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Cepstral Vector Normalization Based on Stereo
Data for Robust Speech Recognition

Luis Buera, Eduardo Lleida, Member, IEEE, Antonio Miguel, Alfonso Ortega, and Óscar Saz

Abstract—In this paper, a set of feature vector normalization
methods based on the minimum mean square error (MMSE)
criterion and stereo data is presented. They include multi-environ-
ment model-based linear normalization (MEMLIN), polynomial
MEMLIN (P-MEMLIN), multi-environment model-based his-
togram normalization (MEMHIN), and phoneme-dependent
MEMLIN (PD-MEMLIN). Those methods model clean and noisy
feature vector spaces using Gaussian mixture models (GMMs).
The objective of the methods is to learn a transformation between
clean and noisy feature vectors associated with each pair of
clean and noisy model Gaussians. The direct approach to learn
the transformation is by using stereo data; that is, noisy feature
vectors and the corresponding clean feature vectors. In this paper,
however, a nonstereo data based training procedure, is presented.
The transformations can be modeled just like a bias vector
(MEMLIN), or by using a first-order polynomial (P-MEMLIN) or
a nonlinear function based on histogram equalization (MEMHIN).
Further improvements are obtained by using phoneme-dependent
bias vector transformation (PD-MEMLIN). In PD-MEMLIN,
the clean and noisy feature vector spaces are split into several
phonemes, and each of them is modeled as a GMM. Those methods
achieve significant word error rate improvements over others that
are based on similar targets. The experimental results using the
SpeechDat Car database show an average improvement in word
error rate greater than 68% in all cases compared to the baseline
when using the original clean acoustic models, and up to 83%
when training acoustic models on the new normalized feature
space.

Index Terms—Feature vector normalization, Gaussian mixture
models (GMMs), minimum mean square error (MMSE), robust
speech recognition.

I. INTRODUCTION

W HEN training and testing acoustic conditions differ,
the accuracy of speech recognition systems rapidly de-

grades. To compensate for the effects of additive and convolu-
tional noises, which are the main cause of the mismatch between
training and recognition spaces, robustness techniques have been
developed along the following two main lines of research:

• acoustic model adaptation methods, which map acoustic
models from training space to recognition space;

• feature vector adaptation/normalization methods, which
map recognition space feature vectors to the training space.

Some of the techniques can be combined to generate hybrid
solutions, which are effective under certain conditions [1], [2].
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The choice of a robustness technique depends on the character-
istics of the application in each situation. In general, acoustic
model adaptation methods produce the best results [3] because
they can model the uncertainty caused by the noise statistics.
Well-known successful acoustic model adaptation methods in-
clude maximum a posteriori (MAP) [4], maximum-likelihood
linear regression (MLLR) [5], parallel model combination
(PMC) [6], and vector Taylor series (VTS) [7]. However, these
methods require more data and computing time than do feature
vector adaptation/normalization methods.

Feature vector adaptation/normalization methods fall into one
of three main classes [8]: high-pass filtering, model-based tech-
niques and empirical compensation.

High-pass filtering contains methods such as cepstral mean
normalization (CMN) [9], [10] and relative spectral amplitude
(RASTA) processing, [11]. Although the results produced by
those methods are limited individually, some of them, partic-
ularly CMN, are included in almost every speech recognition
systems because they use simple and effective procedures.

Model-based methods assume that a mismatch between
training and recognition spaces can be represented by a struc-
tural model of environmental degradation. The parameters of
the structural model are estimated and applied to the appro-
priate inverse operation to compensate the recognition signal.
Examples of model-based methods are VTS [7], codeword de-
pendent cepstral normalization (CDCN) [12], minimum mean
square error log spectral amplitude estimator (MMSE-LSA)
[13], and spectral subtraction (SS) [14].

Empirical compensation methods that use direct cep-
stral comparisons are entirely data driven. Typically, they
require stereo data, but sometimes “blind” approaches are
used [7]. Empirical compensation methods need a training
phase where some transformations are estimated by com-
puting the frame-by-frame differences between the vectors
representing speech in the clean and noisy environments
(stereo data). Algorithms used in that approach include mul-
tivariate Gaussian-based cepstral normalization (RATZ) [7],
stereo-based piecewise linear compensation for environments
(SPLICE) [15], and probabilistic optimum filtering (POF) [16].

Independently of the feature vector normalization method,
several algorithms assume a prior probability density function
(pdf) for the estimation variable. In those cases, a Bayesian es-
timator can be used to estimate the clean feature vector. The
most commonly used criterion is to minimize the mean square
error (MSE), and the optimal estimator for this criterion, min-
imum mean square error (MMSE), is the mean of the poste-
rior pdf. Many different methods, such as CDCN, VTS, RATZ,
and SPLICE use the MMSE estimator to compute the estimated
clean feature vector.
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This paper focuses on empirical feature vector normalization
based on stereo data and the MMSE estimator. Some methods,
such as VTS, CDCN, POF, and RATZ, assume that the clean
feature space can be modeled using a Gaussian mixture model
(GMM). However, although the uncertainty between clean
and normalized feature vectors is reduced, a mismatch is
generated in the estimation of the a posteriori probability of
the clean model Gaussian, given the noisy feature vector [7]
in the normalization. To avoid the problem and maintaining
the uncertainty improvement, some other algorithms, e.g.,
SPLICE, model the noisy space using a GMM. In general,
noisy space modeling produces better results than does clean
space modeling; however, both modeling methods still have
high uncertainty when learning transformations because they
model only the clean or the noisy space.

To improve the results obtained using state-of-the-art em-
pirical feature normalization methods, we propose several so-
lutions based on the joint modeling of clean and noisy space.
We present multi-environment model-based linear normaliza-
tion (MEMLIN) [17], which splits noisy space into several basic
environments and models each basic noisy and clean feature
spaces using GMMs.

Most empirical feature vector normalization methods com-
pute a bias vector transformation for each clean model Gaussian,
e.g., RATZ, each noisy model Gaussian, e.g., SPLICE, or each
pair of clean and noisy model Gaussians, e.g., MEMLIN. In
this work, we propose several approximations to modify the
simple bias correction term used in MEMLIN. A first-order
polynomial transformation, polynomial multi-environment
model-based linear normalization (P-MEMLIN) addresses the
use of a different slope and bias term for each pair of clean and
noisy model Gaussians. A nonlinear transformation, multi-en-
vironment model-based histogram normalization (MEMHIN)
[18] addresses the use of a histogram equalization for each pair
of clean and noisy model Gaussians. Those two new methods
can compensate for the effects of the noise over the means and
the variance of the feature vectors.

To reduce the uncertainty between the new normalized fea-
ture vectors and the acoustic models, we propose a phoneme-de-
pendent multi-environment model-based linear normalization
(PD-MEMLIN) [19] in which the clean and noisy spaces are
split into phonemes that are modeled using GMMs. The bias
vector transformation is defined for the pair of clean and noisy
model Gaussians of each phoneme.

In many acoustic environments and training databases, stereo
data are unavailable. To overcome the limitation of the need
for stereo data, a nonstereo data training algorithm that uses
only noisy feature vectors is proposed. That “blind” technique
is applied over the PD-MEMLIN method, [20].

Although these new methods attempt to map the noisy fea-
ture vectors to the clean space, the transformation is not perfect;
therefore, there remains a mismatch between clean space and
the new normalized space. To compensate for that mismatch,
we propose to adapt the acoustic models to the new normalized
space.

To compare the performance of the proposed methods in a
real and dynamic environment, experiments were carried out
using the Spanish SpeechDat Car database [21]. Car noise char-

acteristics depend on driving conditions [9], [22], and the Lom-
bard [23] effect can be important; consequently, speech recog-
nition in cars is a difficult task that can generate valid results
with which to compare the different techniques.

This paper is organized as follows: In Section II, the noise
effects and the basic MMSE-based feature vector normal-
ization methods are detailed. In Section III, the Spanish
SpeechDat Car database and the results from the different
state-of-the-art MMSE-based feature vector normalization
techniques, CMN, RATZ, SPLICE, and MEMLIN are ex-
plained. In Section IV, P-MEMLIN, MEMHIN, PD-MEMLIN
and “blind” PD-MEMLIN are described, and the results of
these methods are presented. Finally, a discussion and the
conclusions are presented in Section V.

II. NOISE EFFECTS AND BASIC MMSE-BASED FEATURE

VECTOR NORMALIZATION METHODS

We assume a general, simplified approximation of speech
signal degradation based on additive noise and convolutional
noise [12]. In this case, the noisy signal in the mel frequency
cepstral coefficient (MFCC) domain can be modeled as

(1)

where is the time frame index, is the clean MFCC vector,
is the additive noise MFCC vector, and is the corresponding
convolutional noise MFCC vector. The random nature of the
additive and convolutional noises results in one to many map-
ping between clean and noisy feature spaces: a given clean fea-
ture vector can generate different noisy feature vectors, and vice
versa, which creates an uncertainty.

Fig. 1 shows the scattergrams and histograms for the first
MFCC coefficient in non-silence frames for clean and noisy fea-
ture vectors from different degradation conditions. Note that the
uncertainty between clean and noisy coefficients always exists,
even when controlled convolutional noise only is considered
[Fig. 1(a)]. The convolutional noise mainly shifts the mean of
the coefficients, whereas additive noise [Fig. 1(b)] modifies the
pdf, reducing the variance of the coefficients. In the same way,
the real car environment [Fig. 1(c)] modifies the mean and vari-
ance, jointly.

To compensate for noise effects, there are several kinds of
feature vector normalization methods (Section I), but we focus
on empirical methods based on the MMSE criterion. Therefore,
given the noisy feature vector , the estimated clean feature
vector is obtained by using the MMSE criterion as

(2)

where is the clean feature vector, and is the pdf of
given . The way and are approximated deter-

mines the different MMSE-based feature vector normalization
methods.

A. Basic MMSE-Based Feature Vector Normalization Methods

There are mainly three basic feature vector normalization
methods based on the MMSE criterion that have been used ex-
tensively: CMN, which is a very simple method, RATZ [7], and
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Fig. 1. Scattergrams and histograms for the first MFCC coefficient in non-silence frames between clean (x-axis) and contaminated (y-axis) in several degraded
conditions. (a) Controlled convolutional noise when the filter response is longer than the Hamming window used in the computing of MFCC. (b) Additive car noise
with 0-dB SNR. (c) Real car condition. The line in the scattergrams represents the function x = y.

SPLICE [15]. In the CMN method, no assumptions are made
in estimating , and the clean feature vector is approx-
imated as , where is a bias vector
transformation between and . With that approximation, for
CMN, (2) becomes

(3)

To estimate the bias vector transformation, , the mean square
error, , is defined and minimized with respect to

(4)

where is the corresponding mean. In some cases, the
mean of the clean feature vectors is removed before training
the acoustic models, and then the bias vector transformation
for CMN is computed as . Actually, the basic CMN
algorithm, or an extension of it, is considered a standard and it
is used in almost every speech recognition systems because of
the low computing time and satisfactory results.

To improve the CMN approximation, RATZ makes two as-
sumptions. The first assumption consists of modeling the clean
space using a GMM

(5)

(6)
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where , , and are the mean, the diagonal covari-
ance matrix, and the a priori probability associated with the
clean model Gaussian . The second assumption for RATZ is
to approximate the clean feature vector as

, where is a bias vector transformation between
and for the the clean model Gaussian, . The estimation of

is included in [7]. With the two assumptions, RATZ makes
(2) become

(7)
where is the a posteriori probability of the clean model
Gaussian , given the noisy feature vector , and it can be
computed using (5) and (6) assuming an additive effect of the
noise in the MFCC domain [7].

Although RATZ can improve the performance concerning
CMN because it models better the clean space, in the normal-
ization, the estimation of can produce a mismatch. To
avoid it, SPLICE proposes to model the noisy space instead of
the clean one using GMM

(8)

(9)

where denotes the corresponding Gaussian of the noisy
model, , , and are the mean vector, the diagonal
covariance matrix, and the a priori probability associated with

. At the same time, the clean feature vector is approximated
as , where is a bias vector trans-
formation between and for the noisy model Gaussian, .
The estimation of is evaluated in [15]. Therefore, SPLICE
transforms (2) into

(10)
where is the a posteriori probability of the noisy model
Gaussian, , given the noisy feature vector, , computed using
(8) and (9).

The bias vector transformations of RATZ and SPLICE
depend on the environment. So, to consider several acoustic
conditions, RATZ and SPLICE multi-environment methods
have been developed: interpolated RATZ (IRATZ) [7] and
SPLICE with environmental model selection [15]. In those
methods, noisy space is split into several basic environments
concerning similar acoustic properties [signal-to-noise ratio,
(SNR), spectral shape], and the bias vector transformations are
computed independently for each basic environment. The final
resulting transformation is computed as a weighted sum of
all of the basic environment bias vector transformations (soft
decision), or using only the most probable basic environment
bias vector transformations (hard decision).

B. Multi-Environment Model-Based Linear Normalization
(MEMLIN)

MEMLIN proposes a general MMSE-based framework by
providing a GMM modeling of the clean and noisy spaces.
Noisy space is divided in a combination of basic acoustic envi-
ronments. Therefore, a bias vector transformation is associated
with each pair of Gaussians from the clean and the noisy basic
environment spaces.

1) MEMLIN Approximations: In MEMLIN, three ap-
proaches are used.

• Noisy space is divided into a combination of several basic
environments , and the noisy feature vectors are mod-
eled as a GMM for each basic environment

(11)

(12)

where denotes the corresponding Gaussian of the noisy
model for the basic environment, , , and are
the mean vector, the diagonal covariance matrix, and the a
priori probability associated with .

• Clean feature vectors are modeled using a GMM: expres-
sions (5) and (6).

• Clean feature vectors can be approximated as a linear func-
tion of the noisy feature vector, which depends on the basic
environment and the clean and noisy model Gaussians:

, where is a bias
vector transformation between noisy and clean feature vec-
tors for each pair of Gaussians, and .

2) MEMLIN Enhancement: With those approximations,
MEMLIN transforms (2) into

(13)

where is the a posteriori probability of the basic envi-
ronment; is the a posteriori probability of the noisy
model Gaussian, , given the feature vector, , and the basic
environment, . Those two terms are computed for each frame
applying (11) and (12). Finally, the cross-probability model

is the probability of the clean model Gaussian
, given the feature vector , the basic environment , and

the noisy model Gaussian . That term, along with the bias
vector transformation, , is estimated in a training phase
using stereo data.

The a posteriori probability of the basic environment
is computed recursively by applying (11) and (12) as

(14)
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where is the memory constant , and
is considered to be uniformly distributed over all the basic en-
vironments. Considering the defined acoustic environments,
has to be close to 1 due to the succession of the basic environ-
ments along the time is not very fast. So, in this paper, has
been set to 0.98. The a posteriori probability of the noisy model
Gaussian, given the feature vector, , and the basic environ-
ment, , can be computed considering (11) and (12)
as

(15)

3) MEMLIN Training: Given a stereo data
corpus for each basic environment

, with ,
the bias vector transformation, , is estimated by
minimizing the defined mean weighted square error, ,
with respect to

(16)

(17)

where is the a posteriori probability of the clean
model Gaussian, , given the clean feature vector, , and the
basic environment, . It can be estimated by applying (5) and
(6)

(18)

The cross-probability model, , is simplified by
avoiding the time dependence given by the noisy feature vector,

, . The term can
be estimated by using relative frequency, a hard solution, or
using (11), (12), (5), and (6), soft decision. Therefore, the cor-
responding expression for the hard decision is

(19)

where is the count number of times that the most
probable pair of Gaussians is and for all pairs of stereo
training data of the basic environment, and is the count
number of times that the most probable Gaussian for noisy
training feature vectors is for the basic environment.

The estimation of the cross-probability model using the soft
decision is

(20)

When there are enough data to estimate the cross-probability
model, both solutions, hard and soft, obtain similar results: no
significant changes in recognition were obtained in this case.
However, when there are not enough data, the soft option pro-
vides a more consistent solution. The hard solution was used in
all the experiments carried out with MEMLIN in this work.

In summary, MEMLIN associates a bias vector transforma-
tion to each pair of noisy and clean Gaussians. So, comparing
against RATZ or SPLICE, which define a bias vector trans-
formation from a Gaussian to the whole noisy or clean space,
the mapping space associated to each MEMLIN transformation
is more enclosed, having a less uncertainty region. Therefore,
given an appropriate cross-probability model, MEMLIN is ex-
pected to outperform RATZ or SPLICE performances.

III. SPEECHDAT CAR DATABASE AND RESULTS USING BASIC

FEATURE VECTOR NORMALIZATION MMSE-BASED METHODS

To compare the performance of the basic multi-environment
MMSE-based feature vector normalization methods (IRATZ,
SPLICE with environment model selection, and MEMLIN) in a
real, dynamic, and complex environment, a set of experiments
were performed using the Spanish SpeechDat Car database [21].
Seven basic environments were defined as follows:

E1: car stopped, motor running;
E2: town traffic, closed windows, and climatizer off (silent
conditions);
E3: town traffic and noisy conditions (windows open,
and/or climatizer on);
E4: low speed, rough road, and silent conditions;
E5: low speed, rough road, and noisy conditions;
E6: high speed, good road, and silent conditions;
E7: high speed, good road, and noisy conditions.

In this study, two channels of the database recorded si-
multaneously (stereo data) have been used: A clean signal
from a CLose talK channel (CLK), which was recorded using
a Shure SM-10A microphone, and a noisy signal from a
hands-free channel (HF), which was recorded using a Peiker
ME15/V520-1 microphone located on the ceiling in front of
the driver. HF signals are used in recognition tasks.

For speech recognition, the feature vector is composed of the
12 MFCCs, first and second derivatives and the delta energy,
giving a final feature vector of 37 coefficients computed every
10 ms using a 25-ms Hamming window. On the other hand, in
this paper, the feature vector normalization methods are applied
to the 12 MFCCs and log energy only, whereas the derivatives
are computed over the normalized static coefficients.

The recognition task is isolated and continuous digits
recognition. Word acoustic models are built from a set of
674 left and right context-dependent and 25 context-inde-
pendent units. Each unit is modeled by one-state continuous
density HMMs with 16 Gaussians. In addition, two silence
models for long and interword silences are considered. Each
phoneme is modeled by the left contextual unit, the incon-
textual unit and right contextual unit. So, for example, the
word acoustic model for Spanish digit “dos” (“two”) can
be obtained by the concatenation of the following units:

, where
is the silence unit, is the left context-dependent unit,
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TABLE I
NUMBER OF UTTERANCES AND WORDS FOR TRAINING AND TESTING

CORPORA USED IN ALL THE EXPERIMENTS

TABLE II
WER BASELINE RESULTS, IN PERCENT, FROM THE DIFFERENT BASIC

ENVIRONMENTS (E1; . . . ; E7) WHEN CLEAN (CLK IN THE TRAIN

COLUMN) OR NOISY (HF IN THE TRAIN COLUMN) ACOUSTIC MODELS ARE

APPLIED. HFy INDICATES THAT SPECIFIC ACOUSTIC MODELS FOR EACH

BASIC ENVIRONMENT ARE TRAINED. “TEST” REFERS TO THE RECOGNIZED

DATA, EITHER AS CLEAN (CLK) OR NOISY (HF)

is the context-independent unit, and finally is the right
context-dependent unit.

A training corpus for each basic environment is used for
training acoustic models and learning the corresponding bias
vector transformations and the cross-probability models (16 108
utterances for all basic environments and different tasks: iso-
lated and continuous digits, spelling, dates, commands and
names). The testing corpus is composed of 1086 utterances for
all basic environments, and different speakers from the training
corpus. The composition of the training and testing corpora is
explained in detail in Table I, where it is included the number
of utterances and words for each basic environment. No voice
activity detector (VAD) is applied in any case.

The word error rate (WER) baseline results for each basic en-
vironment are presented in Table II, where MWER is the Mean
WER, which is computed proportionally to the number of words
in each basic environment (see Table I). The CMN method is
applied to testing and training data. “Train” column refers to
the signals used to obtain the corresponding acoustic HMMs; if
they are trained with all clean training utterances, the column
is marked CLK, and if the column is marked HF, the acoustic
models are trained with all noisy training utterances. HF indi-
cates that specific acoustic HMMs for each basic environment
are applied in the recognition task (environment match condi-
tion). “Test” column indicates which signals are using for recog-
nition: clean, CLK, or noisy, HF.

Table II shows the effect of real car conditions, which pro-
duces a significant increase in WER in all of the basic envi-
ronments, (Train CLK, Test HF), concerning the rates for clean
signal, (Train CLK, Test CLK). When acoustic models are re-
trained using all basic environments, (Train HF) MWER de-
creases considerably. Finally, the lowest MWER when the noisy
signal is used for recognition is obtained for environment match
condition, (Train HF ): 2.82%.

Fig. 2 shows the mean improvement in WER (MIMP) in per-
cent for each of the multi-environment basic feature vector nor-
malization methods based on MMSE (IRATZ, SPLICE with en-
vironmental model selection, SPLICE MS, and MEMLIN). A

Fig. 2. Mean improvement in WER for interpolated RATZ (IRATZ), SPLICE
with environmental model selection (SPLICE MS) and MEMLIN.

100% MIMP would be obtained when the MWER is the same
as in clean conditions. So, given a MWER, the corresponding
MIMP will be

(21)

where is the mean WER obtained with clean
conditions (0.86 in this case), and is the base-
line (11.53). In order to compare all the methods, the MIMP
has been depicted with respect to the number of Gaussians per
basic environment, because it gives an idea of the computing
cost. The SPLICE MS method always produces better results
than does RATZ, which is because of the assumption of the
noisy model when the a posteriori probability of a clean model
Gaussian, given the noisy feature vector is computed [7]. On the
other hand, the MEMLIN algorithm improves the results based
on SPLICE MS for any number of Gaussians per basic envi-
ronment due to the projection space associated to a bias vector
transformation in MEMLIN is smaller than SPLICE MS, being
the transformations more specific. To obtain more specific trans-
formations in MEMLIN, the number of them associated to a
noisy or clean model Gaussian is higher than in SPLICE MS or
IRATZ, but the computing cost in the normalization process is
almost the same.

Fig. 3(a) and (b) shows the comparative histograms and
scattergramsbetweencleanandnoisyandnormalizedfirstMFCC
coefficients in non-silence frames from E4 basic environment.
The normalized coefficients are obtained using MEMLIN with
128 Gaussians per basic environment. Although all terms in
SPLICE MS normalization are obtained directly using the
noisy GMM, the corresponding histograms and scattergrams
are visually similar to MEMLIN ones. However, MEMLIN
histograms and scattergrams can be improved considerably
if the cross-probability model is estimated properly (it will
be considered in the Section V). It can be observed that
the normalized signal histogram is close to the clean signal
one, although there is still a considerable uncertainty between
clean and normalized coefficients [Fig. 3(b.2)]. The peak that
appears in the normalized signal histogram [Fig. 3(b.1)] is
due to the transformation of noisy feature vectors towards
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Fig. 3. Scattergrams and histograms between the first MFCC coefficient in non-silence frames for clean (x-axis) and contaminated (a) or normalized
(b) using MEMLIN with 128 Gaussians per basic environment (y-axis) signals for the E4 basic environment. Also, the scattergram and histogram
when the transformations of MEMLIN with 128 Gaussians are computed only with non-silence frames are presented (c). The line in the scattergrams
represents the function x = y.

the clean silence. This problem can be solved if an efficient
VAD were used in training and during the normalization.
To confirm this, the noisy signals were normalized with the
transformations and the cross-probability models for MEMLIN
with 128 Gaussians trained only with the non-silence frames.
Fig. 3(c) presents the scattergram and histogram between the
first MFCC coefficients in non-silence frames for clean and
normalized with this new training condition signals. It can
be observed that the peak disappears.

The most representative results from each of the methods are
summarized in Table III, indicating the number of Gaussians
per basic environment ( Gaussian) required to obtain the best
corresponding values.

TABLE III
BEST MWER AND MEAN IMPROVEMENT IN WER (MIMP) IN PERCENT FROM

INTERPOLATED RATZ, SPLICE WITH ENVIRONMENTAL MODEL SELECTION,
SPLICE MS, AND MEMLIN, WITH THE REQUIRED NUMBER OF GAUSSIANS

PER BASIC ENVIRONMENT INDICATED

IV. IMPROVEMENTS OVER MEMLIN

There are two important approximations in MEMLIN ex-
pressions that can affect the final performance of the method.
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One is the selection of the linear model for associated
with a pair of Gaussians that has an independent term only

. That model compensates
for the mean shift, but not for the modification of the variance.
The second approximation involves treating all of the sounds
in the same way. So, there is always a bias vector transfor-
mation which maps from a noisy model Gaussian to every
clean model one and it can produce, for example, that several
non-silence noisy feature vectors are mapped towards the
clean silence. To overcome these approximations, we consider
different solutions. To develop a more realistic model for ,
we use a modification of and define two novel
multi-environment feature vector normalization methods based
on MMSE: P-MEMLIN, which uses a complete first order
polynomial approximation, and MEMHIN, which assumes a
nonlinear model.

Although the MEMLIN algorithm achieves significant
improvements over other basic MMSE-based feature vector
methods, the variance of the error between clean and noisy
feature vectors can be reduced if more specific bias vector
transformations are estimated. To do that, we propose learning
phoneme-dependent bias vector transformations. That modifi-
cation of the MEMLIN is called the PD-MEMLIN.

A. Modifications: P-MEMLIN and MEMHIN

1) P-MEMLIN: The novel model for polyno-
mial MEMLIN is

(22)

where is the coefficient index, and and are the
slope and the independent terms of the model, respectively. Both
depend on the basic environment and on clean and noisy model
Gaussians. Note that it is assumed that the feature coefficients
are independent. Using P-MEMLIN, (2) becomes

(23)

The only modification to MEMLIN is ; there-
fore, the expressions of , , and
are estimated as (14), (15), and (19) or (20), respectively. On the
other hand, and are computed in the training
phase using stereo data

(24)

(25)

where and are the th coefficients of the stan-
dard deviations of clean and noisy feature vectors, respectively,
associated with the pair of Gaussians and . and

are the th coefficients of the means of clean and noisy
feature vectors associated with and . They are computed as

follows, where can be or

(26)

(27)

Note that if the standard deviation terms are equal
, the algorithm expressions are the

same as those in the MEMLIN.
2) MEMHIN: Although P-MEMLIN uses a first-order

polynomial to compensate for the variance transformations,
sometimes noise can produce a more complex modification of
clean and noisy feature pdfs associated with a pair of Gaus-
sians. In that case, the linear approximation for
of MEMLIN or P-MEMLIN is not the best option; therefore,
we propose a nonlinear model based on histogram equalization.
The new model is expressed as

(28)

where is the clean feature vector cumulative probability
associated with and Gaussians, and is the recip-
rocal function. is the noisy feature vector cumulative
probability associated with and Gaussians. For MEMHIN,
(2) takes the following expression:

(29)

The only difference between MEMLIN and MEMHIN is
; therefore, the probabilities , ,

and are estimated following (14), (15), and (19)
or (20), respectively. To compute and , the
band histograms associated with and for each component
of the noisy and clean feature vectors are obtained in the
training phase, assuming that the components are independent.
To estimate the histograms for each pair of Gaussians, the
components of the feature vectors are weighted by the product
of the a posteriori probabilities , and .

and are computed by cumulating the bands of
the corresponding histograms.

3) Results From Modifications: To compare
the results using P-MEMLIN and MEMHIN with those based
on MEMLIN, the experiments described in Section III were re-
peated.

P-MEMLIN and MEMHIN provide significant improvement
over MEMLIN when few Gaussians are considered (33.87% of
MIMP for MEMLIN with four Gaussians per basic environ-
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TABLE IV
MWER AND MIMP IN PERCENT FOR MEMLIN AND MEMHIN FOR 8, 16, AND

32 GAUSSIANS PER BASIC ENVIRONMENT WITH 5-dB SNR ADDITIVE NOISE

ment and 39.12% and 37.82% of MIMP for PMEMLIN and
MEMHIN); however, if the algorithms are evaluated using more
than eight Gaussians per basic environment, the mean results
are very similar among the three methods. That performance re-
sults from the compensation of the variance of the feature vec-
tors, which is more important when the number of Gaussians
used for representing the space is reduced. As the number of
Gaussians decrease, the space data modeled by each Gaussian
increase and the transformation is more affected by the variance
deviation between clean and noisy space. In those situations, a
more complex model of produces significant
improvements. Although the methods behave similarly when
there are more than eight Gaussians, we carried out experiments
using controlled additive noise [18], which demonstrated impor-
tant improvements by using MEMHIN compared to MEMLIN.
MEMHIN is better able to compensate for the modifications of
the variance in feature vectors caused by additive noise. To con-
firm that, additive car noise was added to clean signals of the
Spanish SpeechDat Car database. Table IV shows some of the
results from MEMLIN and MEMHIN with additive car noise of
5 dB of SNR, and clean and noisy GMM of 8, 16, and 32 Gaus-
sians to model the clean and the basic environments.

B. Phoneme-Based Transformations

1) PD-MEMLIN: To obtain a more specific set of trans-
formations, trying to reduce the uncertainty between the nor-
malized feature vectors and the acoustic models, we developed
PD-MEMLIN. In PD-MEMLIN, noisy space is divided into a
combination of basic acoustic environments as MEMLIN and
each one is split into phonemes, which are modeled as a GMM.
The clean space is also divided in phonemes and each one of
them is modeled as a GMM. Therefore, a bias vector transfor-
mation is associated with each pair of Gaussians from the same
phoneme of the clean and noisy basic environment spaces.

• PD-MEMLIN approximations: In PD-MEMLIN, three ap-
proximations are considered.
First approximation: noisy space is split into several basic
environments . The noisy feature vectors associated with
the different phonemes of each basic environment are
modeled as a GMM

(30)

(31)

where denotes the Gaussian that corresponds to
phoneme and basic environment ; , , and

are the mean vector, the diagonal covariance
matrix, and the a priori probability associated with .
Second approximation: the clean feature vectors of each
phoneme are modeled as a GMM

(32)

(33)

where denotes the Gaussian that corresponds to
phoneme ; , , and are the mean, the
diagonal covariance matrix, and the a priori probability
associated with .
Third approximation: PD-MEMLIN assumes that a
clean feature vector can be approximated by a linear
function that depends on the basic environment and the
phoneme-dependent Gaussians of the clean and noisy
models: , where

is a bias vector transformation between the clean
and noisy feature vectors of each pair of Gaussians of the
same phoneme, and .

• PD-MEMLIN enhancement: With those approximations,
PD-MEMLIN transforms (2) into

(34)

where is the a posteriori probability of the basic
environment; is the a posteriori probability of
the phoneme, given the noisy feature vector, , and the
basic environment, ; is the a posteriori
probability of the phoneme-dependent Gaussian of the
noisy model, , given the noisy feature vector, ,
the basic environment, , and the phoneme, . Finally,

is the cross-probability between
the phoneme-dependent Gaussians of the clean and noisy
models, given the noisy feature vector, , the basic en-
vironment, , and the phoneme, . That term and the
bias vector transformation , are estimated using
stereo data in the training phase.
The a posteriori probability of the basic environment,

, is computed iteratively by applying (30) and (31)
as the same way as (14) considering all the phonemes.
The a posteriori probability of the phoneme , given
the noisy feature vector, , and the basic environment, ,

, can be computed using (30) and (31)

(35)

The a posteriori probability of the phoneme-dependent
Gaussian of the noisy model, , given the noisy fea-
ture vector, , the basic environment, , and the phoneme,

, , is computed using (30) and (31) as
the same way as (15) considering the different phonemes.
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• PD-MEMLIN training: Using clean training
feature vectors, a forced Viterbi segmentation in
phonemes is used to get a stereo data corpus
for each basic environment and phoneme

,

with . The bias vector transformation,
, is estimated by minimizing the defined mean

weighted square error, , with respect to
, as shown by (36) and (37) at the bottom of the

page, where is the a posteriori
probability of the phoneme-dependent Gaussian of the
clean model, , given the clean feature vector, ,
the basic environment, , and the phoneme, . It can be
computed by applying (32) and (33)

(38)

The cross-probability between the phoneme-dependent
Gaussians of the clean and noisy models is simplified by
avoiding the time dependence given by the noisy feature vector

, . There are
two ways to compute : using relative fre-
quency (hard solution), which expression is

(39)

where is the count number of times that the
most probable pair of Gaussians is , and for all pairs
of stereo training data of basic environment and phoneme,

Fig. 4. Mean improvement in WER of MEMLIN and PD-MEMLIN.

and is the count number of times that the most probable

Gaussian for noisy training feature vectors is for basic
environment and phoneme.

The soft solution can be obtained using (30), (31), (32), and
(33) as shown by (40) at the bottom of the page.

Since it is possible that some phonemes do not have associ-
ated enough data, all the experiments were carried out applying
the soft solution.

2) Results From PD-MEMLIN: The same experiments de-
fined in Section III were performed again, normalizing the noisy
feature vectors with PD-MEMLIN. Bias vector transformations
were obtained for all the 25 Spanish phonemes and the silence.
Although only some of the phonemes would be necessary in this
task, all of them were included in the normalization process.
Fig. 4 presents the mean improvement in WER in percent of
PD-MEMLIN comparing to MEMLIN. To make a fair compar-
ison between two methods, the results have been plotted as a

(36)

(37)

(40)
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Fig. 5. Scattergram and histogram between the first MFCC coefficient in non-silence frames for clean (x-axis) and normalized using PD-MEMLIN with 16
Gaussians per phoneme (y-axis) signals from the E4 basic environment. The line in the scattergram represents the function x = y.

TABLE V
MWER AND MIMP IN PERCENT OF THE DIFFERENT BASIC ENVIRONMENTS FOR THE CLK AND NORMALIZED

ONE WITH KNOWN PD-MEMLIN WITH 16 GAUSSIANS PER BASIC ENVIRONMENT

function of the number of Transformations per basic Environ-
ment (TpE), which each method has to compute for each frame
in normalization, in

(41)

where and are the number of noisy and clean model
Gaussians for phoneme, respectively, and is the number
of phonemes ( , for MEMLIN). In this paper, all of
the phonemes have the same number of clean and noisy model
Gaussians per basic environment: 2, 4, 8, 16 or 32.

The results show that PD-MEMLIN makes significant im-
provements relative to MEMLIN, specially when more than
four Gaussians per phoneme are used . Fig. 5
shows the histogram and scattergram of the first MFCC coeffi-
cient in non-silence frames for clean and normalized data using
PD-MEMLIN with 16 Gaussians per basic environment for
the E4 basic environment. From this figure, we can conclude
that the transformations proposed by PD-MEMLIN solve the
problem of mapping the noisy feature vectors towards the clean
silence as in MEMLIN. PD-MEMLIN reduces the mapping
space at the level of the phonemes, adapting in a better way the
bias vector transformations to the acoustic models.

To estimate the limit of the PD-MEMLIN approxima-
tion, a new experiment was performed. Each frame was
normalized using only the bias vector transformations of
the “correct” phoneme , which is obtained using a forced
Viterbi segmentation in phonemes on the clean testing feature
vectors. That pseudomethod is called known PD-MEMLIN
(KPD-MEMLIN), and (34) is transformed into (42)

(42)

Table V shows the results for clean signal (CLK) and KPD-
MEMLIN with 16 Gaussians per phoneme. The scattergram and
the histogram between the first MFCC coefficient in non-silence
frames for clean and normalized using KPD-MEMLIN with 16
Gaussians per phoneme are presented in Fig. 6.

Table V and Fig. 6 indicate an improvement of almost
100%, while the uncertainty between clean and normalized
feature vectors using KPD-MEMLIN is not reduced signifi-
cantly. Therefore, the phoneme-dependent normalization maps
the noisy feature vectors inside the own uncertainty of the
phonemes, which are modeled by the acoustic models. This
fact can be confirmed by computing the mean correct phoneme
(MCP) recognition rate. For this purpose, the correct phoneme
sequence is the one obtained by forced Viterbi segmentation
over clean signal using the clean acoustic models. For each nor-
malized feature vector, the most probable phoneme is obtained
using the clean phoneme-dependent GMMs. The MCP rate is
computed as the rate of correct phonemes over all the testing
utterances. Table VI shows the MCP rates for PD-MEMLIN
and KPD-MEMLIN with 16 Gaussians per phoneme and for all
of the basic environments. KPD-MEMLIN matches the frames
with the correct phoneme much better than does PD-MEMLIN,
increasing the average MCP more than 10%.

From Tables V and VI, we conclude that the proposed trans-
formations associated to the different phonemes are consistent,
because the feature vectors are mapped from the noisy space to
the space associated to the forced clean phonemes. Therefore, it
provides a future line of research which consists on estimating
in a better way the a posteriori probability of the phoneme, ,
given the noisy feature vector, , and the basic environment, ,

.
3) “Blind” PD-MEMLIN: In many cases, stereo data are

not available; therefore, an iterative “blind” training procedure
is needed. As PD-MEMLIN results are better than any other
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Fig. 6. Scattergram and histogram between the first MFCC coefficient in non-silence frames for clean signals (x-axis) and signals normalized using KPD-MEMLIN
with 16 Gaussians per phoneme (y-axis) from the E4 basic environment. The line in the scattergram represents the function x = y.

TABLE VI
MCP RECOGNITION RATE IN PERCENT FOR NORMALIZED NON-SILENCE

SIGNALS USING PD-MEMLIN AND KNOWN PD-MEMLIN WITH 16
GAUSSIANS PER PHONEME IN EACH OF THE SEVEN BASIC ENVIRONMENTS

considered feature vector normalization method, we propose
a “blind” training procedure for PD-MEMLIN. The expres-
sions for MEMLIN can be obtained directly from the “blind”
PD-MEMLIN ones.

Let us assume that the noisy training feature vectors and
the phoneme-dependent clean and noisy GMMs are available.
So, the problem is to estimate the cross-probability between
the phoneme-dependent Gaussians of the clean and noisy
models, , and the bias vector transforma-
tion, , without the clean part of the training stereo
data. The proposed iterative “blind” training procedure consists
of an initialization and an iterative process.

In the initialization, and

are obtained. is estimated using a modified
Kullback–Lieblerdistance [24],whichgivesasimilaritymeasure
of and without considering the effects of the noise. For
initialization purposes, we assume that the noise modifies mainly
the mean vectors of the Gaussian models. So, the similarity be-
tween Gaussians is computed in terms of thea priori probabilities
and the diagonal covariance matrices of the corresponding Gaus-
sians.Thus,given thephoneme-dependentGaussiansof theclean
and noisy models, and , the modified Kullback–Liebler
distance can be computed as follows:

(43)

where and are the th term of the diagonal

covariance matrices of the and the Gaussians.
The modified Kullback–Liebler distance is not symmetric,

and it is not proportional to the likelihood; therefore, a pseu-
dolikelihood is defined

(44)
Finally, is estimated as

(45)

On the other hand, is obtained replacing

with in (37)

(46)
A very simple recognition experiment with phoneme

acoustic models was carried out, normalizing the noisy signal
with and and four Gaussians
per phoneme-dependent GMM. The mean improvement in
WER over the seven basic environments was 20.2%.

Once is computed, can be estimated it-
eratively by the EM [25] algorithm in a similar way as [7] (see
Appendix I). In this case, the corresponding expression for the

th iteration with , is shown in (47) and (48)
at the bottom of the next page.

The same simple recognition experiment with phoneme
acoustic models was performed, normalizing the noisy signal
with and and four Gaussians
per phoneme-dependent GMM. The mean improvement in
WER in this case was 41.03% if and 46.90% if .

To improve the estimation of pseu-
dostereo data are obtained normalizing the noisy training
feature vectors with KPD-MEMLIN. In this case, the phoneme
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associated with each noisy training feature vector is esti-
mated using a forced Viterbi segmentation of noisy training
utterances. With the pseudostereo data,

,

where is the normalized feature vector of , a new

iteration for can be estimated using (39) or
(40).

Using one iteration of the EM algorithm to estimate

and another one to compute with pseu-
dostereo data, the mean improvement in WER with phoneme
acoustic models and four Gaussians per phoneme-dependent
GMM was 50.23%. As the use of pseudostereo data produces
significant improvements, they can also be used to adjust the
estimation of using (37). So, if
is estimated with three iterations and the first iteration of

with the EM algorithm, is tuned with
two additionally iterations with pseudostereo data, the mean
improvement in WER with phoneme acoustic models and
four Gaussians per phoneme-dependent GMM was 58.68%.
These results show that the use of the EM algorithm and the
pseudostereo data jointly produces important improvements.
“Blind” MEMLIN training procedure can be developed in the
same way as PD-MEMLIN, avoiding the phoneme dependence.

4) Results From “Blind” PD-MEMLIN: The experi-
ments in Section III were performed again, using “blind”
PD-MEMLIN. The mean improvement in WER in percent
of “blind” PD-MEMLIN compared to PD-MEMLIN and
MEMLIN is presented in Fig. 7. Three iterations with pseu-
dostereo data were needed for , and
was estimated with two iterations with pseudostereo data, once

had been computed with the EM algorithm.
The results show that “blind” PD-MEMLIN is able to produce

improvements that are very similar to MEMLIN ones for all the
TpE.

The most representative results from each of the improve-
ment methods over MEMLIN are summarized in Table VII,
indicating the TpE required to obtain the best corresponding
values. It can be observed that PD-MEMLIN obtains the best
improvement with the smallest TpE.

V. DISCUSSION AND CONCLUSION

In this paper, some basic methods of feature vector normal-
ization based on MMSE estimator and stereo data, such as
RATZ, SPLICE, and our proposed technique MEMLIN, have

Fig. 7. Mean improvement in WER of MEMLIN, PD-MEMLIN, and “blind”
PD-MEMLIN.

TABLE VII
BEST MWER AND MIMP IN PERCENT FROM MEMLIN, MEMHIN,

P-MEMLIN, PD-MEMLIN, AND “BLIND” PD-MEMLIN,
WITH THE REQUIRED TPE INDICATED

been explained and compared using real car noise conditions
from the SpeechDat Car database. With respect to RATZ and
SPLICE, MEMLIN proposes modeling clean and noisy spaces
with GMMs, learning a bias vector transformation for each pair
of Gaussians (one for the clean GMM and the other one for the
noisy GMM). MEMLIN produces results that are significantly
better than those obtained using other methods. MEMLIN
produces a mean improvement in WER of 69.09%, far away
from 48.82% of Interpolated RATZ and better than 64.46% of
SPLICE with environmental model selection.

Further improvements have been considered using first-order
polynomial and a nonlinear function for each pair of Gaussians
instead of the bias vector transformation in MEMLIN. The new
methods are called P-MEMLIN and MEMHIN, respectively.
Both methods compensate for the effects of the noise in the
mean and the variance of the feature vectors. The results show an

(47)

(48)



BUERA et al.: CEPSTRAL VECTOR NORMALIZATION BASED ON STEREO DATA FOR ROBUST SPEECH RECOGNITION 1111

Fig. 8. Scattergram and histogram between the first MFCC coefficient in non-silence frames for clean (x-axis) and normalized using MEMLIN with 128 Gaussians
per basic environment, where p s js ; e is computed with clean signal as p(s jx ). The line in the scattergram represents the function x = y.

TABLE VIII
MEAN MWER AND MIMP IN PERCENT FROM THE METHODS MEMLIN,

MEMHIN, PD-MEMLIN, AND “BLIND” PD-MEMLIN WITH ML-ADAPTED

ACOUSTIC MODELS TO THE NORMALIZED SPACE. THE NUMBER

OF GAUSSIANS PER BASIC ENVIRONMENT ARE INDICATED BESIDE

THE NAME OF EACH NORMALIZATION METHOD

improvement concerning MEMLIN when less number of Gaus-
sians is used. When the number of Gaussians increases, the im-
provements in WER are very similar (68.09% and 69.24% for
MEMHIN and P-MEMLIN with 128 Gaussians, respectively).

MEMLIN, P-MEMLIN and MEMHIN allow mapping from
any noisy GMM Gaussian towards any clean GMM Gaussian.
PD-MEMLIN has been developed to constrain the mapping
space in terms of the acoustic models. So, noisy and clean
spaces are split into phonemes and the transformations are
only possible between Gaussians of the same phoneme. The
improvement in WER of PD-MEMLIN is 74.32%. As in many
cases stereo data are not available, a “blind” training proce-
dure has been developed to estimate the needed variables for
PD-MEMLIN without the clean part of the stereo data. The
improvement in WER in this case reaches 69.88%, which is
even better than MEMLIN. Furthermore, It can be observed
that a perfect estimation of the a posteriori probability of the
phoneme, given the noisy feature vector and the basic environ-
ment, in PD-MEMLIN (KPD-MEMLIN) can generate almost a
100% of improvement in WER, while the uncertainty between
the clean feature vectors and the normalized ones is not reduced
significantly.

Although the transformation is not perfect, the normalized
feature vectors define a new normalized space more homo-
geneous than the noisy one. So, new acoustic models can be
retrained with the normalized training data. The MWER and
MIMP results are presented in Table VIII. It can be observed

that the results for all techniques are better than the ones ob-
tained with noisy acoustic models HF, and in some cases very
similar to use specific acoustic models for each environment
HF.

In all the presented techniques, the estimation of the
cross-probability model term, , in MEMLIN,
P-MEMLIN and MEMHIN, and , in
PD-MEMLIN, has a hugh impact on the final performance. A
simple experiment approximating the cross-probability model
using the clean feature vectors gives an improvement in WER
close to 100%, and reducing dramatically the uncertainty
between the clean feature vectors and the normalized ones, as
shown in the Fig. 8. These results open a new line of future
work, improving the estimation of the cross-probability model
and the a priori probability of the phoneme, given the noisy
feature vector and the basic environment.

APPENDIX

ESTIMATION OF BY THE EM ALGORITHM

FOR “BLIND” PD-MEMLIN

We consider a set of noisy labeled feature vectors associ-
ated to a basic environment , and a phoneme, ,

, with . Noisy
and clean feature vectors are modeled with GMMs: (30), (31),
(32), and (33). We assume that the pdf of the noisy feature
vectors, given , , the basic environment and the
phoneme is

(A.1)

The log-likelihood function, is

(A.2)

where is the joint probability of the pair of
Gaussians, given the basic environment and the phoneme .
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The auxiliary function , with is
defined as

(A.3)

Defining , (A.3) is transformed
into

constant

(A.4)

The value of is obtained by taking derivatives
and setting it equal to zero

(A.5)

(A.6)

where can be computed as fol-
lows:

(A.7)

(A.8)
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