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Selection of Non–stationary Dynamic Features
for Obstructive Sleep Apnoea Detection in

Children
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Abstract

This paper discusses the methodology for selecting a set of relevant non–stationary features to increase the specificity
of the obstructive sleep apnea detector. Dynamic features are extracted from time–evolving spectral representation of photo-
plethysmography envelope recordings. In this regard, a time–evolving version of the standard linear multivariate decomposition
is discussed to perform stochastic dimensionality reduction. For training aim, this work analyzes the concrete set comprising
filter banked dynamic features that includes spectral centroids, the cepstral coefficients, as well as their time–variant energies.
Performance of classifier accuracy is provided for the collected polysomnography recordings of 21 children. Moreover,since
the apnea diagnosing is based on analysis of set of fragmentspartitioned from the photoplethysmography envelope recordings,
a new approach for their indirect labeling is described. As aresult, performed outcomes of accuracy bring enough evidence
that if using a subset of cepstral–based dynamic features, then patient classification accuracy can reach as much as 83.3%
value, when using ak−nn classifier, as well. Therefore, photoplethysmography–based detection provides an adequate scheme
for obstructive sleep apnea diagnosis.

Index Terms

Non–stationary Dynamic Features, Dimension Reduction, Obstructive Sleep Apnea, Photoplethysmography.

I. INTRODUCTION

Regarding the diagnosis of obstructive sleep apnea (OSA) syndrome, which is characterized by recurrent airflow

obstruction caused by total or partial collapse of the upperairway, several strategies have been developed to decreasethe

number of the sleep recordings needed for usually performedpolysomnography [1] that is related as an expensive and

time–consuming procedure. One promising alternative is the pulse photoplethysmography signal (PPG) that is a simple,but

useful, method for measuring the pulsatile component of theheartbeat. PPG measurement evaluates peripheral circulation,

and is tie–related either to arterial vasoconstriction or vasodilatation generated by the autonomic nervous system, being

modulated by the heart cycle. Furthermore, automatic detection of time–variant decreases in the amplitude fluctuations of

PPG have shown their utility for OSA diagnosis [2]–[4].

Nonetheless, since there is a large number of situation whenPPG enveloped is affected independently of the apnoea

status, then, a low ratio sensitivity/specificity is accomplished. Therefore, to better discriminate between apnoea from other

PPG envelop alterations an improved set of representing features should be taken into account, particularly, stochastic

modeling of dynamic features for OSA detection is to be further considered in this work.

The use of stochastic modeling, when taking into account evolution of random biological variables along time (herein

referred asdynamic features) precedes the necessity of building a proper methodology oftheir processing. Furthermore,

it is well–known that the complexity of stochastic modelingincreases because of need to carry out the adequate non–

stationary estimation of parameters derived from biosignal recordings. One can refer that issue as the most important

difference between static and dynamic statistical processing.
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As a rule, methodology for analysis of time series is based onthe assumption that there is always a processing time

window of such a length that the piecewise stationary–basedapproach of analysis holds. Although determination of proper

stationary data length remains as an open issue. With this inmind, the time—frequency representation (TFR) has been

proposed before for the analysis of non–stationary biomedical data. Among the most popular TFR used to investigate the

dynamic properties of the time–evolving spectral parameters, during either transient physiological or pathologicalepisodes,

are those computed directly from the raw data after pre—processing, termed nonparametric approaches. Specifically, the

Wavelet Transform (WT) and he Short Time Fourier Transform (STFT) are commonly used. Though the former TFR is

likely to avoid thet–f resolution compromise, the latter nonparametric approachis desirable for biosignals with a slow

time varying spectrum [5], as it is the case for PPG recordings. However, the application of TFR to the analysis of short

transient signals (like in case of PPG envelope) is a complex, and difficult task due to the inherent limitations of the

TFR techniques for extracting the relevant, but not redundant characteristics. In other words, without accurate models to

describe properly the dynamic behavior of PPG envelope biosignals, the use oft-f processing methods, based on stochastic

assumptions, may fail to provide satisfactory results. In this sense, it has been established the discriminating capability of

frequency bands of biological activity between normal and pathological patterns, and for that reason, the set of TFR—based

stochastic features to be considered should be suitable estimated by time–evolving spectral subband methods.

Nonetheless, the amount of measured time–variant featurescan be large, no mentioning that the sampling rate used

for these measurements may be also high. Assuming that dynamic variables are low–pass processes, then the enclosed

information within the stochastic data becomes highly correlated. This fact provides a large data–sets holding a big amount

of redundancy, which in turn leads to either overtraining data or significant increasing of computational overhead. In such

a situation, dimension reduction that should be strongly considered might determine the adequate number of relevant

features to select either by encoding or removing both redundant and irrelevant information. Furthermore, the conceptof

biosignal interpretation becomes critical, whose ultimate goal is the proper classification of the features, but also to depict

them in order to maximize correct interpretation and physiological or clinical meaning [6].

Extraction of relevant stochastic information from dynamic feature sets has been discussed in the past, as a means to

improve performance during and after training in learning processes. Thus, to get an effective feature selection algorithm,

in the context of an inference, two main issues are to be overcame [7]: the same measure associated to a given relevance

function (i.e., a proper measure of distance for time series), and the multivariate transformation through the time axis, which

is assumed to maximice the measure of relevance present in the non–stationary features by their projection onto a new space.

For a dimension reduction, statistical latent variable techniques can be applied, for example, by using Principal Component

Analysis (PCA) that maximizes the variability on the input data set. This specific and unique property of PCA makes

the stationary signals easy to interpret. But standard latent variable techniques clearly do not take into consideration the

time–evolving nature of random biological variables, since they are grounded on a common representation that minimizes

the global reconstruction error.

The aim of this study is to select a set of relevant non–stationary features, extracted fromt–f representation of time–

dependant PPG envelope signals, to increase the specificityin the apnoea detector. This work analyzes the set comprising

filter banked dynamic features that includes spectral centroids as well as the cepstral coefficients. Specifically, a time–

evolving version of the standard linear multivariate decomposition is discussed throughout this paper to perform stochastic

dimensionality reduction of the dynamic features in hand. The rest of the paper is organized as follows: SectionII

introduces materials and methods focused on generation of non–stationary features, extracted fromt–f representation of

time–dependant PPG envelope signals. Also, the proposed methodology of stochastic training is evaluated using real PPG

recordings. The attained results are discussed in SectionV. Finally, SectionVI presents the conclusions and discusses

some possibilities for future work.

II. MATERIALS AND METHODS

A. Generation of Enhanced Dynamic Features

The PPG envelope,y(t), is estimated based on the root mean square series of input PPG signal,yPPG(t). So, the discrete

version of PPG envelope, after mean removal by a moving average filter, can be written as follows [2]:
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where the values for the window length of the filtering,M, and the root mean square series,N, are fixed to be 25 and

twice the mean cardiac cycle, respectively.

Generally, a direct way of describing the PPG envelope,y(t), in both time and frequency (t–f) domains becomes its

time–evolving spectral representation. Thus, for estimating TFR of random signals, power spectral density is commonly

used, which for a given biosignal,y(t), is directly represented by thespectrogram:
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Supported on classical Fourier Transform, the Short Time version (termed STFT) introduces a time localization concept

by using a tapering window function of short duration,φ, that is going along the studied biosignal,y(t).

Extracted from the spectrogram–based TFR, anystochastic feature x(t) refers to random numeric values comprising

measures evolving over time, i.e., there is a certain set of parameters,Ξ = {xxxi = xi(t) : i = 1, . . . , p}, that changing along

the time axis,t ∈ T, is supposed to carry temporal information of the non–stationary biosignals. In this regard, some

nonparametric TFR–based dynamic measures have been widelyaccepted, mainly, those estimated by spectral subband

methods, when efficiently combining frequency and magnitude information from the short–term power spectrum of the

input biosignals. For instance, given a discrete time series, y(n), being the sampled version of a continuous biosignal

recordingy(t), the set ofLinear Frequency Cepstral Coefficients(LFCC) is proposed to be employed, which is extracted

by Discrete Cosine Transform of triangular log–filter banks, {Fm(k) : m= 1, . . . ,nM}, linearly spaced in the frequency

domain:
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∑
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π
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(1)

where p is the number of desired LFCC features to be considered, andsm(l) is the weighted sum of each frequency

filter response set,sm(l) = ∑nK
k=1Sy(l ,k)Fm(k), being m, l and k the indexes for filter ordinal, time, and frequency axes,

respectively;nK stands for the number of samples in the frequency domain. Other effective way of generatingt–f based

time–variant features is achieved through computation of the histograms of the subband spectral centroids that are estimated

for each filter in the frequency domain,F ′
m(k), by:

xn(l) =
∑nK

k=1kF′
n (k)Sγ

y(l ,k)

∑nK
k=1F ′

n (k)Sγ
y(l ,k)

(2)

whereγ is a parameter representing the dynamic range of the spectrum that is used for computation of the centroid. The

filters F ′
n(k) are linearly distributed along the spectrum. In addition, the energy around each centroid can be also considered

as time–variant feature that for a fixed bandwidth∆k is computed by means of:

xn(l) =
x̂n(l)+∆k

∑
k=x̂n(l)−∆k

Sy(l ,k) (3)

wherex̂n(l) is the actual value of the time–variant centroid that is estimated by (2).

B. Relevance Analysis of Stochastic Features

Because of high computational cost of stochastic feature–based training, dimension reduction of input spaces is to be

carried out, being latent variable techniques widely used for this aim that finds a transformation reducingp–dimensional

stochastic feature arrangement,ΞΞΞ ∈R
p×T , into q–dimensional stochastic set,ZZZ ∈R

q×T , q≤ p, in such a way that the data

information is maximally preserved. Besides, as the relevance function,g∈R, the evaluation measure of transformation is
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given that distinguishes variables effectively representing the subjacent physiological phenomena, termedrelevant stochastic

features.

The set of stochastic features,{xxxi}, is represented by the observation assemble comprisingN objects that are disposed in

the input observation matrixXXXΞΞΞ = [X1| · · · |Xi | · · · |XN|] . In turn, every object, denoted asXi , i = 1, . . . ,N, is described by the

respective observation set of time–variant arrangements,{xxx ji ⊂ΞΞΞ, j = 1, . . . , p}, such that,Xi = [xxx1i | · · · |xxx ji | · · · |xxxpi]
⊤
, Xi ∈

R
p×T , wherexxx ji = [x ji (1) . . . x ji (t) . . . x ji (T)] is each one of the measured or estimated short–term featuresfrom biosignal

recordings, equally sampled evolving through the time, andbeing xi j (t), the j–th stochastic feature for thei–th object

upon a concretet instant of time.

For the sake of simplicity, the reduction dimension is developed when projecting by the simplest time–evolving latent

variable approach, i.e., time–adapted PCA. So, given the observation matrix,XXXΞΞΞ, there will be a couple of orthonormal

matrixes,UUU ∈ R
N×N,VVV ∈ R

pT×pT, plus diagonal matrixΣΣΣXXX , as well, so that a simple linear decomposition takes place,

i.e., XXXΞΞΞ =UUUΣΣΣXXXVVV⊤
, whereΣΣΣXXX ∈ R

pT×pT holds first orderedq as most relevant eigenvalues of matrixXXXΞΞΞ, ν1 > ν2, . . . ,>

νq > νq+1, . . . ,> νpT > 0, that implies the relevance measure to be considered.The minimum mean squared–based error

is assumed as the evaluation measure of transformation,g(XXXΞΞΞ,ZZZ) ∼ minE {‖ΞΞΞ−ZZZ‖2}, (where‖ · ‖2 is the norm squared

value, andE {·} is the is the expectance operator), that is, maximum variance is preferred as relevance measure, when the

following estimation of covariance matrix is carried out:

cov{XXXΞΞΞ}= XXX⊤
ΞΞΞ XXXΞΞΞ =VVVΣΣΣ2

XXXVVV⊤ (4)

To make clear the contribution of each time–variant valuexi j (t), expression (4) can be further extended in the form:

XXX⊤
ΞΞΞ XXXΞΞΞ =

p

∑
j=1

ν2
jVjVj

⊤
,

whereVj is the j–th column of matrixVVV.

Consequently, the amount of relevance captured at every moment t by the singular value decomposition, that is

associated to the whole set of features is assessed as the following time–variant relevance measure:

g(XXXΞΞΞ,ZZZ; t) =
q

∑
j=1

|ν2
jVj |, (5)

Therefore, the proper selection of the most relevant stochastic features containing essential information can be achieved

if choosing the truncated set of extracted from TFR parameters that exhibit the higher time–variant values of variance–

based relevance measure. In other words, dimension reduction is carried out by adapting in time commonly used latent

variable techniques (by example, the one expressed by Eq. (4)), in such a way, that the data information is maximally

preserved, given a relevance function as evaluation measure of time–variant transformation, and therefore, distinguishing

relevant stochastic features.

III. EXPERIMENTAL SETUP

Based on relevance analysis of dynamic features that are extracted fromt–f representation of PPG envelope, the

proposed methodology for diagnosing obstructive sleep apnoea appraises next stages (See schematic representation of

Figure 1): a) Preprocessing, b) Enhancement of TFR, c) Dynamic feature extraction embracing dimension reduction of

TFR–derived time series, and d) OSA detection.

A. Clinic Photoplethysmography Database

This study uses the collection of polysomnography recordings of 21 children that were acquired over all-night-long

sessions, as detailedly described in [3]. The children aging within 4.5± 2 years were referred to the Miguel Servet

Children’s Hospital in Zaragoza for suspected sleep–disordered breathing. Electroencephalographic electrode positions C3,

C4, O1, and O2, chin electromyogram, electrocardiographicleads I and II, eye movements, airflow, as well as chest and

abdominal respiratory efforts were recorded by a digital polygraph (BITMED EGP800), according to the standard procedure
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Preprocessing

Artifact removal

y(t)

TFR enhancement

STFT

Sy(t, f)

Feature generation

Spectral centroids

Cepstral coefficients

Ξ = {xi(t)}

Feature selection by

Time/adapted PCA

Detection

Classification

Validation

k − nng(Ξ, Z, t)

Stochastic Relevance
Analysis

Centroids energyPartitioning
Clustering

Fig. 1. Schematic representation of an automated system forOSA diagnosing fromt–f representation of PPG envelope

of the American Thoracic Society [8]. PPG and arterial oxygen saturation (SaO2) were measured continuously using a

pulse oximeter (COSMO ETCO2/SpO2 Monitor Novametrix, Medical Systems). Recordings were stored with a sample

rate of 100 Hz, except electrocardiographic biosignals that were sampled at 500 Hz. OSA evaluation from PSG data were

scored by clinical experts using the standard procedures and criteria given in [9]. Children often desaturate with short

apneas, as they have a lower functional residual capacity and a faster respiratory rate than adults. Therefore, obstructive

apneas of any length are scored when interpreting pediatricsleep studies, as compared with the 10-s duration in adults.

Children may develop clinical sequelae with what appears tobe relatively mild OSA. Thus, an apnea index of 10 is

considered to be severe by most pediatric pulmonologists, whereas it is considered only mildly abnormal in adults. One

reason why a low apnea index can be associated with severe clinical disease is that the apnea index, the parameter used

most often to characterize disordered breathing in adults,does not give an accurate picture of the nature of the breathing

disturbance in children [10]. Thus, ten children were diagnosed with OSA whereas the remained eleven were diagnosed

as normal.

B. Artifact Removal

It has been established that PPG measurements are quite sensitive to patient and/or probe–tissue movement artifact.

Removal of such motion artifact as well as its separation from proper quality, although highly variable, pulse recordings is

a non–trivial signal processing exercise [11]. To cope with this drawback, the artifact Hjorth detector is used. The principle

behind the detector is that when the PPG signal differs largely from an oscillatory signal, it is very likely an artifact.

Hjorth parameter has been proposed as an estimation of the central frequency of a signal and as half of the bandwidth.

Further details of used artifact removal procedure are explained in [2].

C. Labeling of PPG Envelope Recordings

It is worth noting that the discussed automated system for OSA diagnosing is based on analysis of set of fragments

that are partitioned from the PPG envelope recordings. In particular, once the OSA diagnostic labeling of PSG recording

database had been made by experts after clinical analysis ofthe considered children patient group, then, all recordings

that in average can last as much as 8 hours are firstly partitioned into fragments of two different considered lengths:

15 or 60 minutes. Each fragment of either length is labeled using a decision rule based on SaO2 signal which had

been simultaneously measured in time. Moreover, because ofcomputational load the fragments are partitioned again into

segments lasting 90 s. Each every 90-seconds frame is given the same label of the respective PPG fragment from where

the segment has been extracted. So, labeling of partitionedPPG envelope recordings is provided according to the following

procedures:

1) Fragment Labeling.In general, pathologic patients can have some time periods related to both apneas and oxygen

desaturation, but, they can also exhibit some normal periods without any respiratory problems. So, regarding subject

diagnosis, it is useful to consider PSG fragments as a whole entity, then, a subject classification is carried out

based on the number of PSG fragments that are related to apneic periods. The length of considered fragments is

a trade–off between fragments and subject classification. In this study, both 15-minutes and 1-hour PSG fragments

are considered, as recommended in [3]. This assessed set of PSG fragments is labeled as follows:
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At the beginning, a baseline levelβ, is fixed for each patient that is related to the oxygen saturation, which corresponds

to the SaO2 signal mode of the entire night recording. Then, the total time intervals with SaO2 signal belowβ−3%,

tβ−3 is calculated for each PSG fragment. Polysomnographic fragments of either length, 15-minutes or 1-hour, are

labeled according to the following criteria:















tβ−3 < 0.9 minutes, control

0.9 minutes< tβ−3 < 3 minutes, doubt

tβ−3 > 3 minutes, pathologic

(6)

The above imposed criteria imply a minimum of 5% of the time with evident oxygen desaturation to be considered

as pathologic. The assumed threshold corresponds to a severe OSA criteria in children of 18 apneas/hour having a

mean duration of 10 s. In case of control group, that threshold is fixed to be 5 apneas/hour. As a result, the following

data set of labeled fragments per considered class is assessed: control(70), doubt (24), and pathologic (11), when

just considering 1-hour PSG fragments, whereas the set of control (326), doubt (47) and pathologic (47) is achieved

for 15-minutes PSG fragments; each one also labeled according to eq. (6).

2) Segment Labeling.

Since each taken into account fragment of either length (one–hour or 15–minutes) turns to be very long to provide

computational stability when implementing discussed time–adapted PCA approach, then, PPG signals should be

partitioned into processing time windows of shorter duration (termed segments). Seeing that each signal partition

should comprise enough heart beats(see Figure2), and taking into account that artifacts rarely last more than 60 s.,

then the segment length is fixed empirically to be 90 s. Further, every 90-seconds-segment is given the same label

as the respective PPG fragment, wherein the partition is included. Nonetheless, there is a need for further clustering

procedure to ensure that the assessed set of PPG segments areproperly labeled. After carried on bi-class clustering

(one cluster per class, control or apneic), by using algorithm discussed in [12], distanced far enough from both

cluster centroids are removed from present analysis. So, remained group of segments adequately labeled becomes

herein the training set.
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Fig. 2. Histogram of heart beat rate per minute for a given setof labeled PPG fragments

TableI summarizes the amount of 90-seconds-segments accomplished for both cases of considered PPG signal length:

firstly, after artifact removal (∗), then after clustering (∗∗), which becomes the considered training set.

IV. RESULTS

A. TFR Enhancement and Feature Generation

Figure 3 illustrates examples of estimated enhanced TFR that are performed for cases of normal and pathological

partitions, respectively. Assessed TFRs are the matrices of dimensionT×F , whereF is the number of spectral components

of the PPG signal,f = [0,1] Hz; andT is the number of discrete–time samples of each recording. This arrangement is
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TABLE I
AMOUNT OF 90-SECONDS-PARTITIONS ACCOMPLISHED FOR BOTH CASES OF LABELEDPPGSIGNAL LENGTH

Labeled PPG signal of60-minutes-length

Clinical OSA diagnosis # Segments(∗) # Segments(∗∗)

Normal 2618 1908

Pathologic 416 293

Assembled set 3034 2201

Labeled PPG signal of15-minutes-length

Normal 2046 672

Pathologic 409 332

Assembled set 2455 1005

intended to cover the full–time range as well as a broad rangeof frequencies. As seen, the normal case holds the

low frequency (0.04− 0.15 Hz) and high frequency (0.15− 0.5 Hz) bands of the signal. Conversely, the pathological

representation does not have this high frequency component, but its energy is concentrated around the lower frequencies.

Nevertheless, to illustrate the difficultness of addressedproblem, Figure3 shows several PPG segments belonging to normal

(see Figures3(a),3(c)), and pathological classes (see Figures3(b), 3(d)) along with their respective estimated TFR, and

it can be seen that there are some normal segments whose waveform resembles like pathological ones, and vice versa.

A quantitative measure of the information contained in the TFR maps is the entropy of each band [13], with frequencies

between 0.04 and 0.15 Hz in the low band, and frequencies between 0.15 and 0.5 Hz in the high band. TableII shows

the results of the average entropy for each class, as well as the average entropy for all the TFR maps, no matter its class.

TABLE II
AVERAGE ENTROPY

Class Frequency band Entropy average
Normal High band 316.22

Normal Low band 651.06

Pathological High band 291.70

Pathological Low band 672.88

Normal and Pathological High band 312.86

Normal and Pathological Low band 654.05

Since the selection of the appropriatet–f representation is required, tuning of the respective parameters is achieved by

procedure developed for biosignals that is discussed in [14]. Based on above explained spectral PPG envelope properties,

the STFT–based quadratic spectrogram is computed by sliding Hamming windows for the following set of estimation TFR

parameters: 37.5 ms processing window length, 50 % of overlapping, and 512 frequency bins.
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Fig. 3. Estimated TFR for examples of segments of 90-seconds-length of the PPG envelope signals having labels: normal orapnoea, respectively.

B. Estimation of Relevance Weights of Dynamic Features

Another aspect worthy of explicit attention is the generation of TFR–based dynamic features to be under study.

Specifically for the present work, procedures for computation of cepstral coefficients and centroids are similar; wherein

both cases each TFR is split into a fixed number of bands [14]. So, in respect to calculation of coefficients, given in Eq.(1)

and (2), the following working parameters are to be determined, namely, the initial number of time–variant features, the

number of bank filters, the impulse response and its overlap over frequency domain. Nonetheless, it should be remarked

that the initial number of dynamic features to be fixed is not acritical issue for the proposed training methodology since

this amount is to be refined next by the relevance analysis.

Therefore, in accordance to the accuracy reached for a basick–nn classifier, as shown in Figure4, the input data

space includes the following 39 TFR–based dynamic featuresto be further studied: the first 22 spectral centroids and their

respective energy (estimated by using Hamming filters with 30% overlap, linear response distribution, and fixingγ = 1),

and the first 17 time series of vector cepstral coefficients that are computed by 48 triangular response filters with 50%

overlap.
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Fig. 4. On adjusting the number of TFR–based dynamic features

As stated above, each time–dependent feature is assumed to have a relative associated weight of relevance; the largest

estimated weight in (5) the most relevant the respective dynamic feature. However, any estimate of relevance weight is

conditioned by the given dynamic feature set taken into account during calculation. Furthermore, for the concrete caseof

OSA diagnosing, selection of the best set of features can be achieved using, al least, two different combining approaches

of comparison: Firstly, when taking a partially divided setthat comprises just a single type of performed dynamic features,

that is, having the same principle of generation (see Equations (1), (2) and (3)). Secondly, when the best contours are

chosen among the whole set of features no matter on their physical meaning. In this work, both combining approaches of

dynamic features are studied in terms of dimension reduction, but also of accuracy performance. It must be quoted that

the former approach of selection is more commonly used because of the convenient physical interpretation of selected set

of features.

Nonetheless, and just for the sake of illustration, this work carries out tuning of proposed training approach based on

latter combining way since the amount of considered dynamicfeatures is significant higher. Specifically, the normalized

relevance weights, which are estimated according to discussed methodology of relevance analysis for stochastic processes,

are depicted in Figure5, being ordered by ordinal feature number, which are calculated when taking the whole set of

dynamic features (see Figure5(a)), and partially divided set (see Figure5(b)), respectively.
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Fig. 5. On computing relevance weights for considered combining approaches of comparison among dynamic features.

C. Performed Classification Accuracy

Throughout the following training procedures, the metric to adjust the different schemes of considered parameterizations

is the classification accuracy for the automatic OSA detection, which is estimated using a simplek-nearest neighbor

classifier, ork−nn classifier. Several reasons account for the widespread use of this classifier: it is straightforward to

implement, it generally leads to a good recognition performance thanks to the non–linearity of its decision boundaries,
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and its complexity is assumed to be independent of the numberof classes. In this concrete case, discussed methodology

of training assesses the tuning of the usedk−nn classifier by calculating its optimal number of neighbors interms of

accuracy performance, as shown in Figure6.
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Fig. 6. Tuning ofk-nn classifier by calculating the optimal number of neighbors interms of accuracy performance

With aim of validate the discussed training methodology forOSA detection, it is desired to obtain a diagnostic over the

full set of fragments of either considered length. In turn, each fragment is diagnosed to be related of either class grounded

on decisions that are attained for the set of segments comprising the fragment in hand. Namely, at the beginning, there is

a need to fix a minimum number of segments classified as pathologic for giving the same label to each fragment. That

pathologic segment number, termed decision threshold, is fixed on dependence on both considered fragment lengths.

It should be remarked that in this work, and because of reduced input data assemble, some recordings are used for both

training and validation, as well. Therefore, for testing the classifier the apparent accuracy is assessed that is performed by

usingk−nn classifier (k= 3), as shown in TableIII .

TABLE III
CLASSIFICATION OF PPGFRAGMENTS FOR PARTIALLY DIVIDED SET

Classification for60-m-length Classification for15-m-length
Dynamic feature setSe[%] Sp [%] Acc [%] Se[%] Sp [%] Acc [%]
Energy of Centroids81.82 94.29 92.59 95.74 54.60 59.79

Centroids 90.91 100 98.77 91.49 95.40 94.91

LFCC 100 85.71 87.65 93.62 95.40 95.40

Full set 100 100 100 97.98 93.56 93.35

The decision threshold is proposed to be adjusted based on performed ROC curve for patient classification, as shown in

Figure7. So, the location where the ROC curve gets the better classification accuracy points out to the decision threshold.

Lastly, each patient is diagnosed based on those decisions made from the set of fragments measured for him. So a

rule to determine when a patient with a given number of pathological fragments is considered as a pathologic subject is

needed. To do this, the percentage of time under pathologic fragments was considered and this threshold was selected for

maximizing Se and Sp, ratio at the ROC curve.
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TABLE IV
CLASSIFICATION OF PATIENT FOR TRAINING BASED ON PARTIALLY DIVIDED SET OF DYNAMIC FEATURES

Dynamic feature setSe[%] Sp [%] Acc [%]

Energy of Centroids70.00 87.50 73.68

Centroids 80.00 87.50 83.33

LFCC 90.00 75.00 83.33

Full set 80.00 87.50 83.33

Table IV summarizes the performed patient classification accuracy for both considered combining approaches of

dynamic features (partial and full set). In accordance withthe discussed approach of relevance analysis, the LFCC and

Centroids subsets of dynamic features reach the better accuracy that is similar to the one achieved for the whole training

set. As a result, both sets should be strongly considered forOSA diagnosing with the advantage that the each performed

time–evolving parameter is related to a fixed spectral subband, and thus, leading to easer clinical interpretation. It must be

quoted that displayed outcomes of accuracy in TableIV are performed just when considering training over 60-m-length

fragments. In case of 15-m-length, and if taking into consideration the full set of dynamic features, the overall performance

is the following:Se= 90%, Sp = 62.5%, andAcc= 77.78%, which is significatively lower that those assessed outcomes

for training over 60-m-length fragments.

Next, the energy subset shows high relevance, but a low performance; this may be explained because of notable

redundance among the features. Therefore, the set of energies that is described by Eq. (3) should be rejected as perspective

dynamic features for OSA diagnosing.

V. DISCUSSION

It should be remarked that the main goal of present paper is touse a complex of signal processing algorithms for

the improvement in OSA diagnosis from PPG recordings, as an alternative for sleep apnea screening with the added

benefit of low cost and simplicity. The methodology lies on the hypothesis that each time–dependent characteristic holds

a relative associated weight of relevance, and in this connection, the results also evidence the following aspects to take

into consideration:

– The enhanced parameter estimation carried out by introducing t—f representations should be regarded as a remarkable

factor for an adequate generation of any set of dynamic features. Here, feature enhancement is performed by means

of nonparametric spectrogram–based TFR that had been reported to be appropriate for the analysis of nonstationary

biological signals consisting of different frequency components. Nonetheless, for the discussed methodology for OSA

detection, needed TFR enhancement for dynamic feature extraction can be performed by using more elaborated

approaches: wavelet–based scalograms, projection pursuit, by using time frequency distributions, etc., as discussed in

[14]. Yet, no matter which particular TFR estimation method is used, the final result is a large data matrix containing
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the time-frequency pattern, which has to be transformed into a feature vector for classification purposes holding the

most relevant information in a compact fashion.

– With regard to feature extraction and selection, proposedmethodology for relevance analysis of dynamic relevance is

based on time–adapted linear component approach. At this point, two main issues are to be considered: the measure

associated to a given relevance function, and the multivariate transformation through the time axis, which is assumed

to maximize the measure of relevance present in the contoursby their projection onto a new space. As a measure

of relevance, the maximum variance is assumed. Specifically, time–adapted PCA version is discussed throughout this

paper as unsupervised method to perform relevance analysisof considered set of stochastic features. Though proposed

methodology of relevance analysis can extended to other techniques linear component decomposition, as shown in

[15].

– Two different combining approaches for selecting the bestset of contours are studied: Firstly, when taking a partially

divided set that relates dynamic features having the same principle of generation. Secondly, when the best features

are chosen despite of their physical meaning. From performed accuracy showed in TableIII one can conclude that

even that the former case reaches comparable figures of accuracy, the latter approach of selection is more commonly

used because of the convenient physical interpretation of selected set of features. Furthermore, it has been established

that the set of LFCC dynamic features should be strongly considered for OSA diagnosing. Performed outcomes bring

enough evidence that if using a subset of LFCC features a fragment classification accuracy can reach as much as 93%

value, which provides an adequate scheme for ambulatory OSAdiagnosis. Therefore, to take into account evolution of

random biological variables along time, definitively, leads to an accuracy improvement of OSA detection. Nonetheless,

more efforts might be done to define feature set carrying fundamental information for the OSA classification, as quoted

in [16]. Though, performed outcomes look very promising in terms of accuracy of features extraction, testing of the

discussed methodology should be provided using larger datasets.

– The set of considered pathological subjects shows a largerlow frequency entropy than the set of normals as expected

from the bigger envelope oscillations driven by apnea. The reverse happen when analysing entropy in the high

frequency band where pathologic subjects reduce the entropy as compared to normals.

– The discussed automated system for OSA diagnosing is basedon analysis of set of fragments that are partitioned from

the PPG envelope recordings. In this regard, labeling of partitioned PPG envelope recordings is provided so to have

time epochs identified as apneic or not apneic. However, in clinical practice usually the interest lies in having a subject

diagnosis related to apnea, both in adults [17] and children [4], and not just a time screening of the apnea events.

With this aim, a rule has being applied to the fragment labeling, providing subject specific diagnosis. Comparison

with PSG clinical decision is provided, showing the potential of the methods here presented. As a result, PPG can

be considered as a promising alternative to reduce the number of the PSG sleep recordings.

VI. CONCLUSIONS

A new methodology for OSA detection is explored, which is based on relevance analysis of dynamic features extracted

from nonparametrict–f representation of the recordings of PPG envelope. Particularly, a time–evolving version of the

standard PCA is discussed that performs stochastic dimensionality reduction of the dynamic features in hand. Discussed

methodology of relevance analysis benefits of the dynamic properties of the time–evolving spectral parameters, during

either transient physiological or pathological episodes.As a result, PPG can be considered as a promising alternativeto

reduce de the number of the PSG sleep recordings.

In addition, two different combining approaches for selecting the best set of contours are studied: Firstly, when taking

dynamic features having the same principle of generation. Secondly, when the best features are chosen despite of their

physical meaning. In this case, the latter approach turns tomore suitable because of the convenient physical interpretation

of selected set of features and provided accuracy of selection is more commonly used because of the convenient physical

interpretation of selected set of features. Furthermore, it has been established that the LFCC and Centroids subsets of

dynamic features should be strongly considered for OSA diagnosing since it increases the specificity in the apnoea

detector. Both subsets display a patient classification accuracy of 83.33%, while in [4] is reported an accuracy of 80%;
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consequently, the advantage of the method proposed in this paper to increase the specificity of the obstructive sleep apnea

detector is evident.

The TFR–based parameter estimation is a remarkable factor for an adequate dynamic feature generation. Therefore, for

OSA detection, it would be of benefit to explore needed enhancement by using more elaborated approaches (wavelet–based

scalograms, matching pursuit, etc.). Besides, as feature work, further efforts on finding an alternative for OSA diagnosing,

having the added benefit of low cost and simplicity, should befocused on extended studies to corroborate the potential of

another approaches in conjunction with heart rate variation analysis [18], [19].
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