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Abstract—Robust beamforming is a challenging task in a
number of applications (radar, sonar, wireless communications,
etc.) due to strict restrictions on the number of available snap-
shots, signal mismatches, or calibration errors. We present a
new approach to adaptive beamforming that provides increased
robustness against the mismatch problem as well as additional
control over the sidelobe level. We generalize the conventional
linearly constrained minimum variance cost function by including
a regularization term that penalizes differences between the actual
and the target (ideal) array responses. By using the so-called -in-
sensitive loss function for the penalty term, the final cost function
adopts the form of a support vector machine (SVM) for regression.
In particular, the resulting cost function is convex with a unique
global minimum that has traditionally been found using quadratic
programming (QP) techniques. To alleviate the computational
cost of conventional QP techniques, we use an iterative reweighted
least-squares (IRWLS) procedure, which also converges to the
SVM solution. Computer simulations demonstrate an improved
performance of the proposed SVM-based beamformer, in compar-
ison with other recently proposed robust beamforming techniques.

Index Terms—Adaptive arrays, linearly constrained minimum
variance beamformer, robust beamforming, robust Capon beam-
forming, sidelobe control, steering vector errors, support vector
machines (SVMs) for regression.

I. INTRODUCTION

ROBUST array beamforming has drawn considerable
attention in the past years due to its importance for wire-

less communications, sonar, medical imaging, astronomy, and
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other applications. Providing robustness against model mis-
matches and tracking possible environment changes calls for
robust adaptive beamforming techniques. In order to achieve
high interference suppression and signal-of-interest (SOI)
enhancement, an adaptive array must introduce deep nulls in
the directions of arrival (DOA) of strong interferences, while
keeping the desired signal distortionless. This design crite-
rion yields the well-known minimum-variance distortionless
response (MVDR) beamformer [1].

In practice, the knowledge of the desired steering vector can
be imprecise, which often occurs due to estimation errors in
the DOA of the desired signal or imperfect array calibration.
In these situations, the SOI is considered as an interference and
the performance of the MVDR beamformer is known to degrade
substantially. This undesired behavior results in a reduction of
the array output signal-to-interference-plus-noise-ratio (SINR)
or erroneous SOI power estimation. The performance degrada-
tion due to the signal nulling effect and the resolution of the
MVDR beamformer in the presence of steering vector errors
are analyzed in [2] and [3]. Similar degradation occurs when the
number of snapshots used for covariance matrix estimation is in-
sufficient. In this situation, the MVDR beamformer can present
unacceptably high sidelobes, which reduce its performance in
the presence of high noise or unexpected interferences. A com-
plete study about the performance of the MVDR beamformer
considering these practical drawbacks is presented in [4], where
an expression for the output SINR is obtained when only one in-
terference signal impinges into the array. An extension of this
analysis for scenarios with steering vector mismatch is devel-
oped in [5].

A large number of approaches have been presented in the
array processing literature in order to improve the robustness of
the MVDR beamformer (see [1] and [6] for an extensive review,
and the references therein). Among them, diagonal loading
(DL) has been widely employed due to its simplicity and rel-
atively acceptable performance [7], [8]. Probably the first DL
approach for robust beamforming is the classic work by Cox
et al. [7], where a white noise gain constraint (i.e., a quadratic
constraint on the beamformer weights) is incorporated into the
cost function. However, a serious drawback of the diagonal
loading method is that it is not clear how to select the diagonal
loading factor based on the uncertainty of the desired steering
vector or the number of available snapshots [9]. Recently, a
number of techniques have been proposed to improve the ro-
bustness of the minimum variance beamformer [6], [10]–[13].
These algorithms make explicit use of the uncertainty set of the
array steering vector in order to derive DL solutions. An online
version of this robust beamformer using a constrained Kalman

1053-587X/$25.00 © 2006 IEEE



GAUDES et al.: ROBUST ARRAY BEAMFORMING WITH SIDELOBE CONTROL USING SVMs 575

filter is presented in [14]. A different scenario occurs when
the source signal is far from being a point source. In this case,
multirank beamformers must be considered to enhance the
SOI [2], [15], [16]. Other robust beamforming approaches that
do not use diagonal loading are the eigenspace beamformers
[17]–[19], the covariance tapering methods [20]–[23], the
Bayesian beamformer [24], the Hung–Turner adaptive beam-
formers [25], [26] or the fuzzy-inference-based beamformer
[27]. From another point of view, a general statistical analysis
based of the DL beamformer is carried out in [28] based on
random matrix theory. This analysis sheds light on the array
performance when the number of available snapshots and the
number of sensors have the same order of magnitude, and it is
useful to derive array signal processing architectures.

With regard to sidelobe control, a new approach has been pre-
sented in [29], where the MVDR beamforming problem is modi-
fied to incorporate multiple quadratic inequality constraints out-
side the mainlobe beampattern. The corresponding optimization
problem can be written as a second-order cone (SOC) program-
ming problem. Although using this approach the sidelobe levels
are guaranteed to be under a certain prescribed value (as long as
a feasible solution exists), this technique does not consider the
signal mismatch problem. Another method for sidelobe control
is presented in [30], where semidefinite programming is con-
sidered for array pattern design in both mismatch and non-mis-
match situations. However, this approach exhibits poor interfer-
ence rejection.

The aim of this work is to consider the application of support
vector machines (SVMs) [31], [32] to robust beamforming.
Based on the principle of structural risk minimization, the
theory of SVMs was first introduced by Vapnik [31] and
has found application in a number of communications prob-
lems such as blind equalization/identification [33]–[35] and
multiuser detection [36]. Here, we reformulate the minimum
variance beamforming problem by incorporating additional
inequality constraints that penalize sidelobe levels while, at the
same time, allow a certain error in the desired signal direction.
The resulting cost function adopts the form of a support vector
machine for regression [37]. The proposed SVM-based beam-
former is a regularized solution which can be appropriate for
rank-deficient scenarios. Unlike [29], which requires a feasible
problem to obtain the beamformer coefficients, the proposed
SVM-based formulation always provides an approximate so-
lution close to the prescribed sidelobe level. While the SVM
solution has traditionally been found by means of quadratic pro-
gramming (QP) techniques, here we use an iterative reweighted
least-squares (IRWLS) procedure, which considerably reduces
the complexity of conventional QP techniques. This proce-
dure has been successfully applied to solve SVM problems
[38], and it has recently been proven to converge to the SVM
solution [39], [40]. Performance simulations of the proposed
SVM beamformer solved via IRWLS are presented, including
comparisons with the conventional MVDR beamformer and
with other robust beamforming techniques. These results in-
dicate that the proposed beamformer shows robust operation
in no-mismatch and mismatch scenarios, even when the DOA
estimation error is larger than expected.

The organization of this paper is as follows. Section II con-
tains the signal model and presents the MVDR solution. The

basic ideas of our SVM-based beamforming approach are in-
troduced in Section III, with emphasis on the formulation of
the regularized cost function. The resulting QP problem is de-
rived in Section IV, and the IRWLS minimization procedure is
described in Section V. Numerical results under different mis-
match scenarios are illustrated in Section VI. Finally, conclu-
sions and possible directions for future work are pointed out in
Section VII.

II. BACKGROUND

The output of a narrowband beamformer composed by
sensors is given by

where is the time index,
is the complex vector of array observations,

is the complex vector of
beamformer weights, and and denote transpose and
conjugate transpose, respectively. Regarding the notation of
this paper, lower and upper boldface letters are used for vectors
and matrices, respectively. The observation (snapshot) vector
at time instant is given by

where is the number of interference signals. Here,
and are the signal and interference symbol samples. The
signal and interference directions of arrival (DOA) are and

, , respectively, with corresponding steering
vectors and . Let denote the theoretical
covariance matrix of the array snapshot vector. We assume that

is a positive definite matrix with the following form:

where and , are the powers of the uncorre-
lated impinging signals and , respectively, and is
the noise covariance matrix.

The classical formulation for the linearly constrained min-
imum-variance (LCMV) beamformer [41] is to minimize the
array output energy , subject to a linear
constraint on the desired DOA, i.e.,

subject to (1)

The complex constant determines the array response at the
desired DOA. For the particular case of , this response is
maintained constant at the look direction and the LCMV beam-
former is commonly denoted as minimum variance distortion-
less response (MVDR) beamformer. The solution of (1) for this
particular case is
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The idea behind the LCMV beamformer can be generalized
by introducing a set of linear constraints of the form

. The optimization problem in this case is

subject to

whose solution is given by

where is the matrix with the linear constraints
and is the 1 vector of constraint values. Note that for the
LCMV beamformer, the number of linear constraints must be
lower than the number of sensors, i.e., ; otherwise, we
do not have enough degrees of freedom to minimize the power at
the output of the beamformer. Interestingly, it was shown in [42]
that this generalization of the LCMV beamformer can be trans-
formed into the so-called generalized sidelobe canceller (GSC).
The idea of the GSC consists of decomposing the beamformer
in two components: a quiescent vector satisfying the prescribed
conditions and an unconstrained vector orthogonal to the sub-
space of constraints. Some methods for improving the robust-
ness of the GSC have been recently presented in [43] and [44].

In practice, the exact covariance matrix is not available and is
replaced by the sample covariance matrix

where is the number of observed snapshots. A more adequate
definition of , according to the ratio between the number of
sensors and the available observations, can be established based
on random matrix analysis [28].

III. PROPOSED ROBUST COST FUNCTION WITH

SIDELOBE CONTROL

In this section, we modify the conventional minimum vari-
ance beamforming problem by incorporating into the cost func-
tion additional inequality constraints in order to increase the ro-
bustness against mismatches in the SOI steering vector, as well
as to control the sidelobe level. The resulting cost function turns
out to be equivalent to a SVM for regression.

Let us consider a grid of directions of arrival , ,
which sample the beampattern in 90 90 . We define an an-
gular mainlobe beamwidth centered at the assumed SOI
DOA . from the total set of angles sample the mainlobe
beamwidth, including . The remaining angles
sample the beampattern outside the mainlobe. Using this sam-
pled grid of DOAs, the following desired or target beamformer
response is established

if
if

(2)

which takes into account a possible signal mismatch error up
to degrees. In (2) and from now on, and denote,
respectively, the real and imaginary parts of a scalar, vector, or
matrix.

In order to apply the proposed procedure, the optimization
problem must be rewritten in terms of real variables. To this end,
the array output power can be written as

where is

and is

Likewise, the beamformer output for each DOA can be
written in terms of real variables as

where and are given by

For notational simplicity, we define the following real
variables:

and

.

Using these definitions, our goal is to obtain a beamformer
that minimizes its output power

subject to the following set of inequality constraints:

for . The parameter defines the set of admis-
sible beamformer solutions, i.e., any beamformer whose outputs
over the specified grid of DOAs are within an -band around
the target array response is an admissible solution. Among all
admissible beamformers, the one with minimum output power
would be the solution of the optimization problem. Unfortu-
nately, even for a moderate number of inequality constraints,
the set of admissible beamformers is empty, and the previous
problem has no solution. To avoid this drawback and in order to
relax the constraints, we introduce a set of slack positive vari-
ables and and consider the problem of minimizing

(3)
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subject to

(4)

(5)

(6)

for , where is a regularization constant,
which sets a tradeoff between the output power term and a term
that penalizes mismatches larger than between the actual and
desired array responses for the given angle grid. On the other
hand, the exponent of the slacks allows us to impose a linear
( ) or a quadratic ( ) penalty.

The previous optimization problem is equivalent to that ob-
tained for a support vector machine for regression [31], [32].
An alternative formulation of the problem, which will be useful
later, is the following:

minimize

(7)

where , and

if ,
if .

(8)

According to the SVM terminology, the regularization term
is the Vapnik’s -insensitive loss function (which can

be either linear or quadratic ). To summarize,
the procedure can be interpreted as a regression problem for
which the parameter defines the maximum gain level outside
the mainlobe beampattern and therefore acts as a sidelobe con-
trol parameter. Note also that, unlike the conventional MVDR
formulation and the method in [29], the proposed formulation
allows errors smaller than in the array response for the as-
sumed signal arrival angle . Therefore, strictly speaking, the
proposed procedure is not a “distortionless” beamformer.

The optimal values of and must be established for each
scenario [45], depending on the number of sensors, the noise
level, the required sidelobe level and the presumed DOA esti-
mation error. As a rule of thumb, in noisy scenarios, we should
decrease the sidelobe level by increasing and diminishing .
On the contrary, when the presence of jammers is dominant,
we must increase the interference rejection capabilities of the
method by setting low values of .

IV. SVM-BASED SOLUTION

To solve the above optimization problem (3), we use the
method of Lagrange multipliers. For the sake of simplicity in
our exposition, we only derive the case corresponding to the
Vapnik’s linear -insensitive loss function ( ). For the
quadratic loss function ( ), we would proceed in a similar
way [31].

The solution for the minimization problem (3) subject to
(4)–(6) is the saddle point of the following Lagrange functional
[31], [32]:

(9)

Note that a dual set of variables has been introduced to incor-
porate the constraints. This Lagrange functional must be min-
imized with respect to the primal variables , , and and
maximized with respect to the Lagrange multipliers ,

, and , for .
Differentiating the above Lagrangian with respect to , ,

and yields

(10)

(11)

(12)

Similar to other SVM-based problems, the optimal beam-
former given by (10) is expanded in terms of a set of steering
vectors (those corresponding to ), which are the sup-
port vectors for the problem [31], [32]. Due to the output energy
term in the regularized cost function (3), the support vectors in
the expansion (10) are multiplied by the inverse of the covari-
ance matrix. Substituting (10)–(12) into (9), the Lagrange multi-
pliers and are those coefficients maximizing the following
quadratic functional:

subject to .
Once the Lagrange multipliers and are computed, the

coefficients can be obtained according to (10). Thus, each
complex beamformer coefficient is formed as

, for . Typically, the support vectors and
their corresponding Lagrange multipliers are found by means
of QP techniques. Nevertheless, finding out the QP solution can
be computationally expensive when a large number of DOAs is
considered in the regularized cost function. In [38], it is shown
that the high computational cost of the original procedure can
be reduced by transforming the QP problem into an equiva-
lent nonlinear least squares problem. By applying an iterative
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reweighted least-squares (IRWLS) algorithm the computational
requirements of the beamforming algorithm are reduced without
any loss of performance [39], [46]: this procedure is described
in the next section.

V. IRWLS PROCEDURE

The IRWLS procedure for solving SVMs was first introduced
for classification problems in [47] and then extended for regres-
sion problems in [38]. Essentially, the IRWLS procedure uses
a quadratic approximation of the SVM loss function [39], [40],
which has been shown to converge to the true SVM solution. To
obtain an IRWLS algorithm, we initially perform a first-order
Taylor series expansion of in (7) at the solution obtained
after the th iteration , leading to

where and is the beamforming so-
lution at the th iteration. Then, a quadratic approximation is
constructed by imposing and

,1 where denotes the gradient operator with re-
spect to the vector

(13)

In (13), groups all the terms that do not depend on . On
the other hand, the weights depend on the particular penalty
function: for the linear ( ) Vapnik’s -insensitive loss
function, they are shown to be

if
if (14)

and for the quadratic loss function ( )

if

if .
(15)

As can be seen, the new quadratic cost function is a regular-
ized least-squares cost function, whose minimum can be found
by equating to zero its gradient with respect to [46]

(16)

1These equality assumptions in the definition of the quadratic approximation
are needed in order to ensure the convergence of the IRWLS procedure to the
SVM solution [39], [48].

TABLE I
IRWLS PSEUDOCODE

Equation (16) can be expressed, more conveniently, in matrix
form as

(17)

where , ,
is a diagonal matrix with diagonal elements , and is a

column vector of convenient dimension with all zeroes. Finally,
the minimum of (13) is given by

(18)

In order to speed up the convergence of the IRWLS algorithm,
we apply a line-search technique [48]. The line-search method
finds a descending direction as , with being
the minimum at each iteration of the weighted least-squares
problem (18). Then, the coefficients are modified along that di-
rection as

where is the step size. Initially, the value of is
set equal to 1, but if , then it is iteratively
reduced until observing a strict decrease in the functional (13).
A theoretical analysis about the election of the step size can
be found in [39], [40], and [48].

Once the new beamformer is obtained, we compute the
error terms as and update the weights

until the algorithm achieves the prescribed convergence
threshold . A pseudocode for the IRWLS procedure is shown
in Table I.

A final comment is in order here: the IRWLS algorithm
presented in this section to obtain the SVM-based beamformer
solves the primal problem, whereas the conventional QP op-
timization problem discussed in Section IV solves the dual
problem. It is also possible to obtain an IRWLS algorithm
for the dual problem by forcing an expansion of the solution
as a linear combination of the prewhitened steering vectors,
similarly to (10). For this dual formulation, the number of
unknowns would be (where is the number of inequality
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constraints established by sampling the beampattern),2 whereas
the number of unknowns for the primal problem is (where

is the number of beamformer weights). Since typically
, the computational cost of an IRWLS algorithm to

solve the dual problem would be much higher. Therefore, in
this paper we will only consider the IRWLS solution of the
primal problem as given by (18).

VI. COMPUTER SIMULATIONS

To evaluate the performance of the proposed SVM-based
beamforming technique, some computer simulations have been
carried out in an ideal scenario without source steering vector
mismatch and more realistic situations with source steering
vector mismatches. In the following, we assume a uniform
linear array with 10 sensors and half-wavelength sensor
spacing. All signal waveforms are independent and identically
distributed (i.i.d.) quadrature phase-shift keying (QPSK). Spa-
tially white Gaussian noise is assumed with unity variance
( ). The signal of interest-to-noise ratio (SNR), i.e., the
power of the SOI is set to 10 dB, and the interfer-
ence-to-noise ratio (INR), i.e., the power of the interferences
is 30 dB, . The actual source DOA is 0 , and
the DOAs of the interferences are 30 , 30 and

70 . In order to compute the covariance matrix ,
100 snapshots are used, and the desired signal is always

present in the training data cell. For all scenarios, each point is
the average of 5000 independent simulations.

From now on, the SVM-based beamformer with linear
and quadratic -insensitive loss functions will be denoted as
SVM-Lin and SVM-Quad, respectively. For comparison pur-
poses, we also illustrate the conventional MVDR beamformer,
the doubly constrained robust Capon beamformer (DCRCB)
presented in [11] and the MVDR Beamformer with sidelobe
control based on second-order cone programming (Side-
lobe-SOC) presented in [29]. The following figures illustrate
the performance of the four aforementioned methods showing:
a) a single beampattern realization for SNR equal to 10 dB;
b) the output SINR3 (SINR) versus SNR; c) the SINR versus
the number of snapshots; d) the SINR versus the number of
existing interferences (for this particular scenario, we simu-
late interference signals impinging into the array from DOAs

75 30 45 60 10 25 35 50 70 ). The
vertical lines in the beampattern figures indicate the DOAs of
the SOI as well as the interferences. Note that the beampatterns
have been scaled in order to achieve unity gain, i.e., a distor-
tionless response in the SOI actual direction.

For the DCRCB algorithm, the cost function is [11]

subject to

where denotes the assumed steering vector of the SOI. Es-
sentially, the above optimization problem tries to find the source
steering vector that maximizes the source power estimate

2Remember that we are considering a problem with real variables.
3Here, SINR is defined as w R w=w R w. In the partic-

ular case of point sources [15], R = � a(� )a(� ) and R =
� a(� )a(� ) +Q.

assuming that i) belongs to an uncertainty sphere centered
on and ii) its Euclidean norm is equal to the number of
sensors. Note that an upper bound on the uncertainty sphere
around the assumed steering vector must be specified. Equiv-
alent formulations based on this uncertainty region has been
employed in [10], [12], and [13]. In these works, choosing
depends on the number of sensors, the source DOA and the
expected accuracy in the SOI DOA estimate, obtained in a pre-
vious DOA estimation stage. It should be made as small as pos-
sible, since when is chosen too large the ability to suppress
interferences close to the SOI will degrade. On the other hand,
very small values of can result in an inappropriate operation of
the beamformer. According to [11], we set in our simula-
tions. Although this choice could not be the optimal for no-mis-
match scenarios, we feel that this beamformer should work in
different realistic environments without changing .

On the other hand, the MVDR beamformer with sidelobe
control presented in [29] considers the following optimization
problem:

subject to

In this beamforming problem, there is a linear distortionless
constraint for the assumed SOI direction of arrival and
quadratic inequality constraints which control the sidelobe
level. Unlike the SVM-beamforming technique, the inequality
constraints are only imposed over the sidelobe beampat-
tern, and no uncertainty region for mismatch scenarios is
considered. To achieve a feasible problem with our basic sim-
ulated scenario, the chosen beampattern sidelobe areas were

90 15 15 90 . The number of constraint
angles in that region is , which are uniformly dis-
tributed along these sidelobe areas and the sidelobe level to be
satisfied is , i.e., we require the sidelobe level to be
below 23 dB [29].

For the SVM-based beamformers, the parameter which deter-
mines the uncertainty region is , which is set equal to 2 . The
angular range 90 90 is sampled with a uniform grid with

angles , i.e., angles are uni-
formly set between 90 90 and angles between

90 2 and 2 90 . In addition, the control parameters
and are equal to 1 and 0.001, respectively.
In our first example, an ideal scenario with exact knowledge

of the source steering vector is simulated. Note that even in this
case, the presence of the desired signal in the training data cell
can deteriorate the performance of the beamformers as com-
pared with the signal-free training data case [1], [12]. From
Fig. 1, we observe that, when the signal steering vector is ex-
actly known, all the beampatterns have nulls at the DOAs of the
interferences and maintain a distortionless response for the SOI.
However, the MVDR response presents high sidelobe levels
compared to the other robust methods. This can result in deep
degradations in case of unexpected interferences or increase
in the noise power. Although the SVM beamformers do not
present deeper nulls than the rest, the SVM-Lin beampattern
achieves substantially lower sidelobe level than the rest, with
only a slight increase in the mainlobe beamwidth. Observe that
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Fig. 1. No-mismatch scenario. MVDR, DCRCB (e = 1), MVDR with SOC sidelobe control (P = 60, � = 0:005, 4 = 15 ), SVM-Lin and SVM-Quad
(P = 60, C = 1, � = 0:001,4 = 2 ): (a) Normalized beampatterns for SNR = 10 dB; (b) SINR versus SNR; (c) SINR versus number of snapshots; and
(d) SINR versus number of interferences.

the Sidelobe-SOC beamformer fulfills the requested constraint
for the sidelobe level. As for the SINR figures, we can state that
SVM-Lin method achieves a better performance than the rest
of beamformers for SNR values larger than 7 dB and regardless
of the number of interferences. For this no-mismatch scenario,
the SVM-Quad, DCRCB, and Sidelobe-SOC methods perform
similarly in terms of SNR, especially at large SNR values. As
illustrated, the SVM-based technique is more convenient than
the DCRCB and Sidelobe-SOC approaches when the number
of available snapshots is scarce. Finally, notice that when five
or more interference signals impinge into the array, the Side-
lobe-SOC beamformer breaks down since a feasible solution
cannot be achieved with the established sidelobe constraint.

In our second example, a scenario with 2 of mismatch in
the SOI DOA is simulated. The rest of parameters are those
of the previous scenario. Fig. 2 shows the performance of the
tested beamformers. Observe that with a SOI steering vector
mismatch, the MVDR fails in its operation, allocating a null in
the SOI direction since the source signal is interpreted as an in-
terference. For the sake of a clear illustration, the performance

of the MVDR algorithm is not shown in the SINR figures. We
can highlight that the SVM-Lin beamformer performs better
than the other beamformers for high SNR values or with nu-
merous interference signals. However, the Sidelobe-SOC beam-
former works better in low SNR scenarios or with an abundant
number of observations. Again, the Sidelobe-SOC operation is
unsatisfactory when the number of interferences is larger than
four. As in the scenario without mismatch, the SVM-Quad and
DCRCB methods operate similarly, with a minor advantage for
the SVM-Quad beamformer when the number of snapshots is
small, but better performance for the DCRCB with only one or
two interferences. Notice that the DCRCB, Sidelobe-SOC and
SVM-Quad achieve the same SINR for large SNR values.

The objective in our third scenario is to simulate a breakdown
scenario, where the difference between the presumed and actual
source DOAs exceeds the expected mismatch. We will assume
that the source DOA is 3 : therefore, the actual mismatch is 3 ,
but the expected mismatch is only 2 . In this scenario, our pro-
posed SVM-based beamforming technique demonstrates an ap-
propriate operation under this unexpected situation. On the other
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Fig. 2. Scenario with 2 degrees of source DOA mismatch. MVDR, DCRCB (e = 1), MVDR with SOC sidelobe control (P = 60, � = 0:005, 4 = 15 ),
SVM-Lin and SVM-Quad (P = 60, C = 1, � = 0:001,4 = 2 ): (a) Normalized beampatterns for SNR = 10 dB; (b) SINR versus SNR; (c) SINR versus
number of snapshots; and (d) SINR versus number of interferences.

hand, as illustrated in Fig. 3(a), the DCRCB array response al-
locates a deep null for the SOI since it is interpreted as a jam-
ming source. This situation resembles the MVDR beamformer
behavior in a mismatch scenario. Hence, the DCRC beamformer
demands an accurate definition of the uncertainty region. It is
worth mentioning that in Fig. 3(a)–(c), three interferences im-
pinge into the antenna array. According to our experimental
results, this inadequate operation of the DCRCB beamformer
highly depends on the number of sensors, the number of avail-
able degrees of freedom, the angular resolution of the beam-
former and interference locations. For instance, Fig. 3(d) shows
that the DCRCB beamformer recovers its robustness when more
than four jamming signals impinges into the array. With
10 sensors and for less than five strong interference signals,
we have unused degrees of freedom which are devoted to re-
jecting the desired signal. When more jammers are included,
the beamformer concentrates on rejecting the stronger inter-
ferences instead of the source signal. The performance of the
Sidelobe-SOC is similar to the previous simulated scenarios: it
achieves superior performance with abundant snapshots and low

SNRs but operates improperly with many interferences since
the level of the sidelobes must be increased to obtain a feasible
problem. On the contrary, both SVM approaches with linear
and quadratic -insensitive loss functions achieve robust perfor-
mance at all values of the SNR and independently of the number
of available snapshots and interferences.

To fairly assess the performance of the SVM-beamforming
approach, its computational complexity must be analyzed.
At each iteration, the proposed IRWLS algorithm amounts to
solving a linear system of equations with unknowns,
in order to obtain (18). Therefore, the computational cost of the
IRWLS procedure is, basically, flops, with

being the number of iterations needed for convergence,
and being the number of beamformer weights. Remember
that the SVM optimization problem is formulated in terms of
real variables. The convergence of the linear and quadratic
-insensitive loss functions for 50 realizations is depicted in

Fig. 4. As can be seen, both linear and quadratic cost functions
converges quickly and the optimal solution is found after two
to four iterations. For comparison, in [11], it is stated that the
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Fig. 3. Scenario with 3 degrees of source DOA mismatch. MVDR, DCRCB (e = 1), MVDR with SOC sidelobe control (P = 60, � = 0:005, 4 = 15 ),
SVM-Lin and SVM-Quad (P = 60, C = 1, � = 0:001,4 = 2 ): (a) Normalized beampatterns for SNR = 10 dB; (b) SINR versus SNR; (c) SINR versus
number of snapshots; and (d) SINR versus number of interferences.

Fig. 4. Convergence of the IRWLS procedure for the linear and quadratic �-in-
sensitive loss functions.

computational complexity of the DCRCB beamformer is com-
parable to that of the conventional MVDR algorithm, which
computes the beamformer weights with flops. On the
other hand, the complexity of the Sidelobe-SOC beamformer
is flops [29]. Finally, it must be pointed
out that employing an IRWLS procedure is not the unique
possibility to find the solution of SVM problems. In fact,
other alternative algorithms (see [32] and [40] and references
therein) can be implemented to solve the SVM regularized cost
function, with the purpose of avoiding the high computational
cost of quadratic programming techniques.

VII. CONCLUSION

In this paper, robust beamforming was reformulated as a
support vector regression problem. The proposed approach
modifies the traditional MVDR beamformer with the goals of:
a) increasing the beamformer robustness against errors in the
desired signal array response and b) providing some additional
control over the sidelobe level. We have presented the SVM
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beamforming technique considering linear and quadratic -in-
sensitive loss functions in the regression problem, which ends
up in a convex function that can be efficiently minimized. To
alleviate the high computational cost of quadratic program-
ming techniques, the optimization was carried out using an
IRWLS procedure. The satisfactory and robust performance
of the proposed SVM beamformer was demonstrated through
computer simulations, both in no-mismatch and mismatch situ-
ations, even when this mismatch was larger than expected. Its
operation was shown to outperform other robust beamforming
techniques, specially for high SNR scenarios and regardless of
the number of interference signals.

The authors feel this work is another step forward on the
design of robust beamforming solutions. Future work should
address the nonlinear beamforming concept, exploiting the
nonlinear kernel formulation of support vector machines. As
a matter of interest, it is the use of Vapnik’s SVM theory for
nonlinear regression rooted in Huber’s robust statistics [49],
which provides the fundamentals for a statistically robust
beamforming design.
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