
blocks diagram of the adaptive processing element used 
in this work.
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Neuroprocessor architecture 

The analogue-digital multipliers (ADM in Fig. 2) [7] [8] 
multiply the analogue current inputs (ii) to the 8-bit
digital word ib  that represents the network weights.
The first bit selects the sign operation, inverting the
input current when its value is �0� (Fig. 2b).  Fig. 3 
shows the main circuit of the mixed-mode multiplier,
based on a MOS R-2R current ladder [9] [10]. The
arithmetic operation performed by this circuit is 

pwpout 0136726.0974865.0 �� (3)

Once input currents are weighted and accumulated, the 
final output is achieved by means of a current conveyor
(Fig. 4) [11], which performs the non-linear neuron 
operation.  In order to achieve a valuable accuracy in 
simulations, current conveyor operation is simulated
using a look-up table.  Differences between the ideal
hyperbolic sigmoid function and real circuit operation
are shown in Fig. 5. 

Temperature compensation circuit 

Many sensors present an output drift due to changes in
working temperature.  Fig. 6 shows these effects for a 
GMR sensor at four different temperatures.  A 
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Fig. 2. Neuroprocessor architecture. (a) main building 

blocks; (b) analog-digital multiplier architecture 
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Fig. 3. Current- based analog-digital multiplier circuit 
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Fig. 4. Current-based hyperbolic tangent function 
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Fig. 5. Differences between real and ideal tanh function 
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Fig. 6. GMR sensor output at 293 K (solid line), 313 K 
(dashed line), 333 K (dash-dot line) and 353 K (dotted line)

conditioning system could compensate this effect,
giving the same output independently of the
temperature.
The proposed temperature-compensation circuit is
presented in Fig. 7.  A multilayer perceptron (MLP)
receives the actual temperature (from a linear diode-
based temperature sensor) and sensor output as inputs,
correcting the output drift and giving the expected
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sensor measure at a determined temperature as output. 
Hidden nodes architecture is as presented in Fig. 2, 
whereas the output node changes the non-linear output
function for a linear output.
Network weights are tuned using a training process
based on the classical perturbative learning algorithm
proposed in [12].  We have verified that the network
improves its performance simulating in the training
phase a half of the hidden layer neurons with the inverse
of the real non-linear operation function.  Once the
desired performance is reached, the inverted output 
function is replaced by the real one in the corresponding 
simulated processor, changing the sign of the
corresponding neuron weights.  A fast network re-
training gives higher performances than using the actual
output function in the training phase [13].

Linearization circuit 

Once the temperature drift is compensated, an improved
neural linearization circuit based on [8] (Fig. 8) gives
the final linear output.  The proposed MLP has a hidden
layer with four processing elements, which block
diagram is presented in Fig. 2.  As in the case of the
temperature compensation circuit, training process is
based on the perturbative algorithm with modified
output function in hidden neurons. 

APPLICATION TO GMR SENSORS 

Output temperature dependence (Fig. 6) is corrected
using the neural network architecture presented in Fig.
7.  The temperature-compensation circuit is trained in
order to provide the sensor response at 293 K, 
independently of the working temperature in the
selected range from 293-353 K.  Fig. 9 shows the
resulting compensated sensor outputs.  As we can see, 
differences in the sensor output, working at the
proposed 60 K degrees range are drastically reduced. 
Fig. 10 shows the final corrected sensor output working
at 293, 313, 333 and 353 K degrees. In this application,
the expected (ideal) linear output used in the training
phase is tangent to the linear characteristic of the sensor
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Fig. 8. Sensor output linearization system 
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Fig. 9. Temperature compensated sensor outputs 

180 200 220 240 260 280 300 320 340
-4

-3

-2

-1

0

1

2

3

4
x 10

-5

angular position (degrees)

co
rr

ec
te

d 
se

ns
or

 o
ut

pu
t(

A
)

Fig. 10. Linearized sensor outputs for sensor at 293 (circles),
313 (triangles), 333 (squares), and 353 (diamonds) kelvin 
degrees, compared to the actual sensor output at 293 K 
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Fig. 11. Corrected sensor output errors compared to the 
ideal linear response.  Markers are as in Fig. 10 

at 293 K, in the middle of the output range (Fig. 9). As
we can see in Fig. 10, resulting outputs are closer to the
ideal linear output than the actual sensor output at 293 
K degrees, represented in the figure with a dash-dot
line.
The goal of this work is to linearize the GMR sensor
behaviour, giving the angular position with an error 
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lower than 2 degrees, independently of the temperature.  
Fig. 11 presents the achieved errors at the selected 
temperatures, compared to the actual sensor error at 293 
K degrees. 

CONCLUSIONS

This work presents a mixed analogue-digital circuit 
designed to linearize the behaviour of GMR sensors, 
compensating the temperature dependence of its 
response.  The system consists of two stages.  In the 
first one, temperature drifts are corrected, giving an 
output similar to the sensor response at 293 K.  The 
second stage extends the linear range of the sensor at 
this temperature, assuming a maximum error of 2 
degrees in the measured angular position.  Table 1 
shows the linear ranges achieved using the proposed 
compensation system.  We can see that the global 
system improvement is higher than 55%, compared to 
the linear range of the non-corrected sensor output at 
the reference temperature (293 K).  Moreover, 
according to the table values, it seems possible a wider 
extended linear range selecting a more suitable linear 
output target. 

TABLE 1. Extended linear range 

Temperature 
(K)

Extended range 
(angular deg).  Err<2 %

293 205-342 83

313 186-327 88

333 209-326 56

353 197-328 75

Global behaviour 209-326 56
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