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Abstract

A method for respiratory frequency estimation from the
high frequency (HF) component of heart rate variabil-
ity (HRV) by means of the smoothed pseudo Wigner–Ville
(SPWVD) distribution is presented. The method is based
on maxima SPWVD detection with time-varying frequency
smoothing window length, which reduces the estimation
error, specially when the respiratory frequency is a nonlin-
ear function of time.

Evaluation is performed over HRV simulated signals
with time-varying amplitude, nonlinear HF frequency, and
20dB SNR, obtaining a mean frequency estimation error
of 0.22±2.04% (0.10±5.96 mHz). The method has been
tested on a database of ECG and respiratory signals simul-
taneously recorded during the listening of different musical
stimuli, obtaining a median respiratory frequency estima-
tion error of 0.02±1.90% (0.00±0.98 mHz) during musi-
cal stimuli and of 1.98±7.21% (35.41±33.20 mHz) during
transitions between stimuli.

1. Introduction

Respiratory sinus arrhythmia (RSA) is a modulation of
heart rate synchronous with respiration, and allows the es-
timation of respiratory frequency from the high frequency
(HF) component of the heart rate variability (HRV) sig-
nal. In non–stationary conditions the respiratory frequency
can be estimated from the maximum peak of the smoothed
pseudo Wigner–Ville distribution (SPWVD) of the HRV
signal in the HF band.

The extraction of the respiratory frequency from the
maxima of the SPWVD is challenging, since the time-
frequency (TF) smoothing used to suppress the interfer-
ence terms of the Wigner–Ville distribution introduces a
frequency estimation error which can be high in both,
mean and standard deviation [1].

A method for estimating the instantaneous frequency
(IF) of a frequency modulated (FM) signal based on the

SPWVD is presented in [1]. This method uses a frequency
smoothing window with time-varying length to resolve the
bias–variance tradeoff that appears, specially when the IF
varies nonlinearly. For each time instant the optimal fre-
quency smoothing window length depends on the IF trend
as well as on the signal amplitude and noise variance. The
assumption of constant signal amplitude made in [1] is
not suitable for respiratory frequency estimation from the
HRV signal in situations where the RSA amplitude varies
in time, such as during stress testing, tilt testing or induced
emotion experiments.

In this paper an extension of the method in [1] is pre-
sented so as to estimate the respiratory frequency from the
HRV signal, which accounts for time-varying amplitudes.

2. Methods and Materials

2.1. Instantaneous frequency estimation

It is assumed that the discrete analytic version of the HF
component of the HRV signal can be modeled as [2]:

z(n) = AHF(n)e
jφHF (n) + v(n) (1)

where AHF(n) and φHF(n) are the instantaneous amplitude
and phase of the HF component, and v(n) complex addi-
tive white gaussian noise.

The IF is estimated from the maxima of the SPWVD at
each time instant by:

F̂HF(n) =
Fs

4M
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m
{Wz(n,m)} , (2)

where Fs is the sampling frequency of z(n) andWz(n,m)
represents the SPWVD calculated as in [2]
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where n and m denote time and frequency indexes, re-
spectively, rz(n, k) = z(n+k)z∗(n−k), g(n) and |h(k)|2



the time and frequency smoothing windows with lengths
2N -1 and 2K-1, respectively.

The asymptotic formula for the variance, σ 2
L , and bias,

θL, of the estimation error of the IF, are extended here to
the case in which AHF(n) in (1) is time-varying
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where L=2K-1 is the frequency smoothing window
length, σ2

v is the noise variance, Ts =
1
Fs

, and F
(2)

HF (n) rep-
resents the second derivative of FHF(n). From (4) it can be
seen that by increasing L the bias increases and the vari-
ance decreases. The idea is to find for each time instant
n the optimal L which resolve the bias-variance tradeoff
minimizing the frequency mean squared error (MSE).

In [1] a suboptimal approach for estimating the opti-
mal L without needing “a priori” information about the
IF derivatives is proposed. An increasing sequence of L,
L1 < L2 < · · · < Lj is considered, and for each Li

the IF estimate F̂HF,Li(n) as well as the variance σ2
Li
(n)

are computed. Assuming that Li is small enough so that
|θLi | < κσLi(n), the following confidence interval is de-
fined

DLi
(n) =

{
F̂HF,Li

(n) − 2κσLi
(n), F̂HF,Li

(n) + 2κσLi
(n)

}
(5)

The largest L for which DLi−1 and DLi have at least one
point in common is chosen as the optimal L, for which θ Li

and σLi(n) have the same order. The IF estimate is initial-
ized to the shortest length L1 estimate, and then corrected
with the optimal length Li estimate. In this work a value
of κ =2 is used [1].

2.2. Instantaneous amplitude and noise es-
timation

In order to estimate σ2
Li
(n), the instantaneous amplitude

AHF(n) and noise variance σ2
v need to be estimated.

The method proposed in this paper to estimate AHF(n)
from the SPWVD comprises integration of Wz(n,m) over
a suited band and correction with a time-varying factor de-
pending on |h(k)|2.

Let us define P̂w(n) as the instantaneous power obtained
by the integration of Wz(n,m) over a band [m1, m2],
where m1 and m2 are the discrete frequency indexes cor-
responding to the minimum and maximum frequency of
F̂HF(n)± Δf

2 , and Δf is the frequency smoothing window
bandwidth estimated from H(m) = DFT2M

{|h(k)|2}
as the frequency distance between the first zero crossing at
each side of the its maximum peak.

The instantaneous power of the HF component PHF(n)
can be computed from the SPWVD as [3]

P̂HF(n) = P̂w(n)fc(n) (6)

where fc(n) is a correcting factor computed as

fc(n) =

∑M
m=−M+1 H(m)∑m2

m=m1
H(m −mHF(n))

(7)

being mHF(n) the discrete frequency index corresponding
to FHF(n). Finally, the instantaneous amplitude is com-

puted as ÂHF(n) = P̂
1
2

HF (n).
The noise present in the signal is estimated subtracting

from z(n) the estimated HF component, ẑ(n) with ampli-
tude ÂHF(n) and frequency F̂HF(n), so that the estimated
noise signal v̂(n) accounts also for the amplitude and fre-
quency estimation errors. Finally, noise variance is com-
puted as the mean of σ̂2

v(n) =
1
2 v̂(n)v̂

∗(n).

2.3. Simulation study

A simulation study has been designed in order to eval-
uate the proposed method. The analytic version of HRV
signals have been simulated according to

z(n) = ALF(n)e
jφLF(n) + AHF(n)e

jφHF(n) + v(n) (8)

where ALF(n) and φLF(n) are the instantaneous amplitude
and phase of the LF component. The frequency of the LF
component is considered constant and equal to 0.1 Hz. The
AHF(n) and FHF(n) vary as shown in Fig.2(a) and Fig.2(c),
respectively, ALF(n) is defined to have a constant sympa-
thovagal balance Bsv = A2

LF
(n)/A2

HF
(n) of 0.5. The noise

v(n) is set to have a SNR of 20 dB at the instant of maxi-
mum instantaneous power. Since the model in (1) assumes
monocomponent signals the simulated signals are filtered
by a 9th order Butterworth band-pass filter with bandpass
[0.1–0.65] Hz.

2.4. Database

A database containing simultaneous ECG and respira-
tory signals of 58 subjects during the listening of different
musical stimuli is analyzed [4]. The database is character-
ized by the non-stationarity of both respiration and HRV
signals, as well as by nonlinear IF variations specially in
the transitions between different musical stimuli. The ECG
and respiration signals are sampled at 1000 Hz.

The HRV signal is estimated from the ECG by an al-
gorithm based on the integral pulse frequency modulation
(IPFM) model, which accounts for the presence of ectopic
beats [5]. Respiratory signals baseline wander is removed
by means of a 3rd order Butterworth high-pass filter with
cut-off frequency 0.1 Hz. Both, respiratory and HRV sig-
nals are resampled at 4Hz and bandpass filtered, as in the
simulation study. The IF estimation on the respiratory sig-
nal is used as the reference IF for the evaluation over real
signals.



2.5. Evaluation

Evaluation over the simulated signals is done in terms
of mean and standard deviation of the FHF(n) and AHF(n)
estimation errors while over real signals it is done in terms
of median and median absolute deviation (MAD) in order
to minimize the effect of outlier estimates.

Relative values of the estimation errors are obtained
normalizing instantaneous estimation errors by the corre-
sponding instantaneous reference values.

3. Results

3.1. Simulation study

A total of 100 realizations were generated. The min-
imum root mean squared error (RMSE) is obtained with
a Hamming window for time smoothing and an expo-
nential window for frequency smoothing with the same
area as a rectangular window of 2N -1=51 and L=31 sam-
ples, respectively. The algorithm estimates the instanta-
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Figure 1. AHF estimation error on one realization of z(n).

neous amplitude with a mean estimation error (eA ± σA)
of 0.08±1.90%. Fig.1 shows the instantaneous amplitude
estimation error over a single realization, note that larger
errors appear at the edges, where the autocorrelation fuc-
tions lacks of enough samples and on the instants where
FHF(n) and AHF(n) present higher degree of variation (see
Fig.2(a) and Fig.2(c)).

(a) (b)

0 500 1000
0

2

4

6

n (samples)

A
H

F(A
.U

)

0 500 1000
0

0.1

0.2

n (samples)

σ v2  (
A

.U
.)

 

 

(c) (d)

0 500 1000

0.2
0.3

0.4
0.5

n (samples)

F
H

F (
H

z)

 

 

400 450 500

−5

0

5

n (samples)

z(
n)

 (
A

.U
.)

 

 

Figure 2. (a) Different estimates ÂHF(n), simulated (black
solid line), estimated from (6) (gray solid line) and by in-
tegration over the classical HF band (dash-dot line), (b)
comparison between σ̂2

v(n) (gray) and σ2
v(n) (black), (c)

comparison between FHF(n) (black) and F̂HF(n) (gray) and
(d) comparison between z(n) (black) and ẑ(n) (gray).

Fig.2(a) presents different estimates ÂHF. The method
proposed in this paper estimates AHF(n) quite accurately,
improving the classical estimation obtained by integrating
the SPWVD in the clasical HF band. Fig.2(b) shows a
comparison between σ2

v(n) and σ̂2
v(n), where it can be ap-

preciated a central part with high estimation error due to
estimation errors in both ÂHF(n) and F̂HF(n), which intro-
duce a phase shift into ẑ(n) as it can be appreciated in
Fig.2(d).
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Figure 3. IF comparison on (a) linear IF trend and (b) non-
linear IF trend between FHF (solid line), F̂HF with instanta-
neous ÂHF (dotted line) and with method in [1] (dashed
line), 2N -1 = 51.

The IF of the simulated HRV signals is estimated with a
mean estimation error of 0.22±2.04% (0.10±5.96 mHz),
using a Hamming window for time smoothing and rectan-
gular window for frequency smoothing. The IF estimates
were compared to those obtained with method in [1] based
on constant amplitude estimation. Our method performs
better in both types of segment, linear and nonlinear IF
trends (see Fig.3), being more noticeable during nonlinear
IF trends.

The IF estimates were also compared to those obtained
with constant frequency smoothing window lengths (see
Fig.4, where the distribution of the FHF(n) estimation error
obtained with different methods is displayed). It can be
appreciated that introducing instantaneous amplitude esti-
mation increases the performance of the method in [1] and
of constant window lengths, since even the median error is
approximately the same for all methods, variability is in-
creased when using constant window lengths larger than
L=15 samples, and larger interquartilic ranges (IQR) are
found for lengths shorter than L=15.
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Figure 4. Distribution of FHF(n) estimation error on 100
realizations. VA refers to the estimation algorithm pre-
sented in this paper, CA refers to [1].

3.2. Database

The algorithm proposed in this paper, using a Hamming
window for time smoothing and rectangular window for



frequency smoothing, allows the respiratory frequency es-
timation from the HF component of HRV with a median
error of 0.02±1.90% (0±0.98 mHz) during musical stim-
uli and of 1.98±7.21% (35.41±33.20 mHz) during tran-
sitions between stimuli, which are highly non–stationary
and nonlinear.

Fig.5 shows the estimate F̂HF(n) during 4 musical stim-
uli with the method proposed in this paper, as well as the
reference respiratory frequency derived from the respira-
tory signal.
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Figure 5. Comparison between the reference respiratory
frequency (solid line) and F̂HF(n) (dashed line).
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Figure 6. IQR of FHF(n) median estimation error distri-
bution on real signals during (a) musical stimuli, (b) tran-
sition between stimuli, VA refers to the method presented
here and CA refers to the method in [1], 2N -1 = 51.

Fig.6 shows the IQR of FHF(n) median estimation er-
ror distribution during musical stimuly and transitions be-
tween stimuly, shorter L values have been discarded as
they did not provide sufficient smoothing. Results are
similar to those obtained in the simulation study. Using
method in [1] or constant window lengths for frequency
smoothing provides IF estimation with larger IQR than us-
ing the method proposed in this paper, being more notice-
able during transitions between stimuly where the IF vari-
ations are highly nonlinear.

4. Discussion and conclusions

In this paper a method for the estimation of the respira-
tory frequency from the HF component of HRV signal in
non–stationary conditions has been presented. The method
is based on maximum peak detection of the SPWVD

and includes time-varying frequency smoothing window
length to reduce the MSE of the estimation error, specially
when the IF variations are nonlinear, which makes the bias
high. It is based on the method proposed in [1] but includes
instantaneous amplitude estimates, reducing the MSE of
the frequency estimation errors, specially for large or non-
linear variations of the IF.

Evaluation over HRV simulated signals with time-
varying amplitude, nonlinear frequency trend, and an HRV
SNR of 20dB, yielded a mean frequency estimation error
of 0.22±2.04% (0.10±5.96 mHz). Over the database the
method obtained a median respiratory frequency estima-
tion error of 0.02±1.90% (0.00±0.977 mHz) during musi-
cal stimuli and of 1.98±7.21% (35.41±33.20 mHz) during
transitions between stimuli.

In the simulation study the IF estimation algorithm pre-
sented in this paper showed a better performance than the
method proposed in [1] or the use of constant window
lengths, even though the simulated signals used in this
paper presented sharper IF trends than those on [1], this
results are supported in the database results. Although
with some constant lengths results are similar, we have
observed that the constant length which achieves similar
results as those obtained by the algorithm proposed in this
paper, is not known “a priori” and depends on the IF vari-
ations and the time smoothing of the SPWVD.
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