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QT Variability and HRV Interactions in ECG:
Quantification and Reliability
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Abstract—In this paper, a dynamic linear approach was used
over QT and RR series measured by an automatic delineator, to
explore the interactions between QT interval variability (QTV)
and heart rate variability (HRV). A low-order linear autoregres-
sive model allowed to separate and quantify the QTV fractions
correlated and not correlated with HRV, estimating their power
spectral density measures. Simulated series and artificial ECG
signals were used to assess the performance of the methods, con-
sidering a respiratory-like electrical axis rotation effect and noise
contamination with a signal-to-noise ratio (SNR) from 30 to 10 dB.
The errors found in the estimation of the QTV fraction related to
HRV showed a nonrelevant performance decrease from automatic
delineation. The joint performance of delineation plus variability
analysis achieved less than 20% error in over 75% of cases for
records presenting SNRs higher than 15 dB and QT standard
deviation higher than 10 ms. The methods were also applied to real
ECG records from healthy subjects where it was found a relevant
QTV fraction not correlated with HRV (over 40% in 19 out of 23
segments analyzed), indicating that an important part of QTV
is not linearly driven by HRV and may contain complementary
information.

Index Terms—Heart rate variability, modelling, QT interval, QT
Variability, QT-RR interactions, RR interval.

I. INTRODUCTION

THE electrocardiogram (ECG) analysis is extensively used
as a diagnostic tool to provide information on the heart

function. Each cardiac beat (Fig. 1) is typically associated with
a sequence of six principal waves denoted by P, Q, R, S, T, and
eventually U, whose characteristics are clinically relevant. In
particular, the time interval between consecutive beats (RR in-
terval) corresponds to the cardiac cycle duration and the time
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Fig. 1. Schematic representation of the five most common ECG waves and
other relevant information in a cardiac beat.

between the QRS complex onset and the T wave end (QT in-
terval) represents the duration of the ventricular depolarization
and repolarization phenomena.

The QT interval is currently considered as an index of the
ventricular repolarization (VR) time, in spite of including the
total (depolarization plus repolarization) ventricular electrical
activity. Abnormal QT values have been associated with ven-
tricular pro-arrhythmicity [1]–[3]. Lass et al. [4] studied VR
dispersion assessed by RTapex or RTend intervals (respectively,
the time between the R peak and T peak or end), which are
alternatives to dispersion across leads. They found a strong
correlation between level of myocardial electrical instability
and RTend and RTapex time domain parameters (and other
T wave based parameters). In a small group of patients with
hypertrophic cardiomyopathy, Cuomo et al. [5] found abnormal
QT beat-to-beat variations [QT interval variability (QTV)] both
in time and frequency domain parameters, with the SDANN
parameter [standard deviation (SD) of averaged QT on normal
beats in 5-min segments] presenting a high predictive value for
identifying patients with history of syncope. These findings
support the idea that syncope in those patients may be related to
repolarization changes. A normalized QTV index (QTVI = log
ratio between the QT and HR variabilities, each normalized by
its square mean) proposed in [6] and [7] allowed an improve-
ment in the identification of cardiac arrest patients, compared
to electrophysiologic test and other risk stratifiers. Increased
QTVI has also been associated to life-threatening arrhythmia,
sudden death in heart disease patients, and congestive cardiac
failure in atrial fibrillation patients.

Despite the fact that VR length is extensively related with
HR, several authors refer direct influences of autonomic nervous
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system over VR [8]–[11] or report nonautonomic influences
[12], [13]. In normal subjects, the direct effect of autonomic al-
terations over ventricular myocardium cells has been shown to
change the QT in a way independent of heart rate (HR) [14].
Therefore, the QTV fraction not driven by the RR beat-to-beat
variations [heart rate variability (HRV)] can itself have clin-
ical meaning. Increased QTVI uncoupled with HRV was found
during ischemic episodes [15] and dilated cardiomyopathy (is-
chemic and nonischemic) [16]; variations in QT versus RR in-
teractions, possibly related with the high incidence of sudden
death, were reported in heart failure patients [17].

The study of QTV requires the extraction of RR and QT in-
tervals and, thus the ECG waves delineation. Besides the smaller
amplitude of QTV compared to HRV, one of the main problems in
studying this relation is the low amplitude and flat boundaries of
theTwaves,withconsequentuncertainty in its enddelineation. In
clinical practice, noise contamination increases delineation dif-
ficulty and can result in spurious QTV. Some authors use alter-
native VR measures which do not require T wave end location,
such as the RTapex interval. The use of the RTapex to assess VR
is based on the assumption that the RR dependence of VR is con-
centrated on the early portion of the QT interval [18]. Porta et al.
[19] studied the RR and RTapex intervals interactions, proposing
a linear low-order dynamic parametric approach that allowed to
quantify the fraction of the RTapex Variability (RTV) driven by
HRV. The RTV was described as RR driven around the respi-
ratory frequency and at low frequency (0.04–0.14 Hz), while a
relevant RR-unrelated RTV fraction was found at lower frequen-
cies. Using the same model, Lombardi et al. [20] reported a RTV
fraction driven by HRV significantly greater in young subjects
than in postmyocardial infaction patients and age matched con-
trolsubjects.However, inspiteofbeingeasier tomeasure,RTapex
presents even shorter length than QT interval and more reduced
variability range. Moreover, the interval from T peak to T end
(Tapex-end) was reported as RR independent in healthy subjects
[21]. Variations of QT and QTapex were comparatively studied in
normals, heart failure and ventricular hypertrophy situations: the
terminal part of the T wave showed no HR dependence at rest and
presented, both in exercise and in disease, substantial variability
not related to QTapex variability. Furthermore, important abnor-
malities in QT interval, including HR-dependent ones, would be
missed if the QTapex interval had been used to assess VR [21]. In
fact, Yan et al. [22] stated that the interval Tapex-end represents
transmural dispersion of VR and, thus may be considered as an
arrhythmic risk index.

The QTV fraction effectively correlated with HRV has not
been yet clearly quantified. In this paper, the QTV and HRV
are assessed by the RR and QT intervals computed from au-
tomatic ECG delineation, thus avoiding intraobserver/interob-
server variability. A wavelet transform based methodology pre-
viously validated [23] is used for that purpose. This system has
proven to be quite robust against noise and morphological vari-
ations, even in the problematic T wave delineation. From the
measured series, the QT and RR short term interactions are ex-
plored using a flexible orders version of the model proposed by
Porta et al. [19], and the fraction of QTV driven by HRV is quan-
tified. Preliminary versions of this methodology were partially
validated in [24] and [25].

Fig. 2. Model of QTV versus HRV interactions.

The main aim of this paper is to establish the framework of
applicability of the studied methods, giving the limits (as func-
tion of SNR and noise characteristics) to which the results can
be reliable. The parametric approach is first validated in simu-
lated series. The joint robustness of delineation and modelling is
evaluated over artificial ECG signals, generated in a controlled
situation, and facing respiratory and noise contamination. Ap-
plication to real records is also presented. The parametric model
formulation and identification are presented in Section II of this
paper. The simulation set-up is described in Section III, along
with the real data set. The performance evaluation can be found
in Section IV. The results both in simulated and real data are
presented in Section V and discussed in Section VI. Section VII
comprises the conclusions.

II. METHODS

The interval related to the th beat is the time from
th to the th beat, and refers to the QT in-

terval in the th beat (Fig. 1). The data to be analyzed by the
parametric methodology are the interval series corrected for the
mean, and ,
where and stand for the mean RR and QT, respectively,
in the analyzed segment.

A. Model Formulation and Spectral Decomposition

The parametric methodology explores QTV and HRV inter-
actions assuming an open loop linear model [19] (Fig. 2) where

, , and are polynomials with coef-
ficients , , , and , respectively. The se-
ries and are uncorrelated stationary zero-mean
white noises with SDs and and denotes beat number.
The series is modelled as an order autoregressive

stationary random process

(1)

The QTV trend, , is assumed to result from two uncor-
related sources, one driven by HR and one resulting from other
input (Fig. 2, model, [26])

(2)
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Therefore, the model accounts for the possible QT dependence
on its past values and those of the RR interval. Recent studies
evidenced these QT dependencies [27]. For simplicity, the same
order was assumed for all ARARX model polynomials, while
a possibly different order was allowed for the AR model. This
is a generalization from previous approaches, where the same
order was considered for all polynomials in the model
[19]. The order in (1) represents the memory of of its
own past while order in (2) produces a cumulative memory
effect between the polynomials and or , depending
on the dependence considered. Notice that cor-
responds to assigning to series a double memory than
to series.

The assumption of uncorrelated sources allows to compute
the power spectral density (PSD) of , , as the
sum of the partial spectra, and , that ex-
press the contributions related and unrelated to the RR interval,
respectively

where is the frequency in Hz. As both and
series are evenly sampled in beats but not in time, the mean
RR interval was used as sampling period for estimating
the PSD functions, which has been shown acceptable for low
frequencies far from the Nyquist frequency [28]. Each spectrum

, can be written as

(3)

Factorizing it is possible to decompose the complex
spectral density in components, each one referred to one of
its poles , [29] and [30]. Inverting the -trans-
form in the complex spectrum definition and computing the
line integral using the Cauchy Residue Theorem, the autocor-
relation function and the correspondent complex spectral den-
sity can be decomposed as and

.
According to [30], each term in can be written as

for , calculated at . Since the
residues for complex conjugate poles are complex conjugate,
the total power in the spectrum can be written as the sum of

components: one for each pair of complex conjugate
poles and (located at frequencies and ) and one for
each real pole (at or ), if they exist.
That is

(4)

Due to the symmetry of with respect to , fre-
quencies associated to complex conjugate poles correspond to
complex conjugate components that can be combined in a real

, related to a power component
[29]. Each term in the last sum of (4) can be seen as the power
of a real component corresponding to or

(that is, for real). Therefore, in (3)

can be decomposed into components , contributing
mainly at frequencies . The power within a
given frequency band, denoted by , can be obtained by
summing the contributions of the poles located in the band .
That is

where for real poles and for complex conjugate
poles. The relative fraction of the QTV driven by RR in the
frequency band is given by

(5)

This algebraic decomposition of the spectrum does not guar-
antee the achievement of admissible spectral components, once
negative power components can occur, if poles are too close to-
gether [31]. If this happens near the limit of a frequency band

, a negative value can be obtained and protection rules
need to be considered in the estimation, as will be explained in
the next section.

B. Model Identification and Order Selection

From and interval series, the polynomial
was estimated using least squares, while the ARARX model

parameters were iteratively obtained using a generalized least
squares methodology [26]. A large enough signal-to-noise ratio
(SNR) guarantees that the minima of the square residue are
global [26] and convergence to white noise residuals
is expected in a reasonable small number of iterations for ade-
quate model orders.

Orders , between 2 and 18 were considered to be adequate
for modelling a given data segment if the residuals
and can be considered uncorrelated white noises (5%
significance bilateral test on the normalized autocorrelations
and crosscorrelation, both for the first 40 lags and for all
lags). Model orders producing a negative global contribution
in a frequency band, as remarked in Section II-A, were also
considered as inadequate. Optimal and were automatically
selected from the adequate orders. First, order of in the
AR model is chosen by minimizing the Akaike information
criteria (AIC) [26]. The order is taken as the one minimizing
the multivariate AIC

(6)

where stands for the determinant of the covariance ma-
trix of the residuals and , and is the number
of intervals (beats) in the segment. The order , and therefore the
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variance, were already determined in the previous step,
and thus this is not a multivariate minimization in strict sense,
as only the order remains to be chosen. To reduce overfit prob-
lems in AIC, the number of estimated parameters
should be small (less that 10%) with respect to the total number
of intervals in the series [32]. Regarding the extreme case

, segments with a minimum of about 350 beats should
be considered.

III. DATA SETS

Test data was simulated for validation of the previously de-
scribed methodology. The and series were sim-
ulated using the linear relations model (Fig. 2) and artificial
ECG signals matching those intervals were constructed to eval-
uate the methodology in a more realistic context. Along with
morphologic beat-to-beat variability, real ECG signals are also
affected by extra cardiac factors, such as respiration or muscular
activity, which have also been considered in the simulation. Real
ECG records from a database were used to illustrate the method
in clinical practice.

A. Simulated Data

Assuming that the linear model in Fig. 2 holds, it is neces-
sary to define reference parameters for series genera-
tion in controlled simulation. Aiming to obtain realistic
resulting from and an uncorrelated source , in
a first step were constructed the series

(7)

from which the reference model parameters are going to be
extracted. The series and are independent

realizations obtained using an integral pulse frequency
modulation model, following modulating signals [28],
agreeing to the spectra typically found at supine rest and
head-up tilt situations, respectively (Fig. 3, upper left corner)
[33]. The RR uncorrelated QTV part does not need to have a
RR like spectral shape, as has been here considered. However,
this choice assigns to the uncorrelated part a spectral behaviour
which puts the method under evaluation in the more difficult
situation, that is with the same kind of frequency distribution
as in the RR. So, the spectral overlap will force the method
to search for uncorrelations rather than just make frequency
filtering. The parameters and in (7) allow to set
mean and SD and adjusting is equivalent to consider
distinct QTV levels. Parametric model identification in (1) and
(2), considering and given by
(7) provides the reference coefficients values , ,

, and the residual noise SD for the simulation. The
QT reference models construction is summarized in the upper
block of the diagram in Fig. 3. In this study, two different QTV
levels and were mod-
elled, which were chosen to express extreme situations found
in healthy subjects [34]. In order to allow a better spanning of
the QTV level range, additional QT reference models were also
constructed for , 10, 8, and 3 ms. The order
was chosen to include similar memory ( , ) on its

own past for both and , while depends
on past samples.

Once the QT reference model parameters were obtained, the
test data was simulated as outlined in the central block of Fig. 3.
The fraction driven by RR, , was obtained
by feeding the correspondent part of the model (Fig. 2) with
independent realizations of

(8)
Analogously, and the fraction noncorrelated with RR

were obtained feeding with simulated white noise
(SD ),

(9)

Fifty uncorrelated realizations (trials) of more than 1000 beats
were simulated regarding the following three cases of possible
dependencies.

A) QT and RR fully correlated: .
B) QT and RR uncorrelated: .
C) Mixture of the two dependencies

Several simulation approaches were then considered and dif-
ferent test data sets were obtained, as summarized in Table I. The
clean simulated test data sets (“ ”) were defined from the series
simulated directly from each reference model, considering the
three dependence cases. Artificial ECG signals were constructed
based on those series and were used to obtain signal derived data
sets. The interval measurements from the marks provided by
automatic delineation of those noncontaminated ECGs led, for
each dependence case, a new data set (“ ”). Different contam-
ination types were considered by including a respiratory-like
electrical axis rotation effect (“ ”) or adding real prerecorded
noise (“ ”) to the ECG signals in the dependence case . These
test data sets are further described next.

1) Clean Series Simulation: A segment of 350 beats from
every realization of the series simulated directly from each ref-
erence model were considered in test data, defining the clean
test data sets (“ ”), respectively, , , and .

2) Signal Derived Series: Artificial ECG signals were con-
structed fitting the previously generated and se-
ries in each data set. A clean and well defined template beat was
chosen from a 3-lead baseline corrected real file, sampled at 500
Hz, the same resolution than the real data (see Section III-B).
Each ECG was obtained by concatenation of the template beat,
following the series, properly scaled from QRS end to
T wave end to reflect the variability inherent to . By
applying the same scaling to template beats from the orthog-
onal leads , and , 3-lead artificial ECG signals with same
QTV and HRV in all leads can be ob-
tained. Automatic delineation over these signals [23] provided
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Fig. 3. Methods block diagram: QT reference models construction (upper block), test data sets simulation (central block), QTV versus HRV interactions model
estimation (lower block), performance evaluation (right side).

the fiducial marks and the corresponding series and
signal derived (“ ”) were checked for RR outliers [35]

and missing QT values. Segments of consecutive 350 valid beats
measures were considered and denoted as data sets , , and

.
3) Noise Contamination: Different contamination types

were considered over the 50 trials in the situation of mixture

of dependencies (case ), as illustrated in Fig. 4. A respira-
tory-like electrical axis rotation effect (“ ”) was simulated and
the data set was constructed from the series of automatically
delineated intervals over the ECG signal affected by respiratory
noise. Other contamination types were considered by adding
prerecorded noise to the artificial ECG and a new data set

was defined from the and series obtained
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TABLE I
SIMULATED DATA: MEAN AND SD OF �̂ IN VALID SEGMENTS (ms). (NC: NOT CONSIDERED)

Fig. 4. Example of (a) a simulated ECG signal, (b) the same ECG with noise
contamination (thicker line) with respiratory-like electrical axis rotation effect,
and (c) muscular artifacts with SNR = 15 dB. Clean ECG superimposed
(thinner line) in (b) and (c).

from the delineation over these noisy (“ ”) ECGs. Outliers
and missing values can occur due to misdetection in automatic
delineation. After delineation, all potential RR outliers were
excluded [35] and segments of consecutive 350 valid beats
measures considered in the test data sets.

Lungs expansion and contraction during the respiratory cycle
changes the heart electric axis within the chest, resulting in
scaling and rotation on the ECG. It is assumed that the angular
variation around a lead axis is a function of the amount of air in
the lungs at each time, which was modelled as a sinusoid. The
rotation angle around each orthogonal lead is
given by

(10)

where is sample index, is the maximum value allowed
for , and and denote respiratory and sampling

frequency, respectively. The rotation matrix can be com-
puted as the product of planar rotations with angles
and the effect of a three lead rotation should not be different
than along one single lead [36]. For the sake of simplicity,
only the rotation around the axis was considered with

. The respiratory frequency was set to
, corresponding to the central frequency of the

highest variability peak on the model spectra (Fig. 3).
The ECG signals affected by respiration
were constructed as the product of matrix by the 3-lead
ECG vector .

Prerecorded noise from the MIT-BIH Noise Stress Test Data-
base [37] was used, corresponding to baseline wandering, elec-
trode movement artifacts and muscular artifacts. The first lead
of the noise records was resampled at 500 Hz and multiplied by
a constant to get a predefined SNR (levels from 30 dB to 5 dB)
when added to the artificial ECG. The data set comprehends
the and series obtained from the contaminated
ECGs considering all noise types and SNR levels.

B. Real Data Set

ECG recordings of young normal subjects from POLI/
MEDLAV database [38] were used in this study (20 records
24 min long sampled at 500 Hz with and leads). Each
lead was processed by the automatic delineation system [23].
In addition to all potential RR outliers [35], QT intervals out
of a 3-SD band were also rejected, as they are unlikely to be
physiologically meaningful and must have resulted from error
in delineation. In the subsequent analysis, segments of 350
consecutive beats with valid RR and QT intervals measure-
ments were considered. Longer segments were carved up. Each
qualified segment was evaluated for the QT variability level
(estimated as the QT SD) and SNR level (estimated as the ratio
between the power of a running averaged and amplitude fitted
beat and the power of a segment between QRS complexes
high-pass filtered with a fifth-order Butterworth filter with
cut-off frequency 10 Hz).
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IV. PERFORMANCE EVALUATION

The actual spectra of the simulated series was obtained
directly from the reference parameters in each QT reference
model given in Section III-A, used to generate the simulated
series. The spectral decomposition was performed as described
in Section II-A and the reference variability measures
calculated. The errors in the estimated variability measures

are computed as

(11)

The QTV fraction driven by HRV was chosen as a performance
measure since it is more likely to be correctly estimated, due to
the fact that any spurious QTV will be considered as part of the
uncorrelated fraction. The percentage errors in the quantifi-
cation of the QTV fraction correlated with HRV are defined as
the difference between the ratios calculated from (5) for esti-
mated, , and reference measures,

(12)

The percentage errors depend on both QTV fractions and
thus are more sensitive performance indicators than the errors

, since overestimated leads to an artificial decrease
on .

From the estimated coefficients and the residues
and , the signals and , corre-
sponding to the fractions, were explicitly calculated.
The similarity between and the corresponding sim-
ulated series in (8) was evaluated by the magnitude
of the squared spectral coherence and the phase of
the cross-spectra , obtained by bivariate modelling
[31]. Analogously, and in (9) were also
compared.

V. RESULTS

The measures were estimated considering frequency bands
typically used in HRV studies [33]: low-frequency
as 0.04–0.15 Hz and high-frequency as 0.15–0.4 Hz.
Total power was taken from 0.04 Hz to the highest
frequency present in each spectrum .

A. Simulated Data

Both for the directly simulated data sets , and the
ones obtained by automatic delineation without noise contami-
nation no potential RR outliers or missing QT in-
tervals occurred. Adequate segments (350 consecutive beats and
no potential RR outliers) were also found in all 50 trials of data
sets and for for all QT reference models.
The reduced number of qualified segments led us to exclude data
with from the analysis. The estimated QT SD,

, in the valid segments of each data set obtained from QT
reference models and are reported in Table I ( mean
and SD across trials).

Fig. 5. Histograms of orders p and q selected by AIC in model identification
for (a) clean RR simulated series and (b) clean QT simulated series with QT
reference models Hi and Lo, and (c) and (d) real data set segments. Darker
classes in (a) and (b) corresponds to the reference order.

A minimum of 48 (out of 50) valid estimated models for each
QT reference model were found for every data set and noise type
in data set for SNR level 15 dB.

1) Clean Simulated Series: The AIC selected orders for the
AR model are presented in Fig. 5(a), with in 82% of
the cases. For the ARARX model, AIC selected orders

in more than 80% of the series in data sets and for all QT
reference models, while more spread orders were selected for
data set , as illustrated in Fig. 5(b) for QT reference models

and .
For QT reference models and , the mean and SD of

are presented in Table II(a) for data sets and ;
the mean and SD of are also presented in Table II(a)
for data sets and and in Table II(b) for data set . In
all cases for QT reference models with ,

, and
. The distributions of for QT reference

models and in datasets , and are presented in
Fig. 6(a). In this chart, and in all similar ones, the central box
goes from 1st to 2nd quartiles, with a horizontal line marking the
median, and stands for values out of the quartiles box. Con-
sidering QT reference models corresponding to ,

for more than 81% of the series with ,
and 78% with . For QT reference model ,
for 78% with (74% with , 71% with ).
The comparison between estimated and reference fractions, re-
garding both and were evaluated across
trials (Fig. 7). The magnitude of the squared coherence
was found to be higher in the QTV fraction driven by RR than in
the uncorrelated one. For QT reference models with lower ,
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TABLE II
MEAN AND SD OF ERRORS " and � IN (a) DATASETS A , B , A , B AND " AND IN (b) DATASETS C , C , C , AND C FOR SNR � 15 dB

Fig. 6. Distributions of " in (a) data sets A , B , C and (b) data sets A , B , C : box-and-whisker plot by frequency band (+ stands for values out of the
quartiles box).

decreased and both and became more
spread in both QTV fractions.

2) Signal Derived Series: For QT reference models with
, in more than 80% of the series for

, and 76% for . For QT reference
model , for about 76% with (75% with

, 66% with ). In all the cases for QT refer-
ence models with , ,

and .
For QT reference models and , the values of and

in data sets and , and for data set
can be found in the Tables II(a) and II(b) and distribution in
Fig. 6(b). The and obtained were equivalent to
the clean series data sets results.

3) Noise Contamination: The distribution of and in
data sets and is presented in Fig. 8(a). Larger bias was
found for and higher dispersion for . A reduc-
tion in bias and dispersion was observed with QTV level re-
duction, however both increased proportionally to . No
relevant effect was noticed from the respiratory-like contamina-
tion considered. The distributions of and are presented

in Fig. 8(b); values can be found in Table II(b). Noise
and respiratory-like contamination produced a negative bias,
specially marked in for . Both bias and dispersion of
were more evident with QT reference models corresponding to
lower and had progressively increased with noise contami-
nation (lower SNR values). This performance decay reached im-
portant levels for with, for
and for , and for respiratory contamina-
tion with for . Considering separately
the different noise types, no relevant differences were found be-
tween baseline wandering and muscular artifacts contamination.
The method was slightly more robust to electrode movement ar-
tifacts contamination with intermediate SNR levels (lower
bias with ).

The assessment of the minimum QT SD level for which an
error tolerance degree of 10%, 15% and 20% was accomplished,
for each noise contamination level, was addressed. For that pur-
pose it was checked for data from each QT reference model if
the quartile box was within the chosen tolerance degree. In
Fig. 8(c) is presented, for each dataset and SNR level, the min-
imum of mean observed in data fulfilling the criteria.
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Fig. 7. Similarity between estimated and reference fractions of x (n), right subpanel x (n), left subpanel x (n): minimum (min), first quartile
(q1), median (q2), second quartile (q3), and maximum (max) values across trials and along frequency magnitude, of squared spectral coherence,K (F ), and phase
of cross-spectra, ph(F ), in data set C . Frequency axis assuming uniform heart period T . (a) QT reference model Hi; (b) QT reference model Lo.

Fig. 8. Distributions of (a) � and (b) " : box-and-whisker plot by frequency band (stands for values out of the quartiles box). In (c) are plotted the mean �̂ (n)
observed in each dataset for which " quartile box is within a tolerance degree of 10%, 15%, and 20%.
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TABLE III
REAL DATA SET SEGMENTS DESCRIPTION. V = 100� =T

Notice that values for mean are presented for a dataset or
SNR level only if data from at least one QT reference model
fulfilled the criteria.

B. Real Data

Segments with valid measured series were found for 7 records
in lead X and 5 records in lead Z, out of the 20 records available
in the real database. There were not any segments qualified in
lead Y. A total of 24 segments were analyzed, as summarized in
Table III, with several segments in the same file. The SD
of in those segments varied mostly from 2 to 12 ms,
with a maximum variation coefficient
of 3.1. The exception is the segment 24 which presents much
larger values both for and (more than the double of
the maximum for all the other segments). The minimum SNR
mean value found was 15.9 dB again for segment 24; for all
other segments SNR values found were higher than 18.5 dB. No
valid AR model was found for the in segment 5 of lead
Z. The orders selected by AIC in AR indentification [Fig. 5(c)]
were found to be for 19 segments and in ARARX
[Fig. 5(d)] for 20 over the remaining 23 segments.
Only in 3 out of the 24 segments was found .

The estimated QTV fractions are presented in Fig. 9:
for 19 out of 23 segments, the maximum

of is 64.8%, and for 15 of the
segments.

VI. DISCUSSION

Restrictive criteria for considering valid interval measures
were used, aiming to guaranty that the parametric methods are
only applied to data that can be considered as close as possible
to stationarity, an essential restriction for this class of methods.
In data facing higher noise levels this resulted in a low number

Fig. 9. QTV fractions estimated in real records segments: HRV driven fraction
in darker grey, uncorrelated fraction in lighter.

of segments qualified for the analysis. For many records in real
data, it was not possible to find segments with valid interval
measures in any of the available leads and the lead Y (usually
noisier and thus likely to present more outliers) had no qualified
segments at all.

Adequate model identification was possible for more than
90% of the analyzed segments (both simulated and real). The
QT reference models used in the simulation allowed to produce

series resulting from and other uncorrelated
source. In the simulated data sets outliers exclusion in the QT
series was not considered, as they can result from the simulation
itself instead of delineation errors, since the models do not guar-
antee fully realistic series in a physiological sense. The orders
selected for modelling the majority of the clean simulated series

and the ARARX models are
in accordance with the reference orders ( , ) used
in simulation. In data set , the QTV fraction uncorrelated to
HRV is null and, therefore, all the relevant memory effect is in-
cluded in AR model part: the ARARX part tries to model white
noise and selects more spread out orders. In the real data set seg-
ments, AIC selected mainly reinforcing the adequacy of
allowing different orders for AR and ARARX models. In fact,
there is no reason to constrain the QT and RR sequences to at-
tached memories of its own past. Mean value of in data
set is near for all QT reference models. The lower
values in data sets and were expected, as only one of the
QT dependencies (one QTV fraction) was included.

The errors found in the quantification of the QTV fraction
driven by HRV over clean simulated series were low for all data
sets, indicating that the parametric method is able to correctly
estimate both QTV fractions. Higher dispersion and bias of
were found for QT reference models with lower . This effect
was expected as the QTV amounts to be estimated were smaller
and thus the delineation errors proportionally assumed higher
importance. The high between estimated and reference
fractions reflect the degree of similarity found both in power and
in the peaks location. Erroneous QTV due to delineation errors
should be considered as noncorrelated with HRV, explaining the
slightly inferior in this fraction, namely in QT reference
models with lower . The negligible values confirm
the absence of time delays in the dependence of on

.
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The mean values of in data sets , and differ
less than one sample from the correspondent values in ,
and and no relevant differences were noticed in performance,
coherence or phase. The adequateness of the RR and QT inter-
vals measured by the automatic delineator presented in [23] for
studying these relations was then confirmed. The slightly lower
performance found for QT reference models with ,
can be related not only with the lower QTV levels to be mea-
sured, but also with insufficient ECG time resolution (2 ms) re-
sulting from the sampling rate chosen . Still, neg-
ligible effects of in the QT interval measurement were found
by Risk et al. [39], for values between 300 and 500 Hz. By
looking the tendencies shown in that work, one can infer than
same negligible differences will be found for .

The negative bias found in for , with no relevant perfor-
mance decrease in , represents an overestimation of the QTV
fraction not correlated with RR. The waves slope is affected
by the beat rotation resulting in cyclic delineation errors, with
impact in the QTV series. These small delineation errors are
consistent with overestimation, specially for ,
which assume relative higher importance for lower QTV levels.
The parametric method was inapplicable with noise contami-
nation corresponding to due to the number of
outliers in and missing QT intervals resulting from de-
lineation errors. The progressively increased mean with
the SNR reduction in the qualified segments strongly indicated
that delineation errors have introduced spurious variability in
the measured series. A delineation improvement is needed to
allow a faithful QTV estimation in noisier ECG records. As
expected, the joint performance of delineation and parametric
approach depended not only on the noise level, but also on
the QTV level to be measured. In the presence of moderate
noise, the quality of the estimation decreased with
SNR level, but not to unusable levels, as far as the level
of QTV to be measured is not too low .
Spurious QTV resulting from noise was correctly quantified
as not related with RR. Thus, the ratio underestimated the
importance of in total QTV and the quantification
of the relative fraction of variability driven by RR
was more affected than the absolute measures. The results
outlined in Fig. 8 provide, for the used delineation system
[23], the limits for which the QTV fraction quantification is
reliable, as a function of SNR and QTV range. Those limits
would surely be less restrictive if the RTapex [19] was used,
since T peak estimation is less noise sensitive, but the eventual
variability of the T peak to T end interval (and its potential
clinical value) would be lost. The limits found could be even
pushed forward by exploring a more robust delineator [40].

Regarding the real data set, the fraction uncorrelated with
HRV was found to be higher than 40% for most of the segments
for all frequency bands considered, suggesting that other factors
rather than RR could drive an important part of QTV. It is worth-
while to remark that uncorrelation between that part of QTV and
HRV does not imply the absence of physiological dependence
between them, since nonlinear effects are not considered in the
present modelling. As SNR level is around 20 dB and SD
is 10 ms for many of the real files, it is likely that the errors
in the estimated fractions reach 15% or 20%. Even so, it is pos-

sible to state that the fraction uncorrelated with HRV still have
a relevant importance in the QTV.

VII. CONCLUSION

Exploring short term RR and QT interactions in clinical rou-
tine data, facing noise contamination, is a challenging and com-
plex problem. In this paper, this relation was assessed by au-
tomatic delineation and the characterization of the QT versus
RR variabilities using parametric modelling was discussed. The
robustness was evaluated with simulated data. No relevant per-
formance decrease resulted from delineation, and the decrease
in estimation quality due to ECG noise does not degrade the
variability measures to nonuseful levels, with moderate contam-
ination . Noisier ECG records will require an
improvement of the delineation system. The level of QTV to be
measured is also important in the relevance of the errors. The
methods are not adequate to study reduced QTV (QT SD 10
ms). In real data, the different orders selected for the two model
parts can be associated to differences in the memory of the se-
ries and need a deeper analysis.

In spite of the limitations in this methodology, the fraction
uncorrelated with HRV was found to have an importance in
QTV that cannot be ignored. Clinical interpretation studies on
the uncorrelated fraction and its possible relation with direct au-
tonomic effects over the VR should be considered and can now
be faced within the framework of this modelling.
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