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ABSTRACT

In this paper a novel technique for blind identification of multi-
channel FIR systems is derived from the powerful learning para-
digm of support vector machines (SVMs). Specifically, blind iden-
tification is formulated as a support vector regression problem and
an iterative procedure, which avoids a trivial solution, is proposed
to solve it. The SVM-based approach can be viewed as a regular-
ized version of the least squares method for blind identification. In
the paper we show that minimizing the complexity of the solution,
as suggested by the structural risk minimization (SRM) principle,
increases the robustness of the proposed SVM-based technique to
channel order overestimation as well as to poor diversity chan-
nels (i.e., when a pair of subchannels have close zeros). The per-
formance of the method is demonstrated through some simulation
examples.

1. INTRODUCTION

Blind identification of single-input multiple-output (SIMO) chan-
nels is a common problem encountered in communications, sonar
and seismic signal processing. SIMO channels appear either when
the signal is oversampled at the receiver or from the use of an array
of antennas. It is well known that, if the input signal is informative
enough and the FIR channels are co-prime, second order statistics
(SOS) are sufficient for blind identification [1].

The most popular SOS-based approaches for blind identifica-
tion are the subspace methods (SS) [1, 2], the least squares (LS)
subchannel matching technique [3], and the linear prediction (LP)
methods [4, 5]. A good review of these methods can be found in
[6].

A drawback of the subspace and least squares techniques is
that they require an exact knowledge of the channel order. On
the other hand, LP methods are robust when the channel order is
slightly overestimated (one or two taps) [5], but their performance
degrades when the channel order is highly overestimated or at low
SNRs [7]. Other techniques that exploit additional statistical in-
formation about the problem, for instance the constant modulus
property of the input signal, have recently been proposed for blind
identification robust to channel order overestimation [8].

In this paper we consider the application of support vector ma-
chines (SVMs) [9, 10] for blind identification of SIMO channels.
Recently, similar ideas have been successfully applied to blind
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equalization of constant modulus signals [11, 12]. For the prob-
lem at hand, the good generalization capabilities of SVMs (theo-
retically proven by results from statistical learning theory [9, 10]),
translate into an increased robustness to channel order overesti-
mation. Furthermore, as we will show in the paper, the proposed
technique still works in poor diversity conditions (which happens,
for instance, when some subchannels have close zeros).

2. BLIND SIMO IDENTIFICATION

Without loss of generality, in this paper we focus on the one-
input/two-output channel setting. If the order of the FIR channels
is M , the output of theith channel fori = 1, 2 is

xi[n] =

M∑
k=0

hi[k]s[n− k] + ri[n],

wheres[n] is an arbitrary input sequence andri[n] is a zero-mean
white Gaussian noise. The objective of blind channel identification
is to identify the unknown channel responseshi[n] based on the
channel output only.

As we will see later, the proposed SVM-based method can
be viewed as a regularized version of the LS technique proposed
in [3]. Therefore, we now briefly summarize the key ideas and
properties of the LS subchannel matching method. Consider the
system depicted in Fig. 1, wherêh1 and ĥ2 are the estimates of
orderM (known) of both subchannels. In a noiseless situation, and
if the subchannels are co-prime, the outputy[n] = y1[n] − y2[n]
is zero iff the subchannels have been identified up to a constant
arbitrary factor, i.e.,

Ĥ1(z) = cH1(z),

Ĥ2(z) = cH2(z).

Specifically, if the channel outputxi[n] is available forn =
0, · · · , N−M−1, the channel estimate can be obtained by solving
the following set of equations[

X2 −X1

]︸ ︷︷ ︸
X

[
ĥ1

ĥ2

]
︸ ︷︷ ︸

ĥ

= 0, (1)

where

Xi =

 xi[M ] xi[M − 1] · · · xi[0]
...

. . .
. . .

...
xi[N + M − 1] · · · · · · xi[N − 1]

 .
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Fig. 1. Least squares blind identification of SIMO channels.

To avoid a trivial solution, the channel estimate is obtained by
solving

min
||hLS ||=1

hT
LS

(
XT X

)
hLS ,

and hence the solution is the eigenvector corresponding to the min-
imum eigenvalue ofXT X. In SIMO channels withp outputs, we
can formp(p − 1)/2 pairs of equations as in (1) and combine all
of them into a larger linear system.

The LS method exhibits good performance but requires an ac-
curate estimate of the channel order. This can be an unrealistic
assumption in some applications; for instance in communications,
where due to the transmitting and receiving shaping filters, the
overall impulse response can have long tails of small amplitude
terms. In the next section we proposed an SVM-based alternative
to mitigate this problem.

3. SVM-BASED ALGORITHM

3.1. SV regression

In this section we formulate the blind identification problem as
a regression problem within the support vector machine (SVM)
framework. From Fig. 1 we can write

X2ĥ1 = y1,

X1ĥ2 = y2;

then, our aim is to makey[n] = y1[n] − y2[n] as small as pos-
sible ∀ n. According to the structural risk minimization (SRM)
principle [9], one minimizes

J(ĥ) =
1

2

∥∥∥ĥ∥∥∥2

+ C

N∑
n=1

L
(
ξn, ξ̃n

)
, (2)

subject to

y[n] ≤ ε + ξn, (3)

−y[n] ≤ ε + ξ̃n, (4)

ξn, ξ̃n ≥ 0, (5)

for n = 1, · · · , N .
In (2) ĥ is the overall channel impulse response,C > 0 is

a regularization parameter andL(ξn, ξ̃n) can be any monotonic
convex function. Typically we use a linear loss function:L =
ξn + ξ̃n, or a quadratic loss function:L = ξ2

n + ξ̃2
n. Finally, in

(3) and (4)ε is a parameter that determines the precision of the
regression: deviations over the desired output smaller thanε are
not penalized.

The cost function (2) establishes a tradeoff between the comple-
xity of the estimated channel impulse response (measured through
its squared norm||ĥ||2) and a term that penalizes deviations over
the ideal outputy[n] = 0. The complexity term acts as a regula-
rization term and it is the responsible for the increased robustness
of the method. On the other hand, and from a Bayesian point of
view, the loss function should be chosen according to the noise
distribution [13]. In this paper we use the quadratic loss function
L = ξ2

n + ξ̃2
n, which seems the best choice under Gaussian noise.

The minimization of (2) under the constraints (3), (4) and (5)
can be transformed into a quadratic programming (QP) problem
that can be efficiently solved [14]. A direct application of this
approach, however, yields the solutionĥ = 0. In the next section
we discuss an iterative procedure to avoid a trivial solution.

3.2. Iterative SV regression

The proposed technique divides the QP problem (2) into two inde-
pendent regression problems (one for each subchannel)

J(ĥi) =
1

2

∥∥∥ĥi

∥∥∥2

+ C

N∑
n=1

L
(
ξn, ξ̃n

)
, (6)

subject to

yi[n]− yd[n] ≤ ε + ξn, (7)

yd[n]− yi[n] ≤ ε + ξ̃n, (8)

ξn, ξ̃n ≥ 0,

for all n = 1, · · · , N ; and fori = 1, 2.
In (7) and (8)yd[n] is the desired output, which is the same

for both subchannels. Obviously,yd[n] is unknown; however, both
QP problems can be simultaneously solved by using the following
iterative procedure: let us suppose that at iterationk we have esti-
mateŝh1,k andĥ2,k, which produce at their outputy1,k andy2,k,
respectively. Then, at iterationk + 1 a new support vector regres-
sion problem is solved for both subchannels with a common target
outputyd = (y1,k + y2,k)/2, i.e., the new desired output signal
is the mean value of the outputs given by the subchannel estimates
at the previous iteration.

To discuss the convergence of the proposed algorithm, let us
consider a quadratic loss function withε = 0 (this is the case used
in all the simulation examples). The key point is that the proposed
iterative procedure defines a nonexpansive mapping [15], i.e.,

||y1,k+1 − y2,k+2||2 ≤ ||y1,k − y2,k||2, (9)

otherwisey1,k andy2,k would be better solutions thany1,k+1 and
y2,k+1 to the QP regression problems at iterationk + 1. Further-
more the map isstrictly nonexpansive since the inequality in (9)
holds whenevery1,k 6= y2,k; then, there is a unique fixed point
that must fulfilly1 = y2.

To avoid a trivial solution the estimates of both subchannels
are normalized after each iteration as follows

ĥ1,k = ĥ1,k/
√

ĥT
1,kR̂x2ĥ1,k (10)

ĥ2,k = ĥ2,k/
√

ĥT
2,kR̂x1ĥ2,k (11)

whereR̂x1 andR̂x2 are estimates of the input correlation matri-
ces for both subchannels (see Fig.1). In this way, we force a unit
variance at the output of each subchannel.



Regarding the selection ofC andε, we propose to useε = 0
and updateC according to [16]

C = 5max(|y1|+ 3σy1 , |y2|+ 3σy2), (12)

whereyi andσyi denote the mean value and standard deviation of
yi, respectively. Finally, the iterative SV regression procedure can
be summarized as follows:

Initialize ε = 0 andĥ1 = ĥ2 = δ[n− d].
while Convergence criterion not truedo

Obtain the current outputs:X2ĥ1 = y1 andX1ĥ2 = y2.
UpdateC according to (12).
Solve (6) fori=1,2 usingyd = (y1 + y2)/2 as target output.
Normalize the channel estimates according to (10) and (11).

end while

Algorithm 1: Summary of the SVM blind identification algo-
rithm.

4. SIMULATION RESULTS

In the first simulation we consider a raised-cosine pulse limited
in 3T (T is the symbol period) with roll-off factor 0.1 and the
following multipath channel:h(t) = δ(t) − 0.7δ(t − T/4). The
input signal type is i.i.d. 4PAM and the received data were sampled
at twice the symbol rate. The algorithm’s performance is measured
through the normalized mean squared error (NMSE) defined as in
[8]

NMSE =
1

||h||2 min
α,k≥0

∣∣∣∣∣∣
∣∣∣∣∣∣αĥ−

 0k,1

h
0M′−M−k

∣∣∣∣∣∣
∣∣∣∣∣∣ , (13)

whereM ′ ≥ M is the estimated channel order.
For the blind SVM procedure we use a quadratic loss function

with ε = 0 and update the regularization parameterC according
to (12). In addition, to speed up the procedure the iterations are
carried out until||y1,k − y2,k||2 < 10−3 or a maximum number
of 100 iterations is reached. The SNR for this example is 30 dB.
Figure 2 shows the estimated NMSE for the proposed procedure
and the LS technique [3] when the number of input symbols varies
from N=5 toN=100, and the channel order is either correctly es-
timatedM ′ = M or highly overestimatedM ′ = M + 8. We can
see that the proposed blind SVM technique is robust to channel
order overestimation. Also, the NMSE curves for the blind SVM
tend to flatten when the number of input symbols increases: this is
due to a bias in the SVM-based channel estimate. This bias (pro-
voked by the regularization term) can be clearly seen in Figs. 3 and
4, which show the result of 50 independent trials usingN = 100
symbols for the casesM ′ = M andM ′ = M + 8, respectively.
The increased robustness to channel order overestimation over the
LS technique is evident.

In the second example we compare the performance of the
proposed algorithm when the channel provides poor diversity: an
issue that has not been satisfactorily solved yet. We consider the
following subchannels:H1(z) = 0.5−0.6136z−1+0.3088z−2−
0.065z−3, H2(z) = 2 − 1.52z−1 + 0.38z−2 − 0.0638z−3 and
an i.i.d. binary input signal. The first subchannel has a real zero
at c = 0.52, whereas the second has a zero atc = 0.51: this pair
of close zeros provoke a badly conditioned input correlation ma-
trix that impairs subspace-based techniques. We consider a SNR=
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Fig. 2. Comparison between the LS and blind SVM techniques
when the channel order is exact (solid line) or overestimated by 8
taps (dashed line).
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Fig. 3. 50 trials of the LS and blind SVM techniques whenM ′ =
M for N = 100 symbols andSNR = 30 dB.
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Fig. 4. 50 trials of the LS and blind SVM techniques whenM ′ =
M + 8 for N = 100 symbols andSNR = 30 dB.



20 dB andN = 100 input symbols. In Fig. 5 we see that the
proposed technique again outperforms the LS subchannel match-
ing algorithm. Obviously, the price to be paid for this robustness
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Fig. 5. 50 trials of the LS and blind SVM techniques in a situation
of poor diversity.

to channel order overestimation and badly conditioned channels is
a notable increase in computational cost (at least in comparison
to the LS algorithm) that prevents its use for large datasets (e.g.
≥ 100 symbols).

5. CONCLUSIONS

In this paper we have developed a new SVM-based algorithm for
blind identification of SIMO channels. According to the SRM
principle the proposed cost function establishes a tradeoff between
a loss function and the complexity of the solution: this regularized
functional leads to a robust solution to either channel order overes-
timation or badly conditioned channels (two problems that can ap-
pear in a realistic scenario). The method can be used with any per-
sistently exciting input signal and can be easily generalized to an
arbitrary number of FIR channels. Due to the high computational
cost of the proposed iterative algorithm, the use of the SVM-based
algorithm is advisable in applications when only a small number
of data samples is available (≤ 100 symbols). Nevertheless, some
techniques to reduce the computational burden of QP problems
that have recently appeared [17], could be used to alleviate this
problem.
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