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Abstract

This paper discusses the methodology for selecting a setlefant non—stationary features to increase the spegificit
of the obstructive sleep apnea detector. Dynamic featueesxracted from time—evolving spectral representatiophoto-
plethysmography envelope recordings. In this regard, e-tévolving version of the standard linear multivariateaseposition
is discussed to perform stochastic dimensionality redactror training aim, this work analyzes the concrete setpramimg
filter banked dynamic features that includes spectral o&tsy the cepstral coefficients, as well as their time—varmergies.
Performance of classifier accuracy is provided for the ctdlg polysomnography recordings of 21 children. Morecsice
the apnea diagnosing is based on analysis of set of fragrparttSoned from the photoplethysmography envelope miogs,

a new approach for their indirect labeling is described. Asslt, performed outcomes of accuracy bring enough eeilen
that if using a subset of cepstral-based dynamic featunes, patient classification accuracy can reach as much 88683
value, when using &—nn classifier, as well. Therefore, photoplethysmographget detection provides an adequate scheme
for obstructive sleep apnea diagnosis.

Index Terms

Non-stationary Dynamic Features, Dimension Reductiorsti@btive Sleep Apnea, Photoplethysmography.

I. INTRODUCTION

Regarding the diagnosis of obstructive sleep apnea (OSAJireyne, which is characterized by recurrent airflow
obstruction caused by total or partial collapse of the ugevay, several strategies have been developed to dedtemase
number of the sleep recordings needed for usually perforpodygsomnography] that is related as an expensive and
time—consuming procedure. One promising alternativedstlise photoplethysmography signal (PPG) that is a sirbple,
useful, method for measuring the pulsatile component oheatbeat. PPG measurement evaluates peripheral ciotylat
and is tie—related either to arterial vasoconstriction asodilatation generated by the autonomic nervous systeingb
modulated by the heart cycle. Furthermore, automatic teteof time—variant decreases in the amplitude fluctuatioh
PPG have shown their utility for OSA diagnosBE-{4].

Nonetheless, since there is a large number of situation i#@ enveloped is affected independently of the apnoea
status, then, a low ratio sensitivity/specificity is accdisiped. Therefore, to better discriminate between apnaea bther
PPG envelop alterations an improved set of representinmrisashould be taken into account, particularly, stoahast
modeling of dynamic features for OSA detection is to be fartbonsidered in this work.

The use of stochastic modeling, when taking into accountugéem of random biological variables along time (herein
referred asdynamic featurgsprecedes the necessity of building a proper methodologheaf processing. Furthermore,
it is well-known that the complexity of stochastic modelimgreases because of need to carry out the adequate non—
stationary estimation of parameters derived from biodigeeordings. One can refer that issue as the most important
difference between static and dynamic statistical praogss
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As a rule, methodology for analysis of time series is basetherassumption that there is always a processing time
window of such a length that the piecewise stationary—bapgdoach of analysis holds. Although determination of prop
stationary data length remains as an open issue. With thisiril, the time—frequency representation (TFR) has been
proposed before for the analysis of non—stationary bionzdiata. Among the most popular TFR used to investigate the
dynamic properties of the time—evolving spectral paramnsetiuring either transient physiological or pathologigisodes,
are those computed directly from the raw data after pre—g@sing, termed nonparametric approaches. Specificadly, th
Wavelet Transform (WT) and he Short Time Fourier Transfo8MWKT) are commonly used. Though the former TFR is
likely to avoid thet—f resolution compromise, the latter nonparametric apprasatesirable for biosignals with a slow
time varying spectrumd], as it is the case for PPG recordings. However, the appicaif TFR to the analysis of short
transient signals (like in case of PPG envelope) is a com@es difficult task due to the inherent limitations of the
TFR techniques for extracting the relevant, but not redahdharacteristics. In other words, without accurate mede|
describe properly the dynamic behavior of PPG envelopéadnats, the use aff processing methods, based on stochastic
assumptions, may fail to provide satisfactory resultshis sense, it has been established the discriminating dipalh
frequency bands of biological activity between normal aathplogical patterns, and for that reason, the set of TFRsedba
stochastic features to be considered should be suitabteagdstl by time—evolving spectral subband methods.

Nonetheless, the amount of measured time—variant feataese large, no mentioning that the sampling rate used
for these measurements may be also high. Assuming that dgnamables are low—pass processes, then the enclosed
information within the stochastic data becomes highly elated. This fact provides a large data—sets holding a biguam
of redundancy, which in turn leads to either overtrainintada significant increasing of computational overhead.uchs
a situation, dimension reduction that should be stronglysmered might determine the adequate number of relevant
features to select either by encoding or removing both rddohand irrelevant information. Furthermore, the conadpt
biosignal interpretation becomes critical, whose ultiengbal is the proper classification of the features, but astepict
them in order to maximize correct interpretation and phsjizal or clinical meaning€].

Extraction of relevant stochastic information from dynarfeature sets has been discussed in the past, as a means to
improve performance during and after training in learninggesses. Thus, to get an effective feature selectionitigar
in the context of an inference, two main issues are to be ameed/]: the same measure associated to a given relevance
function (i.e., a proper measure of distance for time sgréaxl the multivariate transformation through the timesawihich
is assumed to maximice the measure of relevance presem imoth-stationary features by their projection onto a newespa
For a dimension reduction, statistical latent variabldtégues can be applied, for example, by using Principal Gomapt
Analysis (PCA) that maximizes the variability on the inpwtal set. This specific and unique property of PCA makes
the stationary signals easy to interpret. But standarahiatariable techniques clearly do not take into considernathe
time—evolving nature of random biological variables, sitticey are grounded on a common representation that mirsmize
the global reconstruction error.

The aim of this study is to select a set of relevant non—statipfeatures, extracted frotaf representation of time—
dependant PPG envelope signals, to increase the spedifiditg apnoea detector. This work analyzes the set comgrisin
filter banked dynamic features that includes spectral o@igras well as the cepstral coefficients. Specifically, a&tm
evolving version of the standard linear multivariate deposition is discussed throughout this paper to performhstsiic
dimensionality reduction of the dynamic features in hante Test of the paper is organized as follows: Seciion
introduces materials and methods focused on generatioorefstationary features, extracted frani representation of
time—dependant PPG envelope signals. Also, the propost#tbdwogy of stochastic training is evaluated using reabPP
recordings. The attained results are discussed in Se®tiorinally, SectionVI presents the conclusions and discusses
some possibilities for future work.

[I. MATERIALS AND METHODS
A. Generation of Enhanced Dynamic Features

The PPG envelopg(t), is estimated based on the root mean square series of in@usiBRal,ys-q(t). So, the discrete
version of PPG envelope, after mean removal by a moving geeiitier, can be written as follow<[:
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n k 2
y(n) = J z (yPPG(k) - % z yPPG(l ))
k=n—(N-1) I=k—(M-1)

where the values for the window length of the filterid, and the root mean square seribk,are fixed to be 25 and
twice the mean cardiac cycle, respectively.

Generally, a direct way of describing the PPG envelgfg, in both time and frequencyf) domains becomes its
time—evolving spectral representation. Thus, for esiimgaT FR of random signals, power spectral density is commonl
used, which for a given biosignaf(t), is directly represented by thepectrogram

S(t,f) = /Ty(T)(p(T—t)eJZ"deTZ, t,1eT, St f)eR"

Supported on classical Fourier Transform, the Short Timsior (termed STFT) introduces a time localization concept
by using a tapering window function of short duratign that is going along the studied biosigng(t).

Extracted from the spectrogram-based TFR, stoghastic feature (x) refers to random numeric values comprising
measures evolving over time, i.e., there is a certain sebddmetersz = {x =x(t) : i = 1,..., p}, that changing along
the time axis,t € T, is supposed to carry temporal information of the non—statip biosignals. In this regard, some
nonparametric TFR-based dynamic measures have been védegpted, mainly, those estimated by spectral subband
methods, when efficiently combining frequency and magueitirdormation from the short—term power spectrum of the
input biosignals. For instance, given a discrete time seyig), being the sampled version of a continuous biosignal
recordingy(t), the set ofLinear Frequency Cepstral Coefficier(isFCC) is proposed to be employed, which is extracted
by Discrete Cosine Transform of triangular log—filter bankBm(k) : m=1,....,nu}, linearly spaced in the frequency
domain:

xn(l) = :ZMlIog (sm(l))cos<n (m— %g)) 1)

where p is the number of desired LFCC features to be considered,safld is the weighted sum of each frequency
filter response setm(l) = 3¢, S/(1,k)Fm(k), beingm, | andk the indexes for filter ordinal, time, and frequency axes,
respectivelyng stands for the number of samples in the frequency domairerGiffiective way of generating-f based
time—variant features is achieved through computatioh@htistograms of the subband spectral centroids that aneatet]

for each filter in the frequency domaiR,,(k), by:

KR (K) S (1K)
NSRS
wherey is a parameter representing the dynamic range of the spedtrat is used for computation of the centroid. The
filters F;(k) are linearly distributed along the spectrum. In addititwe, €nergy around each centroid can be also considered
as time—variant feature that for a fixed bandwidihis computed by means of:

Xn(l)

)

Rn(l)+0k

wh= Y S0.K 3)

k=21 (1)~ Ok

wherex;(l) is the actual value of the time—variant centroid that isneasted by ).

B. Relevance Analysis of Stochastic Features

Because of high computational cost of stochastic featwsedb training, dimension reduction of input spaces is to be
carried out, being latent variable techniques widely usedHis aim that finds a transformation reducipgdimensional
stochastic feature arrangemeste RP*T | into g—-dimensional stochastic s&,c R9*T, q < p, in such a way that the data
information is maximally preserved. Besides, as the releedunctiong € R, the evaluation measure of transformation is
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given that distinguishes variables effectively repreisgnhe subjacent physiological phenomena, terneéel/ant stochastic
features

The set of stochastic featurd; }, is represented by the observation assemble compmi$inigjects that are disposed in
the input observation matriX= = [Xy|---|X|--- |Xn]] . In turn, every object, denoted 5 i =1,...,N, is described by the
respective observation set of time—variant arrangemérfsc =, j = 1,...,p}, such thatX = [Xai| - -- [X;i|---[Xpi] ", X €
RP<T wherex;ji = [xji(1)... Xji(t) ... x;i(T)] is each one of the measured or estimated short-term fedtoresiosignal
recordings, equally sampled evolving through the time, bhauhg xi; (t), the j—th stochastic feature for theth object
upon a concrete instant of time.

For the sake of simplicity, the reduction dimension is degeld when projecting by the simplest time—evolving latent
variable approach, i.e., time—adapted PCA. So, given tlserohtion matrixX=, there will be a couple of orthonormal
matrixes,U € RN*N v € RPT*PT  plus diagonal matrixZy, as well, so that a simple linear decomposition takes place,
i.e., Xz =UZxV', whereZy € RPT*PT holds first ordered] as most relevant eigenvalues of matdx, vy >vy,....>
Vg = Vg+1,...,= Vpr = 0, that implies the relevance measure to be considered.Thienonim mean squared—based error
is assumed as the evaluation measure of transformai¥x,Z) ~ min&{||=—Z||2}, (where]| - ||2 is the norm squared
value, and¢{-} is the is the expectance operator), that is, maximum vagigpreferred as relevance measure, when the
following estimation of covariance matrix is carried out:

cov{Xz} =XIXz =VIZVT (4)

To make clear the contribution of each time—variant valyé), expression4) can be further extended in the form:
T 0 2 T
XEXE = Z VJVJVJ 5
j=1

whereV; is the j—th column of matrixV.
Consequently, the amount of relevance captured at everyembmby the singular value decomposition, that is
associated to the whole set of features is assessed as ltheirfigl time—variant relevance measure:

q
9(X=.Z;t) = Y Vv, (5)
=1

Therefore, the proper selection of the most relevant s&izhBeatures containing essential information can beexefui
if choosing the truncated set of extracted from TFR pararadteat exhibit the higher time—variant values of variance—
based relevance measure. In other words, dimension reduisticarried out by adapting in time commonly used latent
variable techniques (by example, the one expressed by4y)q.itf such a way, that the data information is maximally
preserved, given a relevance function as evaluation measgurme—variant transformation, and therefore, distialging
relevant stochastic features.

1. EXPERIMENTAL SETUP

Based on relevance analysis of dynamic features that aractedl fromt—f representation of PPG envelope, the
proposed methodology for diagnosing obstructive sleepearappraises next stages (See schematic representation of
Figure 1): a) Preprocessing, b) Enhancement of TFR, c) Dynamic feautraction embracing dimension reduction of
TFR—derived time series, and d) OSA detection.

A. Clinic Photoplethysmography Database

This study uses the collection of polysomnography recgsliof 21 children that were acquired over all-night-long
sessions, as detailedly described 8}. [The children aging within £+ 2 years were referred to the Miguel Servet
Children’s Hospital in Zaragoza for suspected sleep—da@d breathing. Electroencephalographic electrodeiposiC3,

C4, 01, and 02, chin electromyogram, electrocardiogralgaids | and Il, eye movements, airflow, as well as chest and
abdominal respiratory efforts were recorded by a digitdyg@aph @l TVED EGP800), according to the standard procedure
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i . Feature selection by i
Preprocessing TFR enhancement Feature generation Stochastic Relevance Detection

Analysis ; ;
Artifact removal Spectral centroids & Classification

Partitioning STFT Centroids energy Time/adapted PCA Veldation
Clustering Cepstral coefficients

Fig. 1. Schematic representation of an automated systeif®$@x diagnosing from—f representation of PPG envelope

of the American Thoracic Society8]. PPG and arterial oxygen saturation (Sa@ere measured continuously using a
pulse oximeter (OSMO ETCO2/ SpO2 Monitor Novametrix, Medical Systens). Recordings were stored with a sample
rate of 100 Hz, except electrocardiographic biosignals weae sampled at 500 Hz. OSA evaluation from PSG data were
scored by clinical experts using the standard procedurdscateria given in p]. Children often desaturate with short
apneas, as they have a lower functional residual capacityadfiaster respiratory rate than adults. Therefore, olstaic
apneas of any length are scored when interpreting pedslzeép studies, as compared with the 10-s duration in adults.
Children may develop clinical sequelae with what appearbeaelatively mild OSA. Thus, an apnea index of 10 is
considered to be severe by most pediatric pulmonologistereas it is considered only mildly abnormal in adults. One
reason why a low apnea index can be associated with seveieatldisease is that the apnea index, the parameter used
most often to characterize disordered breathing in addétss not give an accurate picture of the nature of the bragthi
disturbance in children10]. Thus, ten children were diagnosed with OSA whereas theaieed eleven were diagnosed
as normal.

B. Artifact Removal

It has been established that PPG measurements are quitBvsetuspatient and/or probe—tissue movement artifact.
Removal of such motion artifact as well as its separatiomfpyoper quality, although highly variable, pulse recogsiis
a non-trivial signal processing exercidd]. To cope with this drawback, the artifact Hjorth detecused. The principle
behind the detector is that when the PPG signal differs karfyjem an oscillatory signal, it is very likely an artifact.
Hjorth parameter has been proposed as an estimation of titemkc&equency of a signal and as half of the bandwidth.
Further details of used artifact removal procedure areatnet in P].

C. Labeling of PPG Envelope Recordings

It is worth noting that the discussed automated system foA @i@gnosing is based on analysis of set of fragments
that are partitioned from the PPG envelope recordings. ttiqudar, once the OSA diagnostic labeling of PSG recording
database had been made by experts after clinical analydlseatonsidered children patient group, then, all recoling
that in average can last as much as 8 hours are firstly pagiionto fragments of two different considered lengths:
15 or 60 minutes. Each fragment of either length is labeledgua decision rule based on Sa®ignal which had
been simultaneously measured in time. Moreover, becausemputational load the fragments are partitioned agam int
segments lasting 90 s. Each every 90-seconds frame is dieesame label of the respective PPG fragment from where
the segment has been extracted. So, labeling of partitiBiR€al envelope recordings is provided according to the fatigw
procedures:

1) Fragment Labelingln general, pathologic patients can have some time perieldsed to both apneas and oxygen
desaturation, but, they can also exhibit some normal psmathout any respiratory problems. So, regarding subject
diagnosis, it is useful to consider PSG fragments as a whatiéyethen, a subject classification is carried out
based on the number of PSG fragments that are related tocapegods. The length of considered fragments is
a trade—off between fragments and subject classificatiothis study, both 15-minutes and 1-hour PSG fragments
are considered, as recommended3h [This assessed set of PSG fragments is labeled as follows:
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2)

At the beginning, a baseline leV@| is fixed for each patient that is related to the oxygen satmaivhich corresponds
to the Sa@ signal mode of the entire night recording. Then, the totaktintervals with Sa@signal belowf3 — 3%,
tg_3 is calculated for each PSG fragment. Polysomnographiarfesgs of either length, 15-minutes or 1-hour, are
labeled according to the following criteria:

tg_3 < 0.9 minutes, control
0.9 minutes< tg_3 < 3 minutes, doubt (6)
tg_3 > 3 minutes, pathologic

The above imposed criteria imply a minimum of 5% of the timéhwavident oxygen desaturation to be considered
as pathologic. The assumed threshold corresponds to aes@®k criteria in children of 18 apneas/hour having a
mean duration of 10 s. In case of control group, that threktsolixed to be 5 apneas/hour. As a result, the following
data set of labeled fragments per considered class is adsesmtrol(70), doubt (24), and pathologic (11), when
just considering 1-hour PSG fragments, whereas the setrifad326), doubt (47) and pathologic (47) is achieved
for 15-minutes PSG fragments; each one also labeled acgptdieq. 6).

Segment Labeling.

Since each taken into account fragment of either length—{lomer or 15—minutes) turns to be very long to provide
computational stability when implementing discussed #adapted PCA approach, then, PPG signals should be
partitioned into processing time windows of shorter durat{termed segments). Seeing that each signal partition
should comprise enough heart beats(see Figurand taking into account that artifacts rarely last mo@ntB0 s.,
then the segment length is fixed empirically to be 90 s. Furéheery 90-seconds-segment is given the same label
as the respective PPG fragment, wherein the partition isidiecl. Nonetheless, there is a need for further clustering
procedure to ensure that the assessed set of PPG segmepteedy labeled. After carried on bi-class clustering
(one cluster per class, control or apneic), by using algoridiscussed in12], distanced far enough from both
cluster centroids are removed from present analysis. $0aireed group of segments adequately labeled becomes
herein the training set.

Number of recordings

= I R - N -
—

w

80 85 90 95 100 105 110 115 120
Heart beat rate per minute

Fig. 2. Histogram of heart beat rate per minute for a givenoséabeled PPG fragments

Tablel summarizes the amount of 90-seconds-segments accontpfishieoth cases of considered PPG signal length:

firstly, after artifact removal*(, then after clustering*{), which becomes the considered training set.

IV. RESULTS

A. TFR Enhancement and Feature Generation

Figure 3 illustrates examples of estimated enhanced TFR that aferped for cases of normal and pathological
partitions, respectively. Assessed TFRs are the matricésensionT x F, whereF is the number of spectral components
of the PPG signalf = [0,1] Hz; andT is the number of discrete-time samples of each recordinig. dfangement is
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AMOUNT OF 90-SECONDSPARTITIONS ACCOMPLISHED FOR BOTH CASES OF LABELEPPGSIGNAL LENGTH

TABLE |

Labeled PPG signal 060-minutes-length

Clinical OSA diagnosis# Segmen(3)

# Segmen(s*)

Normal 2618 1908
Pathologic 416 293
Assembled set 3034 2201

Labeled PPG signal oi5-minutes-length

Normal 2046 672
Pathologic 409 332
Assembled set 2455 1005

intended to cover the full-time range as well as a broad rafgiequencies. As seen, the normal case holds the
low frequency (04— 0.15 Hz) and high frequency (05— 0.5 Hz) bands of the signal. Conversely, the pathological
representation does not have this high frequency compphenits energy is concentrated around the lower frequencie
Nevertheless, to illustrate the difficultness of addregsetllem, Figure3 shows several PPG segments belonging to normal
(see Figures3(a)3(c)), and pathological classes (see Figud¢k), 3(d)) along with their respective estimated TFR, and
it can be seen that there are some normal segments whoseowavefsembles like pathological ones, and vice versa.
A quantitative measure of the information contained in tlk&RTmaps is the entropy of each badd]| with frequencies
between 4 and 015 Hz in the low band, and frequencies betweetb0and 05 Hz in the high band. Tabld shows

the results of the average entropy for each class, as wefleaavierage entropy for all the TFR maps, no matter its class.

TABLE Il

AVERAGE ENTROPY

Class Frequency band| Entropy average
Normal High band 316.22
Normal Low band 651.06
Pathological High band 291.70
Pathological Low band 672.88
Normal and Pathological High band 312.86
Normal and Pathologic#l Low band 654.05

Since the selection of the appropri&té representation is required, tuning of the respective patars is achieved by
procedure developed for biosignals that is discussed4h Based on above explained spectral PPG envelope propertie
the STFT-based quadratic spectrogram is computed by glidamming windows for the following set of estimation TFR

parameters: 383 ms processing window length, 50 % of overlapping, and 5&guency bins.
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High band entropy (00 5-0.5 Hz)=237.76 High band entropy %) 5-0.5 Hz)=184.93
Low band enlmpy 0.0 (0.04
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Fig. 3. Estimated TFR for examples of segments of 90-sectemdgh of the PPG envelope signals having labels: normalpooea, respectively.

B. Estimation of Relevance Weights of Dynamic Features

Another aspect worthy of explicit attention is the genematdf TFR—based dynamic features to be under study.
Specifically for the present work, procedures for compatatf cepstral coefficients and centroids are similar; where
both cases each TFR is split into a fixed number of bafdls §o, in respect to calculation of coefficients, given in EQ.
and @), the following working parameters are to be determinednely, the initial number of time—variant features, the
number of bank filters, the impulse response and its ovenap fvequency domain. Nonetheless, it should be remarked
that the initial number of dynamic features to be fixed is natitical issue for the proposed training methodology since
this amount is to be refined next by the relevance analysis.

Therefore, in accordance to the accuracy reached for a kasic classifier, as shown in Figuré the input data
space includes the following 39 TFR—based dynamic featioreg further studied: the first 22 spectral centroids and the
respective energy (estimated by using Hamming filters wiiboverlap, linear response distribution, and fixing 1),
and the first 17 time series of vector cepstral coefficiends #me computed by 48 triangular response filters with 50%
overlap.
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Fig. 4. On adjusting the number of TFR—based dynamic fesiture

As stated above, each time—dependent feature is assumestda@relative associated weight of relevance; the largest
estimated weight in5) the most relevant the respective dynamic feature. Howerer estimate of relevance weight is
conditioned by the given dynamic feature set taken into @etduring calculation. Furthermore, for the concrete aafse
OSA diagnosing, selection of the best set of features carchieved using, al least, two different combining approache
of comparison: Firstly, when taking a partially divided #edt comprises just a single type of performed dynamic featu
that is, having the same principle of generation (see Eguost{l), (2) and @)). Secondly, when the best contours are
chosen among the whole set of features no matter on theiigathyseaning. In this work, both combining approaches of
dynamic features are studied in terms of dimension reduchbat also of accuracy performance. It must be quoted that
the former approach of selection is more commonly used tsecafithe convenient physical interpretation of selected se
of features.

Nonetheless, and just for the sake of illustration, thiskacarries out tuning of proposed training approach based on
latter combining way since the amount of considered dyndedtures is significant higher. Specifically, the normalize
relevance weights, which are estimated according to disclimethodology of relevance analysis for stochastic gesse
are depicted in Figur®, being ordered by ordinal feature number, which are caledlavhen taking the whole set of
dynamic features (see Figub€a)), and partially divided set (see Figusb)), respectively.

1 1
09r
0.8 0.8
£ £07
.oh .oh
206 ] 5061
E E 051
=041 1 =041
£ £
5 503f i
& 0.2 —= Energy of centroids § z 02+ —= Energy of centroids §
—= Centroids 01k —= Centroids |
— LFCC : — LFCC
[ [
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Index of ordered weights Index of features
(a) Full set— based estimation (b) Estimates for partially divided set

Fig. 5. On computing relevance weights for considered cambiapproaches of comparison among dynamic features.

C. Performed Classification Accuracy

Throughout the following training procedures, the metiatijust the different schemes of considered parametenizat
is the classification accuracy for the automatic OSA detectivhich is estimated using a simpkenearest neighbor
classifier, ork — nn classifier. Several reasons account for the widespread futgsoclassifier: it is straightforward to
implement, it generally leads to a good recognition perfamoe thanks to the non-linearity of its decision boundaries
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and its complexity is assumed to be independent of the numbelasses. In this concrete case, discussed methodology
of training assesses the tuning of the ugednn classifier by calculating its optimal number of neighborgdenms of
accuracy performance, as shown in Figére

083 1nn
— 3-nn
|— 5-nn
— 7-nn
— 9-nn |,
0.81 11|/
— 13+n If : : ; :
5 10 15 20 25 30
Number of PCA components

Correct rate

Fig. 6. Tuning ofk-nn classifier by calculating the optimal number of neighborseiims of accuracy performance

With aim of validate the discussed training methodology@®&A detection, it is desired to obtain a diagnostic over the
full set of fragments of either considered length. In turctefragment is diagnosed to be related of either class gealin
on decisions that are attained for the set of segments ceimgrihe fragment in hand. Namely, at the beginning, there is
a need to fix a minimum number of segments classified as paficdior giving the same label to each fragment. That
pathologic segment number, termed decision thresholdxésl fon dependence on both considered fragment lengths.

It should be remarked that in this work, and because of retlingrit data assemble, some recordings are used for both
training and validation, as well. Therefore, for testing ttlassifier the apparent accuracy is assessed that is peddry
usingk — nn classifier k= 3), as shown in Tabldl .

TABLE Il
CLASSIFICATION OF PPGFRAGMENTS FOR PARTIALLY DIVIDED SET

Classification for60-m-length Classification for15-m-length
Dynamic feature seSe[%]|S, [%]| Acc[%] |Se[%]|S, [%]| Acc[%]
Energy of Centroids81.82 | 94.29 9259 95.74 | 54.60 59.79

Centroids 9091 | 100 98.77 9149 | 9540 9491
LFCC 100 | 8571 87.65 9362 | 9540 9540
Full set 100 | 100 100 97.98 | 9356 9335

The decision threshold is proposed to be adjusted basedrtormped ROC curve for patient classification, as shown in
Figure?. So, the location where the ROC curve gets the better clest$ifh accuracy points out to the decision threshold.
Lastly, each patient is diagnosed based on those decisiadg finom the set of fragments measured for him. So a
rule to determine when a patient with a given number of paifichl fragments is considered as a pathologic subject is

needed. To do this, the percentage of time under pathologggrfents was considered and this threshold was selected for
maximizing Se and Sp, ratio at the ROC curve.
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Fig. 7. Performed ROC curves on dependence on both condifieg@ment lengths

TABLE IV
CLASSIFICATION OF PATIENT FOR TRAINING BASED ON PARTIALLY DVIDED SET OF DYNAMIC FEATURES

Dynamic feature seSe[%)] |S, [%] |Acc [%]
Energy of Centroids70.00 | 87.50 | 73.68

Centroids 80.00 | 87.50 | 83.33
LFCC 90.00 | 75.00 | 8333
Full set 80.00 | 87.50 | 83.33

Table IV summarizes the performed patient classification accuracybbth considered combining approaches of
dynamic features (partial and full set). In accordance i discussed approach of relevance analysis, the LFCC and
Centroids subsets of dynamic features reach the betteramcthat is similar to the one achieved for the whole tragnin
set. As a result, both sets should be strongly considere®@8&% diagnosing with the advantage that the each performed
time—evolving parameter is related to a fixed spectral sathpand thus, leading to easer clinical interpretation. ustbe
quoted that displayed outcomes of accuracy in Talleare performed just when considering training over 60-nglen
fragments. In case of 15-m-length, and if taking into coesadion the full set of dynamic features, the overall perfance
is the following: Se= 90% S, = 62.5%, and Acc= 77.78% which is significatively lower that those assessed outcomes
for training over 60-m-length fragments.

Next, the energy subset shows high relevance, but a low peafoce; this may be explained because of notable
redundance among the features. Therefore, the set of erehgit is described by EdB)(should be rejected as perspective
dynamic features for OSA diagnosing.

V. DISCUSSION

It should be remarked that the main goal of present paper isséna complex of signal processing algorithms for
the improvement in OSA diagnosis from PPG recordings, asl@nnative for sleep apnea screening with the added
benefit of low cost and simplicity. The methodology lies or thypothesis that each time—dependent characteristis hold
a relative associated weight of relevance, and in this octiorg the results also evidence the following aspects ke ta
into consideration:

— The enhanced parameter estimation carried out by intingtie-f representations should be regarded as a remarkable
factor for an adequate generation of any set of dynamic featudere, feature enhancement is performed by means
of nonparametric spectrogram—based TFR that had beentedpor be appropriate for the analysis of nonstationary
biological signals consisting of different frequency campnts. Nonetheless, for the discussed methodology for OSA
detection, needed TFR enhancement for dynamic featur@actixin can be performed by using more elaborated
approaches: wavelet—based scalograms, projection pusguising time frequency distributions, etc., as discdsse
[14]. Yet, no matter which particular TFR estimation method sed, the final result is a large data matrix containing
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the time-frequency pattern, which has to be transformeal anfeature vector for classification purposes holding the
most relevant information in a compact fashion.

— With regard to feature extraction and selection, propasethodology for relevance analysis of dynamic relevance is
based on time—adapted linear component approach. At tims, pevo main issues are to be considered: the measure
associated to a given relevance function, and the mulétatransformation through the time axis, which is assumed
to maximize the measure of relevance present in the contputbeir projection onto a new space. As a measure
of relevance, the maximum variance is assumed. Specifi¢amig—adapted PCA version is discussed throughout this
paper as unsupervised method to perform relevance analysissidered set of stochastic features. Though proposed
methodology of relevance analysis can extended to othénigees linear component decomposition, as shown in
[15].

— Two different combining approaches for selecting the besbf contours are studied: Firstly, when taking a paytiall
divided set that relates dynamic features having the sameiple of generation. Secondly, when the best features
are chosen despite of their physical meaning. From perfdraceuracy showed in Tabld one can conclude that
even that the former case reaches comparable figures ofaagctine latter approach of selection is more commonly
used because of the convenient physical interpretatiorletted set of features. Furthermore, it has been establish
that the set of LFCC dynamic features should be stronglyidensd for OSA diagnosing. Performed outcomes bring
enough evidence that if using a subset of LFCC features aneagclassification accuracy can reach as much as 93%
value, which provides an adequate scheme for ambulatory @&nosis. Therefore, to take into account evolution of
random biological variables along time, definitively, lsad an accuracy improvement of OSA detection. Nonetheless,
more efforts might be done to define feature set carryingdomehtal information for the OSA classification, as quoted
in [16]. Though, performed outcomes look very promising in terrhaezuracy of features extraction, testing of the
discussed methodology should be provided using larger skisa

— The set of considered pathological subjects shows a lémgeirequency entropy than the set of normals as expected
from the bigger envelope oscillations driven by apnea. Téeense happen when analysing entropy in the high
frequency band where pathologic subjects reduce the gnasgompared to normals.

— The discussed automated system for OSA diagnosing is loasanalysis of set of fragments that are partitioned from
the PPG envelope recordings. In this regard, labeling ditjpared PPG envelope recordings is provided so to have
time epochs identified as apneic or not apneic. Howeverjticel practice usually the interest lies in having a subjec
diagnosis related to apnea, both in adultg][and children §], and not just a time screening of the apnea events.
With this aim, a rule has being applied to the fragment ladgglproviding subject specific diagnosis. Comparison
with PSG clinical decision is provided, showing the potaintf the methods here presented. As a result, PPG can
be considered as a promising alternative to reduce the nuailibe PSG sleep recordings.

VI. CONCLUSIONS

A new methodology for OSA detection is explored, which isdzhen relevance analysis of dynamic features extracted
from nonparametri¢—f representation of the recordings of PPG envelope. Paatigula time—evolving version of the
standard PCA is discussed that performs stochastic dimmaldy reduction of the dynamic features in hand. Discdsse
methodology of relevance analysis benefits of the dynamipgmties of the time—evolving spectral parameters, during
either transient physiological or pathological episod&s.a result, PPG can be considered as a promising alterrtative
reduce de the number of the PSG sleep recordings.

In addition, two different combining approaches for sategthe best set of contours are studied: Firstly, when takin
dynamic features having the same principle of generatiecofdly, when the best features are chosen despite of their
physical meaning. In this case, the latter approach turmsae suitable because of the convenient physical inteafioet
of selected set of features and provided accuracy of sefeidimore commonly used because of the convenient physical
interpretation of selected set of features. Furthermdrbas been established that the LFCC and Centroids subsets of
dynamic features should be strongly considered for OSA rdisimg since it increases the specificity in the apnoea
detector. Both subsets display a patient classificatiomracy of 8333%, while in {] is reported an accuracy of 80%;
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consequently, the advantage of the method proposed in dlpisrfgo increase the specificity of the obstructive sleegapn
detector is evident.

The TFR-based parameter estimation is a remarkable famtanfadequate dynamic feature generation. Therefore, for
OSA detection, it would be of benefit to explore needed entraent by using more elaborated approaches (wavelet-based
scalograms, matching pursuit, etc.). Besides, as featark, iurther efforts on finding an alternative for OSA diaginy,
having the added benefit of low cost and simplicity, shoulddoeised on extended studies to corroborate the potential of
another approaches in conjunction with heart rate vanadioalysis 18], [19].
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