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ABSTRACT 
 
Intensity Modulated Radiotherapy is a technique used in 
the treatment of cancer based on the use of different 
spatially distributed X-Ray beams. The task of treatment 
planning is to determine the dose quantity that each beam 
of radiation should deliver, and for each spatial direction, 
and so determining a specific dosage distribution for the 
patient. In this paper a conditional optimization problem 
is studied, proposing a new reduction method for the 
dimensions of this problem. The procedure proposed has 
been used in the planning of the treatment for a real of 
prostate cancer case, where satisfactory results have been 
obtained. 

 

1. INTRODUCTION 
 
Treatment planning for intensity modulated radio therapy 
(IRMT) requires the intensity masks for each one of the 
beams of radiation to be obtained; with the objective of 
attaining a dose distribution across the area of the tumour 
which best matches the dose prescribed by the medical 
specialist [1]. 
To solve this problem a mathematical model must to be 
established, for this model the volume to be treated and 
the beams of radiation are considered discrete elements. 
On one side, the patient volume is divided into small 
three-dimensional cubes, called voxels. On the other side, 
the beams radiation are divided into small two-
dimensional cells, perpendicular to the beam of radiation, 
in such a way that the radiated intensity in each spatial 
direction is described by a fluence map or weight matrix. 
The dose received in a given voxel of the patient is 
obtained as the sum of the contributions of each of the 
beams of radiation, a contribution which depends also on 
the direction of each ray within the beam and is a function 
of the distance that the ray travels inside the patient. 
Once a mathematical model has been obtained relating the 
fluence matrix to the dose obtained in the interior volume 
of the patient, it is possible to deal with the treatment plan 
(the inverse problem). The objective is to obtain a set of 
weights such that the dose prescribed by the specialist is 
reached in the targeted volume. The optimization process 
meets two fundamental purposes: achieve a high dose 

which is homogeneous across the tumour, and protect the 
rest of the healthy tissue. These aims are inherently 
contradictive, and so a compromise must be reached 
between them. The consideration of a weighting factor in 
the error function allows more or less aggressive 
treatments on the healthy tissue to be achieved. 
One of the main difficulties when resolving the inverse 
problem is the possibility of multiple solutions which can 
result in local minimums of the error function [2]. 
 

2. BASIC CONCEPT OF THE METHOD 
 
Therapy with X-Rays requires a mathematical model to be 
established that describes the relation between the dose 
radiated by the beams and the dose distributed over the 
affected volume of the patient. 
The dose that each of the voxels of the volume receives is 
determined by the relation: 
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where n is the number of weights of the set of the fluence 
matrices, m is the number of voxels in which the treated 
volume is divided, wj is the value of the jth weight and fij 
is the attenuation suffered by the X-Rays from the jth cell 
of the grid to the ith voxel. 
The reordering of the weights wi of the fluence matrices in 
a vector w allows the previous expression to be expressed 
as a matrix, 

 oD F w= ⋅  
Where F is a mxn matrix whose elements are the 
coefficients fij being Do a vector of dimensions m that 
contains the dose in the different voxels of the volume. 
Each one of the weights wj of each beam has an influence 
over a region of the volume, determined by a conical 
surface of revolution. Consequently, once the regions of 
the volume radiated by each weight are delimited, the 
dose obtained for a specific intensity mask can be found 
directly. 
Where the matrix F is obtained calculating the attenuation 
suffered by the X-Ray beams from the position occupied 
by the jth weight up to the isocentre of the ith voxel 
according to the expression: 
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Being pij the distance travelled by the beam in the interior 
of the patient and µ the coefficient of attenuation. 
The inverse problem for the radiotherapy treatment 
planning is based on the knowledge of F, and implies the 
seeking of the weight vector w that approximates the dose 
prescribed by the oncology specialist. With this finality, 
an error function G(w) has been considered constructed 
by the sum of the quadratic terms, where the error 
produced in the different structures of the affected volume 
are weighted with a coefficient Pk. 
As V structures of the volume are considered, assigning 
an index Tk to each structure, and considering that in each 
structure there are NTk voxels, the desired function can de 
expressed as: 
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Or alternatively: 
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And in matrix form: 
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Where Fk is a matrix formed by the rows i of matrix F 
such that i∈Tk and, likewise, Dpk is a vector formed by 
the elements i of Dp such that i∈Tk. 
One possible election is to solely consider two structures 
on the volume, one of which contains the tumour (Clinical 
Target Volume CTV), and the other should contain the 
organs at risk (OAR), in which it is necessary to limit the 
quantity of radiation received. 
When considering the rows of matrix F that belong to the 
structure that contains the organs at risk, matrix A is 
obtained. This is such that the limitation of the dose on 
these organs imposes: 

 Aw L≤  
Where L is a vector that contains the information of the 
maximum dose for the organs at risk. 
Furthermore, given that the elements wj of the fluence 
matrix represent radiation intensities, and these are 
positive quantities, to obtain a physically significant 
solution it is necessary to impose an additional restriction 
owing to the non-negativity of the weights (w≥0). 
This allows the planning process to be described by a 
conditioned optimization problem: 

 Minimise: 1
2
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 Subject to: Aw L≤  0w ≥  
whose resolution has been carried out with the 

Lemke’s algorithm for a linear complementary problem 
(LCP) and the Rosen gradient projection method [3]. 
Lemke’s algorithm uses the simplex method as an 
effective solution to the LCP, but its complexity does not 
permit a mathematical explanation in this paper [4]. 
However, the more intuitive Rosen’s method is based on 
the feasible directions theory, such that the search for a 
solution is carried out within the feasible region, through a 
direction that reduces the desired function and respects all 
the conditions. 

The Rosen’s method obtains the solution by an 
iterative process in which the solution wk in the kth 
iteration is updated following the expression: 

 1k kw w dα+ = +  
according to the search for the direction d which is most 
similar to the opposite of the gradient vector of the desired 
function in wk 
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and which also meets the feasibility and descent 
conditions. For the direction d to be descent, so that the 
value of the desired function is reduced, the following 
equation should be met. 
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Whilst the feasibility condition, assuming that the point 
wk is feasible, requires that for all the active conditions in 
wk (conditions that are within the limit of the equality 
of wk) meet: 
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where ai are the rows of A that meet the condition 
0− =i k ia w L . 

The parameter a represents the distance travelled along 
the length of the normalized search direction d , and its 
value is either the distance to the intersection of the 
closest active condition, or the distance *α  that meets the 
condition 
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The iterative process is repeated until it becomes 
impossible to find a feasible descent direction. 
The methods for conditioned optimization are based on 
the Lagrange theory, and the difficulty of inequality 
conditions in conditioned optimization problems requires 
the introduction of slack and surplus variables [3]. 

The limitation of the dose in the ith voxel to a value Li 
corresponding to an organ at risk is represented by: 
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Therefore, in the case in question, these variables must be 
incorporated to translate the unequal conditions into 
conditions of equality. This is such that introducing the 
slack variables, the previous equation is transformed into 
an equation of equality. 
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As ri
2is a positive term, the received dose by the ith voxel 

does not surpass the limit Li established. 
In the same way, the condition of non-negativity of the 
weights is solved, where surplus variables are used to 
translate. 

 2 0j jw s− =  
This is such that the greater the number of restrictions on 
the dose, and the higher the number of weights, the 
greater the number of variables. In the application 
presented, the high number of variables needed, due in 
part to the restrictions of the voxels belonging to the 
OARs and also to the great number of weights of the 
fluence matrices, makes the resolution a priori 
unattainable. In the prostate case considered, this implies 
8203 conditions in the OARs, and 266 variables to be 
determined assuming treatment with 5 beams. For this 
reason, in this article, a series of reductions are proposed 
which permit the problem to be solved. 
 

3. REDUCTION OF THE DIMENSIONALITY 
 
Firstly, with respect to the volume under treatment, an 
initial reduction has been made that consists in imposing 
dose conditions on those elements or voxels of the OARs 
that belong to the boundary area of these organs. Given 
that the dose limitation in these boundary areas means a 
limitation in the interior, due to the type of problem. With 
this objective, the voxels are selected that belong to the 
OARs and are adjacent to other organs to which 
restrictions are applied. In the considered case, 8203 
voxels belong to OARs, and 2747 constitute the boundary 
area, with which the number of conditions is reduced 
considerable. 
Regarding the reduction in the number of variables, the 
proposed beam tracing system calculates the size of the 
fluence matrices to adjust the opening of the distinct 
beams to the size of the tumour, even when the volume 
containing the tumour and the OARs is very large. 
For this reason, if on the matrix F, there is any column j 
whose elements do not provide any radiation to the voxels 
of the tumour, this means that any positive valour of the jth 
weight could distribute radiation on healthy tissue sparing 
the tumour, so the jth column may be removed from the 
matrix and a null value assigned to the associated weight, 

allowing a reduction in the number of variables or weights 
to be determined. This will be: 
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with which the dose in any one of the voxels is 
independent of wj , and this unknown can be excluded 
from the problem directly assigning to it a null value. 
 

4. RESULTS 
 
In this section results are shown for the proposed method, 
considering a real case of prostate cancer. The volume 
affected by the tumour comprises of the prostate (CTV), 
the rectum (OAR1), the bladder (OAR2) and unspecified 
healthy tissue 
In order to solve this case a volume of 621 cm3 has been 
considered, such that taking voxels with dimensions of 
15 mm2, it is composed of 39744 voxels, of which 
1441 belong to the CTV, 2323 to OAR1 and 5880 to 
OAR2. In the discretisation of the beams, considering 5 
beams and opening beamlets of 10mm, 266 weights are 
originated, and so the matrix F has dimensions of 
39744 266× . Considering an opening of 5mm originates 
671 weights. 
In the case of beamlets of 10mm this matrix F contains 
76361 non-null elements, that imply 0.72% of the total 
elements. When eliminating the voxels that do not receive 
radiation from any of the weights, the dimension of the 
matrix becomes 23578 266× . Of the useful 23578 voxels; 
1155 belong to the OAR1, and 946 to the OAR2. 
Selecting only the voxels on the boundary area of the 
OARs, 982 voxels exist on which restrictions must be 
imposed. This means an important reduction with respect 
to the initial situation where it would have been necessary 
to impose restrictions on 8203 voxels related to the OARs. 
In absence of dose restrictions the whole volume of the 
CTV practically receives the 60 Gy prescribed by the 
specialist. 
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Fig. 1. Dose-volume histograms with limitations of dose in 
the OARs for different values of LOAR1 . 



However, on the other hand, an important proportion is 
obtained in the volume of the rectum (OAR1) that exceeds 
the recommended dose (10 Gy), for which this organ 
would be damaged. 
When limitations are introduced on the dose in the 
boundary area of the organs at risk, so that the 
rectum (OAR1) does not exceed 10 Gy, the results shown 
in Fig. 1 are obtained. Included in this same figure are 
results obtained when considering the superior limit for 
the dose on the rectum of 20 Gy and 30 Gy, intended to 
contrast the benefits of the methods proposed in this work. 
It is observed that the curve in the OAR1 histogram falls 
down when the dose limit is reached for each case, and so 
meets the restriction. This results in some of the voxels of 
the CTV not reaching their prescribed dose, these 
correspond to prostate voxels close to the rectum, which is 
totally reasonable. 
In the same way, it should be noted that the imposition of 
conditions in the bladder (OAR2) do not affect the results 
due to the fact that for the location of the beams 
considered none of the bladder voxels receive radiation. 
Furthermore, it can be seen that the number of prostate 
voxels that do not reach the prescribed dose increases 
when the dose limit imposed on the rectum is reduced. 
A different way of solving this problem is imposing a 
minimum dose in the tumour while keeping the healthy 
tissue safe with a higher weight coefficient. In this case 
we employ a coefficient of 0.72 for the OAR’s and a 
minimum dose of 100 Gy has been imposed on the 
bounds of the CTV obtaining the following results. 
The histogram (Fig. 2) shows that the 100% of the CTV 
receives at least 90 Gy, while the OAR1 stays well 
protected. 
Finally, a comparison has been drawn on the results 
obtained by Lemke’s algorithm and those obtained by 
Rosen’s gradient projection method. In Table 1, LOAR1 
indicates the upper limit of the dose of OAR1 and UCTV is 
the minimum dose required in the bounds of the CTV. 
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Fig. 2. Dose-volume histogram with limitation of minimum 

dose on the bounds of the CTV. 

 

  LOAR1 UCTV DCTV DOAR1 Daire sCTV sOAR1 saire T (s)

  - - 59.45 7.52 9.56 1.64 12.89 13.99 1 

 Lemke 10 - 57.97 2.10 8.69 8.35 3.55 14.08 8 

10mm
 - 60 64.32 5.94 10.25 4.12 11.56 15.69 126 

  - - 59.45 7.52 9.56 1.64 12.89 13.99 193 

 Rosen 10 - 58.48 1.82 8.43 6.96 3.33 14.05 143 

  - 60 61.71 4.28 9.42 8.72 8.76 14.52 83 

  - - 59.61 4.95 7.15 1.09 9.01 11.97 40 

5mm Lemke 10 - 58.71 1.57 6.61 6.27 2.92 12.21 180 

  - 60 61.73 3.17 7.31 3.84 6.93 12.65 2400

Table 1. Comparison of the results obtained. 

Where as DCTV, DOAR1, and Dair are the mean doses, 
expressed in Gy, obtained in the CTV, OAR1, and healthy 
tissue, respectively. In the same table, the standard 
deviations and the execution times (in seconds) of the 
algorithms developed in MatLab are included. 
 

5. CONCLUSIONS 
In this article, we show the advantages of employing 
conditioned optimization methods in the planning of 
intensity modulated radiotherapy for the treatment of 
cancer, which allows limits to be imposed on the dose 
received by organs at risk. The reductions proposed in the 
dimensions of the problem have shown their efficiency 
equally in the reduction of execution time of the 
algorithms, as well as in the protection of the volume of 
certain structures. 
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