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Abstract

A method for robustly estimating the respiratory
frequency from exercise ECGs is presented. The special
characteristics of these recordings, such as the highly non-
stationary noise, the exercise-induced QRS morphologic
variations, and the dynamic nature of the respiratory
frequency during the exercise test, make the classical
estimation of a respiratory signal to break down. Our
method is based on least-squares estimation of the
rotation angles of the heart electrical axis by aligning
successive QRS-VCG loops to an adaptively updated
reference loop. The respiratory frequency is estimated
by spectral analysis of the series of rotation angles using
a reference frequency tracking algorithm. The method
was evaluated by means of a simulation study. The
respiratory frequency estimation error achieved by this
method (0.623%±0.316%, mean±SD) was found to be
lower than that obtained by a classical method based on
QRS areas (3.220%±3.873%).

1. Introduction

The respiratory signal is usually recorded by means of
techniques like spirometry or plethysmography. Sometimes
the recording of the respiratory signal is impractical
and uncomfortable for the patient, e.g. during exercise
testing, since the patient is constantly moving and with an
increasing oxygen demand rate. In these situations, the use
of methods for indirectly extracting respiratory information,
such as the respiratory frequency, are challenging.

Respiration activity influences electrocardiographic
measurements. During the respiratory cycle, chest and
heart movements cause a change of the electrical axis of
the heart which affects QRS morphology. Several studies
have developed signal processing techniques to derive the
respiratory signal from the ECG, called the ECG-derived
respiration (EDR) signal. Unfortunately, exercise ECGs
are highly non-stationary and noisy, causing classical EDR
methods to fail. Moreover, the respiratory frequency during
an exercise test is in itself a highly dynamic quantity.

A method for estimating the respiratory frequency from
the VCG was described in [1]. The method is based
on least-squares estimation of the rotation angles of the
heart electrical axis during the respiratory cycle by aligning
successive QRS-VCG loops to a reference loop with respect
to the transformations of rotation and time synchronization.
The respiratory frequency was estimated by power spectral
analysis of the estimated rotation angle series.

The aim of our work was to obtain a robust estimation
of the respiratory frequency from exercise ECGs. The
method in [1] was modified to better account for the
special characteristics of exercise ECGs, including an
adaptive reference loop to compensate for exercise-induced
QRS morphologic changes and the rejection of inaccurate
rotation angles due to noise and ectopic beats. For
comparison, a classical EDR method based on QRS areas
was also implemented [2].

2. Materials and methods

2.1. Database

At the University Hospital ‘Lozano Blesa’ of Zaragoza,
Spain, the ECGs of 844 patients and 66 asymptomatic
volunteers were recorded during a treadmill exercise test.
Standard leads (V1, V3-V6, I, II, III, aVR, aVL and aVF)
and RV4 were digitized at a sampling rate of 1 kHz and a
resolution of 0.6µV .

2.2. Respiratory frequency estimation

The method for estimating respiratory frequency is
divided into three stages: first, asignal preprocessing
is needed to ensure the proper performance of theEDR
algorithms implemented in the second stage; finally, the
respiratory frequency is estimated byspectral analysisof
the EDR signals.

2.2.1 Signal preprocessing

QRS complexes are detected by the method proposed
in [3], using RV4, V4 and V5. A VCG signal is



synthesized from the 12-lead recorded signal using the
same methodology as the one producing the inverse Dower
transformation [4], but here accounting for the spatial
location of RV4 rather than the standard V2 [5].

Exercise ECGs usually present large baseline drift,
implying different reference voltages of successive QRS
complexes. Baseline drift is attenuated usingcubic splines
interpolation.

2.2.2 EDR algorithms

QRS-VCG loop alignment
The EDR signal is given by the series of least-squares

estimated rotation angles of the cardiac electrical axis
between an observed and an adaptively updated reference
loop. The method consists of the minimization of the
normalized distanceε between a reference loop (3×N
matrixYR) and an observed loop (3×(N+2∆) matrixY),
with respect to the transformations of rotation (3×3 matrix
Q) and time synchronization ((N+2∆)×N matrixJτ ) [6]:

ε =
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whereN is the number of samples of the QRS complex
analysis window (80 ms). The parameter∆ denotes the
number of symmetrically augmented samples to allow time
synchronization (10 ms) withτ = −∆, . . . ,∆ incremented
in steps of 1 ms.

Vectorcardiographic loop alignment is performed over
the early part of the QRS complex (from 60 ms before to
20 ms after the QRS fiducial point) since the terminal part
of the QRS is affected by exercise-induced ST changes.

The rotation anglesφx, φy andφz are computed from
the estimated rotation matrix̂Q. For successive beats with
similar morphologiesQ is diagonally dominant. However,
at high noise levels or in the presence of ectopic beats
Q̂ does not always have that structure, leading to outlier
angle estimates. In [6] it was proposed to estimateQ̂τ for
different values ofτ , to discard non-diagonally dominant
matrices and to choose thatQ̂τ of the remaining matrices
which minimizes the criterion. When no diagonally
dominant matrixQ̂τ is found for anyτ (−∆ ≤ τ ≤ ∆)
no rotation angles are estimated for that loop, leading to
angle trends with large gaps in noisy periods.

The QRS morphology may change during exercise.
An exponentially updated reference loop is considered to

reduce the influence of exercise-induced QRS morphologic
variations on angle estimations.

YR(k + 1) = αYR(k) + (1− α)Y(k + 1) (4)

The parameterα should be carefully chosen to
follow exercise-induced QRS morphologic variations while
avoiding adaptation to noise; a value of 0.8 was used in
this study based on experimentation on actual recordings.
Loops for which no diagonally dominant̂Qτ is found do
not participate in the adaptation ofYR. Fig. 1 displays
YR at the beginning, at exercise peak, and at the end of an
exercise ECG.
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Figure 1. Reference loop (mV) at the beginning (solid), at
exercise peak (dashed) and at the end (dotted) of an exercise
ECG.

QRS areas
For comparison, the EDR method described in [2] was

implemented. The ratio of the QRS areas over a fixed
time interval of two orthogonal leads is used to define
an angleθ resembling the instantaneous direction of the
cardiac electrical axis in relation to one of the leads:

θxy = arctan(Ay/Ax)

θxz = arctan(Az/Ax)

θyz = arctan(Az/Ay)

whereAx,y,z represents the QRS area over the same interval
defined for QRS-VCG loop alignment, computed by the
trapezoidal method in leads X, Y and Z, respectively. The
variations of the estimated̂θxy, θ̂xz andθ̂yz trends are used
as EDR signals.

2.2.3 Spectral analysis

The respiratory frequency is estimated as the peak
frequency of the EDR signal. Spectral analysis is performed
by means of Lomb’s method [7] since the angle trends are
unequally spaced and present large gaps in noisy periods.
Simple interpolation would introduce low frequencies in the
spectrum which would mask the respiratory frequency.

The respiratory frequency is estimated on the moving-
average of 6 spectra, each of which estimated on a 20-
beat period sliding 5 beats each time. Spectral averaging
is necessary to smooth frequency peaks due to inaccurate
angle estimates and to enhance the peak of the respiratory
frequency. The averaging window length should be chosen



to allow the estimation of the lowest reasonable respiratory
frequency (0.2 Hz) and to follow respiratory frequency
variations during exercise. The normalized spectra of the
three estimated angle trends are summed, prior to the
spectral averaging, to account for electrical axis rotation
projections on any lead.

To reduce the risk of spurious peak selection, the search
of the largest spectral peak (f̂(k)) is restricted to the interval
[0.7fR(k),1.3fR(k)] around a reference frequency (fR(k)),
aimed to be the smoothed running respiratory frequency,
exponentially updated.

fR(k + 1) = αfR(k) + (1− α)f̂(k + 1) (5)

where k denotes the index of each averaged spectrum.
The parameterα was set to 0.9 in a compromise between
obtaining a stable estimation of the respiratory frequency
and following its variations during an exercise test.

2.3. Simulation study

The database described in Section 2.1 does not contain
simultaneously recorded respiratory signals. Therefore, a
simulation study is designed to evaluate the method. First,
a noise freeexercise ECG is simulated from a set of 15
weighted averaged beats extracted from resting, exercise
and recovery phases of a real exercise ECG from the
database, following different ST/HR patterns [8].

The simulated records have a standard 12-lead
configuration like those in Section 2.1. A VCG signal is
synthesized as explained in Section 2.2.1.

The changes in the electrical axis of the heart due to
respiration are simulated as described in [9]. The VCG
is transformed by a rotation matrix of time-varying angles.
The angular variation around each lead is simulated by two
sigmoidal functions reflecting inhalation and exhalation,
with a maximum variation of 5 degrees. The simulated
respiratory frequency follows a pattern which often occurs
during exercise (Fig. 2).
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Figure 2. Simulated respiratory frequency pattern

In order to take the presence of noise in exercise ECGs
into account, an additive noise model is used. Noise records
are estimated as the residual of raw exercise ECGs and
the corresponding averaged beat series. Spike-like QRS

residuals are rejected based on a median absolute deviation
(MAD) method as in [8].

In Fig. 3 a simulated record is shown during different
stages of an exercise test.
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Figure 3. Simulated record at the beginning (top), exercise
peak (middle), and end (bottom) of the exercise test.

3. Results

The method was evaluated on a total of 136 simulated
exercise VCGs resulting from the combination of 102
noise records (mean RMS level of 444µV with standard
deviation (SD) of 267µV ) and 4 different ST/HR patterns.

An absolute error trend was defined as∆f(k) = |f(k)−
f̂(k)| where f(k) is the simulated respiratory frequency
(Fig. 2) andf̂(k) the frequency estimated on each averaged
spectrumk. The relative error trend was defined as

∆f%(k) = |f(k)−f̂(k)|
f(k) × 100(%). The intra-subject error

was characterized by the mean of∆f(k) and ∆f%(k) .
Mean and SD of the intra-subject error achieved by the
two EDR algorithms (QRS-VCG loop alignment,eL, and
QRS areas,eA) are shown in Table 1 for the total number
of simulated recordings.

Table 1. Mean and SD of the intra-subjecterror
mean SD

eL (Hz) 0.0032 0.0019
% 0.623 0.316

eA(Hz) 0.0171 0.0218
% 3.220 3.873

The mean and SD of the respiratory frequency estimated
by both EDR algorithms during the whole exercise test can
be observed in Fig. 4.
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Figure 4. Mean (dashed) and SD (dotted) of the exercise
test respiratory frequency estimated by the QRS-VCG
loop alignment (left) and the QRS areas (right) approach
compared with the simulated respiratory frequency (solid).

4. Discussion and conclusions

The idea of using the QRS-VCG loop alignment
approach for estimating the respiratory frequency from the
ECG was proposed in [1] and applied to a database of young
non-pathologic subjects. This work extends the method in
[1] handling exercise ECGs, where respiratory frequency
is not constant but varying with work load, the signal is
often contaminated with high levels of noise, artifacts and
the presence of ectopic beats. The main modifications were
rejection of non-diagonally dominant rotation matrices,
an adaptively updated reference loop and tracking of the
respiratory frequency.

The simulation study was designed to mimic exercise
ECGs. Different ST/HR patterns typical for ischemic and
healthy subjects were simulated. Performance was similar
among the different patterns for both the QRS-VCG loop
alignment and the QRS area approaches, so all simulated
recordings were treated together to quantify the results.

The performances of the methods based on QRS-VCG
loop alignment and QRS area were compared by means
of the intra-subject error of the respiratory frequency
estimation. Signal preprocessing and spectral analysis of
the estimated rotation angle trends were identical for both
approaches. QRS-VCG loop alignment approach yielded
a lower error than the QRS area method (0.623%±0.316
vs. 3.220%±3.873%). As can be appreciated from Fig.
4, the QRS-VCG loop alignment outperforms the QRS
areas especially at the exercise peak, where noise levels
are at their peak. Comparison of the QRS-VCG loop
alignment and the QRS area approaches may not be fair
since the QRS area method is based on a simple calculation
of measures extracted from two leads, therefore requiring
less information and computation than the QRS-VCG loop
alignment approach.

Sometimes the beginning of the recording is particularly
noisy. In such situations the method failed to estimate
the respiratory frequency at the beginning of the test and
the error propagated to the end of the recording due to
the frequency tracking algorithm. This was particularly

problematic with the QRS area approach since its noise
break down level was lower than for the QRS-VCG loop
alignment. However, this phenomenon was also observed
with the QRS-VCG loop alignment approach in actual
exercise ECGs. It constitutes a major limitation of the
method proposed in this work and may be alleviated with
a robust initialization of the frequency tracking algorithm.

The method proposed here would be very useful to study
the correlation between respiratory frequency and heart rate
variability during an exercise test, which has been reported
to be a potential marker of ischemia.
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