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Abstract

An adaptive approach is presented to investigate, on a beat-to-beat basis, the response to heart rate variations of the QT interval and the T wave

amplitude (Ta). The relationship between each repolarization index and the RR interval is modeled using a time-variant system composed of a

linear filter followed by a memoryless nonlinearity approximated by a Taylor expansion. The linear portion describes the influence of previous RR

intervals on the repolarization index and the nonlinear portion expresses how the index evolves as a function of the averaged RR measurement ðRRÞ
at the output of the linear filter. For the identification of the unknown system, two procedures that simultaneously estimate all of the system

parameters are proposed. The first procedure converts the total input–output relationship into one being linear in its parameters and uses a Kalman-

based technique to estimate these parameters. The second procedure uses the Unscented Kalman Filter to solve the nonlinear identification directly.

Those procedures were tested on artificially generated data and showed very good agreement between estimated and theoretical parameter values.

The application to electrocardiographic recordings showed that both repolarization indices lag behind the RR interval, being the effect more

noticeable for the QT interval and more strongly manifested in episodes of sustained changes in heart rate, with QT lags after large RR variations of

nearly 1 min in mean over recordings. The time variant QT=RR relationship was found to be adequately modeled by a first-order Taylor expansion,

while the Ta=RR relationship was better modeled using a second-order nonlinearity.

# 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the extensive reports showing that impaired adaptation

of the QT interval to changes in heart rate (HR) might be

associated with the risk of cardiac arrhythmias [1–3], the QT

interval, which expresses the overall duration of ventricular

depolarization plus repolarization, is one of the most well-

studied indices of the surface electrocardiogram (ECG). Many

of the studies that analyzed the relationship between QTand RR

(the inverse of heart rate) were restricted to episodes in which

the RR signal was stable [4], when the QT interval is affected

mainly by the preceding RR interval. In situations where there

is a large variation in cardiac rhythm, the influence of the

history of preceding RR intervals on each QT measurement

needs to be considered to account for the well-known hysteresis

effect present in the QT/RR relationship [5–8]. In [5] a method

was proposed to assess the QT interval response to changes in

heart rate on ambulatory recordings and characteristics of the

adaptation in terms of duration and profile were provided for

individual recordings and for selected segments of the

recording that showed abrupt changes in heart rate. Those

characteristics were used to discriminate between post-

myocardial infarction patients at high and low risk of

arrhythmic death while on treatment with amiodarone. With

that type of method, however, it is not possible to evaluate the

QT dynamic behaviour on a beat-to-beat basis, which can be

very useful in identifying instances when disturbances in the

adaptation occur and which, on the other hand, can be masked

by the static analysis performed in [5] if the overall adaptation

is not modified. In this study, we develop and test a full beat-to-

beat adaptation analysis that can describe changes in the QT
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interval dynamically and relate them to variations in heart rate.

Also, the index Ta measuring the Twave amplitude is examined,

which has been shown to have a strong heart rate dependence

[9]. Since recent works published in the literature have

documented that assessment of T wave morphology changes in

relation to heart rate can provide more insight into repolariza-

tion abnormalities [9,10], we have also investigated in this

study the beat-to-beat adaptation of Ta in response to rate

variations, using the same methodology as for the QT interval.

To perform the investigation, we propose a general model

that, when applied to ECG data, takes the RR series, after

interpolation, as the input signal xRR(n) and the corresponding

interpolated QT series as the output signal yQT(n), where n is

the discrete time index. Analogously, the analysis is performed

taking as output signal the interpolated Ta series, yTa
ðnÞ. In the

description of the methods, the output signal will be generically

denoted by yQT(n) to simplify the reading. The system proposed

in this study to relate the input and output signals xRR(n) and

yQT(n) is assumed to be composed of a linear time-variant FIR

filter followed by a zero-memory nonlinear function repre-

sented by a Pth-order Taylor polynomial (P > 0) whose

coefficients are permitted to vary over time. Since the

underlying system is time-varying and the stochastic process

that supplies the tap inputs can be nonstationary (e.g., in the

analysis of the QT/RR or Ta/RR relationship in ambulatory

recordings), the adaptive filter proposed for system identifica-

tion has to deal with nonstationary environments. This led us to

formulate the problem using state-space models and apply

Kalman-based filters to solve it.

The proposed methodology was evaluated using simulated

data and, subsequently, applied to the analysis of real ECG

recordings to assess the QT/RR and Ta/RR adaptation on a beat-

to-beat basis. ECG data were obtained from healthy subjects as

they changed their posture in a prescribed way, which caused

substantial and, frequently, very abrupt changes in heart rate. In

this study, we investigated the mode of adaptation of the two

repolarization indices to those changes in rate and we explored

interindividual differences. Also, we examined differences in

the adaptation to accelerating and decelerating heart rates.

The paper is organized as follows: Section 2 contains the

procedures of the study, and the data are described in Section 3.

Section 4 proposes a number of performance measures for

assessing the procedure. Section 5 presents the results, which

are discussed in Section 6.

2. Methods

2.1. Model composition

A nonlinear system with memory is used to model the

relationship between scalar and real input and output signals,

xRR(n) and yQT(n), respectively. The input signal xRR(n) is the

realization of a stochastic process that can be nonstationary and

for which no a priori probability density function distribution is

assumed. In the ECG application, the input xRR(n) represents an

RR interval series interpolated to a sampling rate of 1 Hz,

while the output yQT(n) corresponds to a 1 Hz-interpolated QT

interval series. The system to be identified (Fig. 1) is assumed to

be composed of a linear time-variant FIR filter of order N:

hðnÞ ¼ ½h0ðnÞ; . . . ; hN�1ðnÞ�T 2RN�1; (1)

whose output is denoted by zRRðnÞ, followed by a time-varying

zero-memory nonlinearity g(�) that is expandable as a Pth-order

Taylor series around a bias point:

gðzRRðnÞ; aðnÞÞ ¼
XP

k¼0

akðnÞzk
RR
ðnÞ; (2)

with aðnÞ ¼ ½a0ðnÞ; . . . ; aPðnÞ�T 2RðPþ1Þ�1. The Taylor expan-

sion for the nonlinearity g(�) is valid in a neighbourhood of a

bias point different from 0 and the original Taylor series was

subsequently reformulated as in Eq. (2), with the bias point

integrated in the coefficients. The orders N and P of the

subsystems are defined a priori based on the characteristics

of the input and output signals to be processed. In the case of the

QT/RR relationship, it is sufficient to consider polynomial

nonlinearities up to order P = 2 and filter lengths up to

N = 50 (which corresponds to 50 s due to series interpolation

to 1 Hz) because even a larger number of preceding RR

intervals can influence each QT, the initial 40–50 s are the

most clinically relevant [5].

An important remark about the identification of the proposed

system is that its linear and nonlinear portions can only be

determined up to a scale factor, because the multiplication of

each filter weight by a factor h (i.e., hhi(n), i = 0, . . ., N � 1) and

the division of the nonlinearity coefficients by hk (i.e., ak(n)/hk,

k = 0, . . ., P) does not alter the output of the overall system. If a

restriction is imposed on the linear filter, such as hT(n)1 = 1, 8n,

with 1 denoting the N � 1 vector of ones, uniqueness in the

estimation of the filter weights and nonlinearity coefficients is

guaranteed. Other constraints are imposed in the identification

procedure with the objective of providing a meaningful

physiological interpretation of the ventricular repolarization

adaptation. The constraints are such that all of the filter weights

in h(n) are positive, which permits the interpretation of the

relative contribution of previous RR intervals to each QT

measurement.

With such restrictions, the output of the linear portion,

zRRðnÞ ¼ hTðnÞxRRðnÞ; (3)

where

xRRðnÞ ¼ ½xRRðnÞ xRRðn� 1Þ . . . xRRðn� N þ 1Þ�T; (4)

can be interpreted in the ECG application as a running weighted-

averaged RR measurement with weights specifically defined at

each instant n. The nonlinear subsystem is representative of how

Fig. 1. Block structure of the system used in the study, which is composed of a

linear FIR time-variant filter h(n) followed by a time-varying nonlinear function

g(�, a(n)). The output of the system is corrupted by additive noise vðnÞ.
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the QTinterval (global output signal yQT(n)) evolves as a function

of such an averaged RR measurement ðzRRðnÞÞ.
The output of the unknown system is assumed to be

corrupted by additive white noise vðnÞ that is uncorrelated with

the input xRR(n). The noise signal vðnÞ can include, for instance,

delineation errors generated in the determination of the QT

interval and terms in yQT(n) that are not well represented by the

assumed model. Consequently, the output of the global system

can be written as

yQTðnÞ ¼ gðzRRðnÞ; aðnÞÞ þ vðnÞ ¼ aTðnÞzRRðnÞ þ vðnÞ;
(5)

where

zRRðnÞ ¼ ½1zRRðnÞ . . . zP
RR
ðnÞ�T: (6)

2.2. Adaptive estimation of model parameters

Given the input and output signals xRR(n) and yQT(n), the

simultaneous estimation of the system parameters (i.e., h(n)

and a(n)) is confronted using two different approaches, which

are described in the following.

2.2.1. Volterra Linearized–Kalman Filter approach (VL–

KF)

The VL–KF technique uses an adaptive linear filter to

identify the global time-variant system at each time instant. To

that end, the Taylor series expansion that approximates the

nonlinearity is converted into a relationship that allows the

output of the unknown system to be expressed as a linear

combination of known functions of the input signal, and the

Kalman Filter (KF) is used to estimate the coefficients of the

combination. This is performed as follows.

2.2.1.1. Volterra series expansion. According to the model

structure considered in this study, described in Section 2.1, the

output yQT(n) is expressed as:

yQTðnÞ ¼ gðzRRðnÞ; aðnÞÞ þ vðnÞ

¼
XP

k¼0

akðnÞ
�XN�1

i¼0

hiðnÞxRRðn� iÞ
�k

þ vðnÞ: (7)

Denoting

m0ðnÞ ¼ a0ðnÞ (8)

mkði1; i2; . . . ; ik; nÞ ¼ k!QN�1
q¼0 lqði1; i2; . . . ; ikÞ!

akðnÞ
Yk

j¼1

hi jðnÞ;

k ¼ 1; . . . ;P;

(9)

where lq(i1, i2, . . ., ik) counts the number of indexes in {i1, i2,

. . ., ik} that are equal to q, q 2 {0, . . ., N � 1}, the expression

above for gðzRRðnÞ, a(n)) can be transformed into one that is

linear in its parameters:

gðzRRðnÞ; aðnÞÞ

¼ m0ðnÞ

þ
XP

k¼1

XN�1

i1¼0

XN�1

i2¼i1

� � �
XN�1

ik¼ik�1

mkði1; i2; . . . ; ik; nÞ
Yk

j¼1

xRRðn� i jÞ:

(10)

Furthermore, the following notations are introduced:

mðnÞ ¼ ½mT
0 ðnÞmT

1 ðnÞ; . . . ;mT
PðnÞ�

T
; (11)

m0ðnÞ ¼ m0ðnÞ (12)

mkðnÞ ¼ ½mkð0; . . . ; 0; 0; nÞ; . . . ;mkði1; . . . ; i j; . . . ; ik; nÞ; . . . ;

mkðN � 1; . . . ;N � 1; N � 1; nÞ�T; i j� i j�1;

1 � k � P; (13)

and

sðnÞ ¼ ½sT
0 ðnÞ sT

1 ðnÞ; . . . ; sT
PðnÞ�

T
; (14)

s0ðnÞ ¼ 1 (15)

skðnÞ ¼ ½xk
RRðnÞ; . . . ;

Yk

j¼1

xRRðn� i jÞ; . . . ; xk
RRðn� N þ 1Þ�

T

;

i j� i j�1; 1 � k � P: (16)

With those notations, the output of the global system can be

expressed in vector form as

yQTðnÞ ¼ sTðnÞmðnÞ þ vðnÞ; (17)

where s(n) is the known observation vector and m(n) is the

parameter vector to be estimated. Both s(n) and m(n) are

vectors of size Lm � 1, with

Lm ¼
XP

j¼0

f CRðN; jÞ ¼
�

N þ P

N

�
; (18)

where fCR (N, j) denotes the number of all of the possible

combinations with repetition of a set of N different elements

in subsets of length j, and NþP
N

� �
is the combinatorial of N + P

over N.

2.2.1.2. State-space formulation. The underlying model, in the

form expressed after the linearization procedure is applied, now

is formulated as a state-space representation (see [11], p. 470)

that includes, apart from the observation Eq. (17), a description

of the time-varying nature of the quantities to be estimated.

In that way, the proposed finite-dimensional linear state-

space model for the output process yQT(n) is defined by the

following pair of equations: the measurement equation, which

expresses yQT(n) as

yQTðnÞ ¼ sTðnÞmðnÞ þ vðnÞ; n� 0; (19)

where m(n) is the state-vector and vðnÞ is the measurement

noise; on the other hand, the process equation, which describes
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the recursion that the state-vector obeys as

mðnþ 1Þ ¼ FðnÞmðnÞ þ u mðnÞ; n� 0; (20)

where um(n) is the process noise. Here, a random-walk model

[11] is used in the process equation (F(n) = I, where I is the

identity matrix).

The processes vðnÞ and um(n) are assumed to be zero-mean

white noise processes. The variance of vðnÞ is denoted by s2
vðnÞ,

while the covariance of um(n) is denoted by Q umðnÞ. Unless

there is feedback from the output to the states, those noises can

be assumed to be uncorrelated, as it is the case for our purposes.

The initial state m(0) is assumed to be a random vector with

mean m0,m and covariance matrix P0,m, and uncorrelated with

vðnÞ and um(n). In our implementation of the Kalman Filter, the

mean of the state estimate at time n = 0 is assigned a value m0,m

that is built up using the expressions (8), (9) and (11)–(13) and

vectorsm0,h and m0,a, which are defined as follows: m0,h is taken

to be a normalized exponentially decreasing weight curve of

factor a(0), with a(0) determined from a set of possible values

in the interval [0,1] as the one leading to minimum residuum of

the Pth-order polynomial fit between yQT(n) and zRRðnÞ, for

n = 0, . . ., 99, and zRRðnÞ calculated using a(0); on the other

hand, m0,a is obtained by optimally fitting the ½yQTðnÞ; zRRðnÞ�
data of the initial 100 samples with a polynomial of order P,

where zRRðnÞ is defined using the vector m0,h just described.

The initial covariance matrix P0,m is taken as the identity

matrix. The initializations m0,m and P0,m have an effect only at

the beginning of the estimation, but plausible values are chosen

for consistency. In the application of the Kalman Filter it is

generally assumed that the matrices sðnÞ; Q umðnÞ; s2
vðnÞ and

P0,m are known a priori. For our problem, the matrices Q umðnÞ
and s2

vðnÞ are not known and need to be estimated (see below).

2.2.1.3. Regularization. Before we apply the Kalman Filter to

solve the linear state-space problem for the unknown vector

m(n), note the ill-posing of the formulated problem. To this

point, the state vector m(n) would be calculated using a noisy

observation yQT(n), only, if the Kalman Filter without

regularization is used, which can lead to inaccurate estimates.

To improve the estimation, a regularization process is

incorporated that reduces greatly the effect of small noise

perturbations in the output signal affecting the state estimates.

The fundamental idea behind regularization is the addition of

extra relationships on the parameters to be estimated based on a

priori knowledge about them. For our application, it is

reasonable to assume that the curve drawn by the vector

h(n) expressing QT dependence on previous RR intervals is

smooth, so that unexpected sharp spikes are avoided. In this

study, such a condition is approximately satisfied by defining a

regularization term that induces an exponential shape for h(n),

which is justified according to [5]. The regularization process is

performed using a time-varying extension of the Tikhonov-type

regularization [12]. The approach considers the state-space

problem, which is formulated in this study in the Eqs. (19) and

(20), and augments the problem based on prior information

about the state vector m(n) represented through a linear

operator F(n). The new state-space problem has the same

process equation as the previous one, but its measurement

equation is as follows:

ỹQTðnÞ ¼ S̃ TðnÞmðnÞ þ ṽðnÞ; (21)

where

ỹQTðnÞ ¼
yQTðnÞ
’ðnÞ

� �
; S̃ðnÞ ¼ sTðnÞ

FðnÞ

" #T

and

ṽðnÞ ¼
vðnÞ
v0ðnÞ

� �
: (22)

In this study, the vector w(n) is the null column vector of

dimension NP � 1: w(n) = 0.

The transformation F(n), of dimension NP � Lm, is

computed in separate blocks affecting m0(n), . . ., mP(n):

FðnÞ ¼ bðnÞDðnÞ; (23)

where b(n) is a parameter that controls the degree of smooth-

ness of the estimates and D(n) is the matrix defined as

DðnÞ ¼
D 0ðnÞ 0 . . . 0

0 D 1ðnÞ . . . 0

}

0 0 0 D PðnÞ

2664
3775: (24)

The purpose of choosing that structure for matrix D(n) is to

force the estimates in m(n) to satisfy the following:

D kðnÞmkðnÞ ¼ 0; k ¼ 0; . . . ;P: (25)

The block D0(n) is a scalar defined as 0 because no condition

is required for m0(n) (=a0(n)).

The block D1(n) is characterized by the following

(N � 1) � N matrix:

D 1ðnÞ ¼

aðnÞ �1 0 0 . . . 0 0 0

0 aðnÞ �1 0 . . . 0 0 0

..

.
}

0 0 0 0 . . . 0 aðnÞ �1

26664
37775;

(26)

which imposes an exponential relationship on the weight vector

h(n) by forcing a(n)hi(n) = hi+1(n). The factor a(n) is deter-

mined, at each iteration of the Kalman Filter, using the avail-

able a priori estimate m̂ �ðnÞ (see Appendix A), from which the

corresponding estimate ĥ �ðnÞ is readily derived. The normal-

ization condition ðĥ �ðnÞT 1 ¼ 1, together with the imposition

of exponential decay for ĥ �ðnÞ, leads to:

bh�i ðn � kðnÞaiðnÞ; i ¼ 0; . . . ;N � 1; (27)

with

kðnÞ ¼ 1PN�1
i¼0 aiðnÞ

¼ 1� aðnÞ
1� aNðnÞ ; (28)

being a(n) the factor that wants to be determined. Since all the

weights ĥ
�
i ðnÞ are positive (this is one of the constraints

incorporated into the estimation, as it will be described below),
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the following approximation holds for large N:

aðnÞ � 1� ð max
0�i�N�1

fĥ�i ðnÞg � min
0�i�N�1

fĥ�i ðnÞgÞ: (29)

For small N, a(n) is estimated as the mean of the quotients

between consecutive elements of vector ĥ �ðnÞ.
The block D2(n) imposes constraints on the elements of

m2(n) equivalent to those imposed on the elements of m1(n)

through D1(n). That block D2(n) is derived by multiplying the

entire set of relationships established in D1(n) by each of the

elements h0(n), . . ., hN � 1(n), thereby obtaining D2(n) as the

matrix that has the following entries:

D2
i jðnÞ ¼

ci jD
1
piVi j
ðnÞ; if Vi j 6¼ 0

0; if Vi j ¼ 0

( )
;

i ¼ 1; . . . ;NðN � 1Þ; j ¼ 1; . . . ; f CRðN; 2Þ: (30)

Elements pi of vector p are defined as follows:

pi ¼
�

i� 1

N

�
þ 1; i ¼ 1; . . . ;NðN � 1Þ; (31)

where [�] denotes the integer part function. For the definition of

the matrices V and C in Eq. (30), the following notation is

introduced: sj tj is the 1 � 2 vector that represents the j-th row

of the matrix whose rows are the various combinations with

repetition that can be taken of the elements of vector [1, . . ., N]

in subsets of length 2. Those combinations are sorted in

ascending order for sj first and then for tj. Then, the matrix

V is recursively defined as

Vi j ¼ 1þ
Xj�1

l¼1

bðVilÞ;
if ði� 1Þðmod NÞþ 1¼ s j

or ði� 1Þðmod NÞþ 1¼ t j

� 	
0; otherwise

8><>:
9>=>;; i

¼ 1; . . . ;NðN� 1Þ; j¼ 1; . . . ; f CRðN;2Þ;
(32)

where b : Z!Z is defined as

bðtÞ ¼ 1; if t 6¼ 0

0; if t ¼ 0

�
; t2Z: (33)

Finally,

C i j ¼
2; if ði� 1Þðmod NÞ þ 1 ¼ Vi j

1; otherwise

� 	
;

i ¼ 1; . . . ;NðN � 1Þ; j ¼ 1; . . . ; f CRðN; 2Þ: (34)

For nonlinearities of order P higher than 2, constructions

analogous to that of D2(n) lead to definitions of D3(n), D4(n),

. . ., which are the result of multiplying the conditions in the

previous block by each of the elements h0(n), . . ., hN � 1(n).

In the expression (23), the factor b(n) is a positive scalar

called the regularization parameter. The larger the regulariza-

tion factor b(n), the more strength is put into the smoothing;

however, the selection of the factor is always a compromise

because too large a value might lead to overregularized

solutions that are not close to the true state vector m(n). In this

study, b(n) is identified using the L-curve criterion [13], that is,

it is chosen as the optimum value that results from taking the

associated m̂ðnÞ that yields the corner closest to (0,0) in the

log–log plot of jjDðnÞ m̂ðnÞjj versus jjyQTðnÞ � sðnÞT m̂ðnÞjj,
where m̂ðnÞ is the regularized a posteriori estimate of m(n) (see

Appendix A). In that way, a good balance is achieved between

the minimization of the perturbation error and the regulariza-

tion error (see [13] for details).

Lastly, in Eq. (22), v0ðnÞ is a fictitious zero-mean noise

process that is uncorrelated with m(n) and vðnÞ and has

diagonal covariance matrix R v0 ðnÞ which, for our purposes, is

chosen as the identity matrix. Consequently, the covariance of

the augmented noise vector ṽðnÞ is

R ṽðnÞ ¼ s2
vðnÞ 0

0 I

� �
: (35)

2.2.1.4. Kalman Filter. For the formulated linear state-space

model (defined by Eqs. (20) and (21)), the Kalman Filter is used

to solve optimally (minimum mean-square estimation error) the

process and measurement equations for the unknown state

vector m(n), which can be viewed as the minimum set of data

sufficient to describe the system behaviour [11]. In our study,

we used the time- and measurement-update form, which is one

of the many possible implementations of the Kalman Filter. In

that form, the computations can be grouped into two main

blocks. One block contains the time-update equations (or

‘‘projection equations’’) in which the current state estimate and

error covariance estimate are projected in time according to the

process equation and produce a priori estimates for the next

time step. The second block contains the measurement-update

equations (or ‘‘correction equations’’), which provide

improved a posteriori estimates by incorporating information

about the observed output into the a priori estimates. The time-

and measurement-update blocks are run recursively, which

leads to an estimate m̂ðnÞ of the state vector m(n) at each time

instant n (see Appendix A).

2.2.1.5. Estimation of noise covariances. The matrices

Q umðnÞ and s2
vðnÞ need to be estimated at each iteration of

the Kalman Filter. To that end, definition of the autocorrela-

tion Rm(n) = E{m(n)mT(n)} of the unknown system response

m(n) is considered. A straightforward procedure is used to

generate estimates of Q umðnÞ and s2
vðnÞ. That procedure is a

generalization of the method proposed in [14] and, now,

extended to deal with the more general case of time-variant

model matrices.

The inference of the covariance matrix Q umðnÞ of the

process noise is obtained by premultiplying the transpose of the

equation process by m(n + 1), which leads to

mðnþ 1Þm Tðnþ 1Þ ¼ mðnþ 1Þm TðnÞ þmðnþ 1Þ u T
mðnÞ;

(36)

or, equivalently,

mðnþ 1Þm Tðnþ 1Þ ¼mðnÞm TðnÞ þ umðnÞm TðnÞ
þmðnÞ u T

mðnÞ þ u mðnÞ u T
mðnÞ: (37)
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Taking expectations and accounting for the uncorrelatedness

of m(n) and um(n) (which is easily derived from the

assumptions on the model), we obtain:

R mðnþ 1Þ ¼ R mðnÞ þQ um
ðnÞ; (38)

from which Q umðnÞ can be determined to be

Q um
ðnÞ ¼ R mðnþ 1Þ � R mðnÞ: (39)

At each step of the Kalman Filter it can be observed (see

Appendix A) that the a priori estimates m̂ �ðnþ 1Þ and m̂ �ðnÞ
of m(n + 1) and m(n), respectively, are available prior to using

Q umðnÞ in the algorithm. Assuming that, at each time step, the

components of the vector um(n) are uncorrelated (i.e.

EfumiðnÞ um jðnÞg ¼ 0; i 6¼ j), a diagonal approximation to

the covariance Q umðnÞ is proposed, with each diagonal entry

being of the form Q
‘

s2
vðnÞ j jðnÞ ¼ m̂�j ðnþ 1Þ2 � m̂�j ðnÞ

2; j ¼
1; . . . ; Lm, if it is positive, and zero otherwise, which

guarantees positive semidefiniteness of the covariance matrix.

Finally, a smoothing step is considered that leads to the final

estimate Q̂ j jðnÞ of ðQ umÞ j jðnÞ by defining

Q̂ j jðnÞ ¼ n jðnÞQ
‘

j jðnÞ þ ð1� n jðnÞÞ Q̂ j jðn� 1Þ; (40)

where Q̂ j jðn� 1Þ is the estimate obtained at the previous

iteration and the factor nj(n) is defined as inversely proportional

to the square of the difference m̂ �
j ðnþ 1Þ � m̂ �

j ðnÞ.
The variance s2

vðnÞ is approximated by g�0 ðnÞ
2
, where g�0 ðnÞ

is the first component of the innovation process defined as

the difference between the observed output and the a priori

estimated output: g�0 ðnÞ ¼ yQTðnÞ � ŷ�QTðnÞ, with ŷ�QTðnÞ ¼
sTðnÞ m̂ �ðnÞ.

2.2.1.6. Constrained solution. Estimates of the state vector

m(n) obtained after the application of the Kalman Filter might

not satisfy certain constraints that are desirable if physiological

inferences are to be derived subsequently. One of the

constraints to be placed on the state variables is that they are

such that they provide non-negative weights for the linear filter,

so that the dependence of QTon each preceding RR interval can

be quantified as a proportion (%). The second constraint on the

state variables is that the structure of the vector m(n) (see

above) is maintained at all time steps, so that the linear and

nonlinear responses can be correctly identified using only the

estimate of m(n) and the consideration of a normalized filter

impulse response (hT(n) 1 = 1, 8n).

One method for incorporating those constraints into the

Kalman Filter is presented next. Such a method is based on one

of the approaches described in [15] and used by others (e.g.,

[16]). According to the constraints described above and noting

that m1(n) = a1(n) h(n), a requirement for the constrained

estimate (denoted by ˆ̂mðnÞ) is that all of the elements in ˆ̂m 1ðnÞ
are of the same sign (i.e., the absolute value of their sum equals

the sum of their absolute values) and, in the case that the order

of the nonlinearity is P = 2, also that

ˆ̂m2ði1; i2; nÞ
ˆ̂m1ði1; nÞ ˆ̂m1ði2; nÞ

¼ 2QN�1
q¼0 lqði1; i2Þ!

ˆ̂m2ð0; 0; nÞ
ˆ̂m1ð0; nÞ ˆ̂m1ð0; nÞ

; (41)

which is readily derived contrasting the expressions of the first

and second-order blocks in m(n) according to definition (9). For

P = 3, additional analogous conditions are included regarding

expressions involving ˆ̂m3ði1; i2; i3; nÞ, and so forth for higher

order nonlinearities.

To determine the constrained estimates, the constraint

surface Vm is built and the constrained Kalman Filter solution

is found by projecting the unconstrained state estimate m̂ðnÞ
onto Vm. The problem that is solved is as follows:

ˆ̂mðnÞ ¼arg min

m
^
ðnÞ 2V m

fðm‘ ðnÞ

�m̂ ðnÞÞT W ðm‘ ðnÞ � m̂ ðnÞÞg; (42)

where W is any Lm � Lm symmetric positive definite weighting

matrix. In the case where W is chosen as the inverse of the

covariance matrix of the a posteriori estimation error

W ¼ P�1ðnÞ; (43)

where P(n) is the estimate of EfðmðnÞ � m̂ðnÞÞðmðnÞ�
m̂ðnÞÞTg obtained at the iteration n of the Kalman Filter, it is

readily seen that ˆ̂mðnÞ is a maximizer of the gaussian probability

density Nðm̂ðnÞ; PðnÞÞ satisfying the required constraints [16].

The obtained estimate ˆ̂mðnÞ is taken as the final representation of

the state of the global system at time n and is used in subsequent

iterations of the adaptive filter for the estimation of future states.

For the sake of simplicity, in the following we denote the

constrained estimate by m̂ðnÞ in substitution of ˆ̂mðnÞ.

2.2.2. Nonlinearized-Unscented Kalman Filter approach

(N-UKF)

The second way to solve the system identification problem

uses adaptive recursive nonlinear filters to estimate the state of

the system at each time instant. In that case, the measurement

equation is not transformed into a linear combination of

functions of the input signal and, accordingly, a nonlinear state-

space problem is defined. To solve it, the Unscented Kalman

Filter (UKF) [17,18] is used. This is described below.

2.2.2.1. State-space formulation. The output yQT(n) of the

global system is now expressed as

yQTðnÞ ¼ f ðx RRðnÞ; cðnÞÞ þ vðnÞ; (44)

where c(n) is the vector of length Lc = P + N + 1 given by

cðnÞ ¼ ½a TðnÞ h TðnÞ�T (45)

and

f ðx RRðnÞ; cðnÞÞ

¼
XP

k¼0

ckðnÞ
�XPþN

i¼Pþ1

ciðnÞxRRðn� iþ Pþ 1Þ
�k

: (46)
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The expression above (44) for yQT(n) constitutes the

measurement equation of the state-space formulation of our

problem. For the process equation, information about the nature

of the temporal evolution of the system state is unavailable;

therefore, a random-walk model of the form

cðnþ 1Þ ¼ cðnÞ þ u cðnÞ; n� 0 (47)

is considered, where uc(n) is a zero-mean white noise process

with covariance matrix Q ucðnÞ and uncorre-lated with vðnÞ. In

addition, the initial state c(0) is assumed to be a random vector

that has mean m0,c and covariance P0,c and is uncorrelated with

vðnÞ and uc(n). In our implementation of the recursive nonlinear

filtering algorithm, m0,c is defined by joining the vectors m0,a

and m0,h described in Section 2.2.1 and the matrix P0,c is taken

as the identity matrix. In our estimation problem, the matrices

Q ucðnÞ and s2
vðnÞ are not known and need to be estimated.

2.2.2.2. Regularization. The regularization procedure is ana-

logous to the one described in Section 2.2.1, but now the

nonlinear measurement equation is augmented considering the

following definitions: w(n) = 0, R v0 ðnÞ ¼ I and F(n) the

(N � 1) � Lc linear operator with associate matrix having 0-

value in the first P + 1 columns (those corresponding to the

nonlinearity coefficients) and containing the matrix D1(n)

defined in Section 2.2.1 in the last N columns (corresponding to

the filter weights):

FðnÞ ¼ bðnÞ½0 D 1ðnÞ�: (48)

The new measurement equation is expressed as

ỹ QTðnÞ ¼ f̃ðx RRðnÞ; cðnÞÞ þ ṽðnÞ; (49)

where

f̃ðx RRðnÞ; cðnÞÞ ¼ f ðx RRðnÞ; cðnÞÞ
FðnÞ cðnÞ

� �
: (50)

2.2.2.3. Unscented Kalman Filter. The nonlinear procedure

used to solve the state-space problem (see (47) and (49)) is

based on the Unscented Kalman Filter (see Appendix B).

Unlike the more commonly used Extended Kalman Filter

(EKF), which replaces nonlinear functionals with their first

order Taylor approximations, the UKF maintains the exact

nonlinearities and approximates the posterior distributions by

gaussians [17]. Those approximations are performed by

generating a set of deterministically chosen points called

sigma points, which capture the true mean and covariance of the

random state vector. When the sigma points are propagated

through the nonlinear function, they produce a new set of points

that can be used to estimate the mean and covariance of the

nonlinearly transformed vector.

Based on that concept, the UKF can be described as a

recursive minimum mean-square error (MMSE) estimator that

performs three basic operations during each of its iterations;

namely, computation of sigma points, time-update (i.e.,

projection in time of the actual estimates to get a priori estimates

for the next step), and measurement-update (i.e., correction of the

a priori estimates by using the observed output).

In our study, where the process equation is assumed to be

linear and the measurement equation is described by the

nonlinear function f̃, the Unscented Kalman Filter is accurate

to the third order in the case where the prior state distribution

and the process and measurement errors are gaussian, or at least

to the second order if they are non-gaussian [17]. Consequently,

the UKF achieves higher accuracy than the first-order EKF.

That improvement is not at the expense of more computational

demand, which is of the same order than that of the EKF, and

furthermore, the UKF is more widely applicable than the EKF

because it does not require the computation of derivatives with

respect to the state variables and, consequently, it can be

applied for non-differentiable functions.

In this study, the UKF is used to solve the nonlinear state-

space problem previously formulated and an estimate ĉðnÞ of

the time-varying state vector c(n) is obtained.

2.2.2.4. Estimation of noise covariances. On-line estimation

of the matrix Q ucðnÞ and the scalar s2
vðnÞ is performed

following the same method used in the VL–KF approach and, in

this case, it is integrated into the UKF algorithm.

2.2.2.5. Constrained solution. The constrained UKF esti-

mates are derived in a manner analogous to the one used in the

VL–KF approach, with the only difference found in the

definition of the constraint surface Vc. The constrained solution
ˆ̂cðnÞ is forced to comply with: ˆ̂cPþ1ðnÞ� 0; . . . ; ˆ̂cPþNðnÞ� 0

and ˆ̂cPþ1ðnÞ þ . . .þ ˆ̂cPþNðnÞ ¼ 1:

ˆ̂cðnÞ ¼ arg min

c
^
ðnÞ 2Vc

fðc‘ ðnÞ � ĉðnÞÞ
T

Wðc‘ ðnÞ � ĉðnÞÞg; (51)

where W is any Lc � Lc symmetric positive definite weighting

matrix. The solution to the problem provides the desired

constrained state estimate ˆ̂cðnÞ, which will be used in forth-

coming iterations of the adaptive filter. To simplify the notation,
ˆ̂cðnÞ is replaced with ĉðnÞ.

3. Data

3.1. Simulated data

To assess the performance of the two adaptive procedures

proposed in this study, simulations were performed under

different scenarios. In all of the simulation cases, a real RR

series from the population that will be described in Section 3.2

was considered as input signal. To perform the simulations,

repetition of three times the RR series was performed to be able

to set the length of the input signal at NT = 15,000 samples.

The values of the system parameters h(n) and a(n) were

established and the corresponding output signals were

generated, including the addition of white gaussian noise

(w.g.n.) with an SNR of 20 dB. Those input and output signals

constitute all of the information provided to the algorithm,

which tries to estimate the actual parameter values.
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In the first type of simulation (type I), the system parameters

h(n) and a(n) are considered to be time-invariant:

– for the first simulation test I.1, a linear filter with impulse

response h(n) = [0.5714 0.2857 0.1429]T and a first-order

Taylor polynomial with coefficients a(n) = [0.3 0.12]T are

considered,

– a second simulation test I.2 is performed using the same time-

invariant impulse response as in I.1 and time-invariant

coefficient vector a(n) containing the coefficients of a

quadratic nonlinear function: a(n) = [0.3 0.12 �0.08]T.

The same type of simulation using nonlinear functionals of

order higher than two was not pursued in this study because first

and second-order nonlinearities are sufficient for application to

the analysis of repolarization adaptation.

In the second type of simulation (type II), the linear filter

h(n) is considered to be time-variant, while the nonlinearity

coefficients remain time-invariant:

– for simulation test II.1, vector a(n) is taken as a(n) = [0.3

0.12]T, while vector h(n) is defined as a normalized

decreasing exponential of factor a(n), with a(n) generated

from a Markov model of the form a(n + 1) = a(n) + ua(n),

where ua(n) is zero-mean w.g.n. with variance s2
aðnÞ;

saðnÞ ¼ 10�3, and the initial value is taken to be a(0) = 0.5,

– simulation test II.2 is elaborated on the same basis as test II.1,

except that a second-order Taylor polynomial, a(n) = [0.3

0.12 �0.08]T, is used.

The third type of simulation (type III) deals with the more

general case in which both the linear and nonlinear portions of

the global system are time-variant. The components of the

vectors a(n) and h(n) are built up from Markov models

considering

– a time-varying first-order nonlinearity in test III.1,

– a time-varying second-order nonlinearity in test III.2.

In this third type, the covariance matrix of zero-mean w.g.n.

ua(n) in equation a(n + 1) = a(n) + ua(n) is defined as s2
aðnÞI,

with sa = 10�3, and the initial vector a(0) is defined as in tests

II.1 and II.2, respectively.

3.2. Real data

This study evaluated ECG recordings obtained from 33

healthy subjects during controlled postural manoeuvring.

Continuous 12-lead electrocardiograms, sampled at 500 Hz,

were recorded while subjects were changing their posture from

supine to sitting, from sitting to standing, . . ., which resulted in

substantial and, frequently, very abrupt changes in heart rate.

Those types of recordings provided us with a very useful

resource for analyzing the mode of adaptation of the QT

interval and the Ta index to accelerations and decelerations in

heart rate. The durations of the recordings varied from 50 min

to 2 h.

For each ECG recording, the lead that had the greatest

signal-to-noise ratio was identified. On that lead, RR and QT

intervals, as well as T wave amplitudes, were measured using

the automatic wavelet transform-based delineation system

described in [19], which was previously validated using

annotated standard databases. To remove potential outliers

from the obtained RR, QT, and Ta series, a procedure that uses a

Median Absolute Deviation (MAD) filter [20] was applied.

Subsequently, the clean series were interpolated linearly at a

sampling frequency of 1 Hz and low-pass filtered with a cutoff

frequency of 0.05 Hz to avoid the sympathetic and parasympa-

thetic variability influences of the Autonomic Nervous System.

4. Performance measures

4.1. Parameter estimation evaluation

The performance of the two proposed algorithms described

in Section 2.2 is evaluated for the problem of estimating h(n)

and a(n). For that purpose, a number Nrea = 50 of Monte Carlo

runs are considered for each simulation test. In each run,

different realizations of the noise vðnÞ and of the system vectors

h(n) and a(n) are generated (except for those tests where h(n)

and a(n) are deterministic). Let ĥ ð jÞðnÞ denote the estimate of

the actual vector h(j)(n) at the j-th Monte Carlo run, j = 1, . . .,
Nrea. Analogously, let â ð jÞðnÞ denote the estimate of a( j)(n). The

estimation errors are denoted by eð jÞh ðnÞ ¼ h ð jÞðnÞ � ĥ ð jÞðnÞ
and eð jÞa ðnÞ ¼ a ð jÞðnÞ � â ð jÞðnÞ.

A measure of the algorithmic performance is given by the root

mean square (RMS) of the estimation errors, both in the

estimation of the filter weights and the nonlinearity coefficients:

rf dehiðnÞg ¼
�

1

Nrea

XNrea

j¼1

ðeð jÞhi
ðnÞÞ

2
�1=2

; i ¼ 0; . . . ;N � 1;

(52)

rf deak
ðnÞg ¼

�
1

Nrea

XNrea

j¼1

ðeð jÞak
ðnÞÞ2

�1=2

; k ¼ 0; . . . ;P: (53)

4.2. Adaptation markers

To provide insights into the QT/RR and Ta/RR relationships,

the approaches developed in Section 2 were applied to the real

data. Before processing, repetition of three times the RR, QT,

and Ta series was performed and results corresponding to the

last repetition were kept for subsequent analysis. In each

recording, a measurement of the error in the estimation of the

signal at the output of the system is given by the RMS of the

prediction error, which is the difference between the actual

output signal yQT(n) and the estimated output signal ŷQT(n)

(respectively, yTa
ðnÞ and ŷTa

ðnÞ), calculated individually for the

two proposed methodologies and orders P = 1 and 2:

e ¼
�

1

NI

XNI�1

n¼0

ðyQTðnÞ � ŷQTðnÞÞ2
�1=2

; (54)
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where NI is the length of the series yQT(n), which varies from

record to record, and ŷQTðnÞ ¼ gðĥ TðnÞ x RRðnÞ; âðnÞÞ.
Using the ultimate system state estimates, associated with

the selected order and methodology, a quantitative measure-

ment of the time that each of the analyzed repolarization indices

(QT and Ta) needs to adapt to a change in heart rate is defined by

the variable L90(n), which is calculated for each adaptation

profile ĥðnÞ using the exponential model that approximates it.

That quantity generalizes the measurement L90 introduced in

[5] and it is defined to cover 90% of the total adaptation, thus

accounting for the preceding RR intervals which are notably

influential on the corresponding repolarization measurement at

time n. The exponential approximation for ĥðnÞ is of the form

ĥiðnÞ � kðnÞaiðnÞ; i ¼ 0; . . . ;N � 1, and its extension up to a

length N
^
¼ 300 (the same used in [5]) is considered:

h
‘

iðnÞ ¼ k
‘ ðnÞaiðnÞ; i ¼ 0; . . . ;N

‘

� 1; (55)

where k
‘ ðnÞ in (55) is a normalizing constant. Denoting the

cumulative sum by h
‘

iðnÞ ¼
PN

‘

�1
j¼i h

‘

jðnÞ; i ¼ 0; . . . ;N
‘

� 1, and

applying a threshold h = 0.1 to it, it can be readily seen that the

first index i0 for which h
‘

i0ðnÞ< h is:

i0 ¼ ½logaðnÞðhþ aN
‘

ðnÞð1� hÞÞ�: (56)

The measurement L90(n) is defined as the time in seconds

expressed by i0. It can be observed that for 0 < a(n) < 1 and N
‘

large, the expression above can be approximated by:

L90ðnÞ ¼ ½logaðnÞh� ¼
�

ln h

ln aðnÞ

�
; (57)

which depends only on the factor a(n) derived in the estimation

procedure. With this proposed measurement we are able to

quantify, at each instant of the recording, the time required for

the examined index (QT or Ta) to follow an RR change.

In each recording, the values of L90(n) were assessed as a

function of the rate of change (i.e. numerical gradient) in the

RR series, being that rate denoted in the following by l(n).

The function defined by the pairs [l(n), L90(n)] was afterward

linearly interpolated so as to have the adaptation time L90(n)

calculated for specific values of the rate of change in RR.

This facilitates the comparison of recordings and allows their

averaging.

5. Results

5.1. Simulation results

For the estimation process in the simulation tests, the

orders of the filter and the nonlinear function were not known

a priori and were set to N = 5 and P = 1, respectively, for the

estimation in test I.1. The two algorithms (VL–KF and N-

UKF) correctly identified the order of the actual linear filter,

and generated fourth and fifth weight values that were very

close to zero. The estimated values of the first three weights

in ĥðnÞ and of the nonlinearity coefficients in âðnÞ
successfully approximated their theoretical counterparts,

which led to the small error measurements rf dehðnÞg and

rf deaðnÞg presented in Fig. 2, using dotted green line for VL–

KF and dotted magenta line for N-UKF. As it can be seen

from Fig. 2, rf dehðnÞg takes values that are, in mean along

time, always below 0.026 n.u. for any of the two

methodologies. The values of rf deaðnÞg are in mean below

0.001 n.u. The estimation process for test I.2 was performed

Fig. 2. In (a), (b) and (c), root mean square of the estimation errors eh0
ðnÞ; eh1

ðnÞ; and eh2
ðnÞ, respectively, are presented for tests I.1 (dotted line), II.1 (dashed line)

and III.1 (solid line). Panels (d) and (e) show results corresponding to ea0
ðnÞ; and ea1

ðnÞ, respectively. In each graphic, green line is associated to the VL–KF

methodology, while magenta line corresponds to N-UKF. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

the article.)
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using the same orders N and P than those used to simulate.

That is also applicable to all of the subsequent tests. In test

I.2, the high coincidence between the converged estimated

values and the actual values is shown in Fig. 3 using the same

line format as in test I.1. In this case, the mean values of

rf dehðnÞg and rf deaðnÞg are always inferior to 0.022 and

0.004 n.u., respectively.

In test II.1, the two proposed estimation procedures were able

to track the temporal variations in the simulated weights and led

to a quick convergence in the approximation of the nonlinearity

coefficients, which is illustrated in Fig. 2 using dashed green line

for the VL–KF methodology and dashed magenta line for

N-UKF. The results from test II.2 are shown in Fig. 3. The mean

of the errors rf dehðnÞg and rf deaðnÞg in test II.1 is below

0.031 and 0.001 n.u., respectively, for any of the two tested

methodologies. For test II.2, they are below 0.033 and 0.004 n.u.

The outcomes from the third type of simulation are depicted

in Fig. 2 for test III.1 and in Fig. 3 for test III.2. In this case

errors are larger than in the other two previous types of

simulation, with the mean of rf dehðnÞg and rf deaðnÞg upper

bounded by 0.028 and 0.004 n.u., respectively, in test III.1, and

by 0.027 and 0.009 n.u. in test III.2.

The simulation analysis demonstrated that the two

approaches (VL–KF and N-UKF) had minimal differences in

the estimation and they produced very good agreement between

simulated and estimated quantities. For cases where the order of

the Taylor polynomial is P = 1, any choice is appropriate and

the VL–KF methodology is suggested for performing the

estimation. When the order P of the nonlinearity is two or

higher and the order N of the linear filter is large, the number of

parameters to be estimated using the VL–KF procedure

increases substantially and, in those cases, the N-UKF is

suggested as more convenient.

5.2. ECG analysis

When the procedures developed in our study are used to

investigate the mode of adaptation of QT and Ta to changes in

heart rate on a beat-to-beat basis, the effect of the nonlinearity

order (P = 1 or 2) is, first of all, analyzed. According to the

simulation results presented in Section 5.1, the methodology

used for the case P = 1 is VL–KF, while N-UKF is used when

P = 2. In each recording, the root mean square error given in

(54) is evaluated for both orders. In the case of the QT

interval, the two order cases (P = 1 and 2) had minor

differences that were always below 1 ms (around 1.5% of the

total QT variation) for all of the analyzed recordings and all of

the tested filter lengths (N = 1, 3, 5, 10, 15, 20, 50).

Furthermore, the interpretation of the findings in terms of

weight distributions is totally equivalent in both order cases.

Consequently, it can be concluded that the relationship

between QT and RR is adequately modeled by a time-varying

first-order Taylor polynomial and, therefore, the interpreta-

tion of the nonlinearity evolution is accomplished in terms of

the intercept and the slope, only. In that case, the VL–KF

approach is justified because P = 1 is used. However, when

the analogous study is performed for the Ta index, greater

differences in the prediction error are found between the cases

P = 1 and 2. In particular, for over one third of the recordings,

differences of more than 30 mV (around 10% of the total Ta

variation) could be found in favour of P = 2 versus P = 1. This

implies that, for modeling the relationship between Ta and

RR, a second-order nonlinearity is more suitable than a first-

order one. Consequently, the N-UKF approach is used, since

the order P = 2 has been selected.

Once the nonlinearity order was set to P = 1 for QT and

P = 2 for Ta, the order N of the linear portion had to be

Fig. 3. In (a), (b) and (c), root mean square of the estimation errors eh0
ðnÞ; eh1

ðnÞ; and eh2
ðnÞ, respectively, are presented for tests I.2 (dotted line), II.2 (dashed

line) and III.2 (solid line). Panels (d), (e) and (f) show results corresponding to ea0
ðnÞ; ea1

ðnÞ; and ea2
ðnÞ, respectively. In each graphic, green line is associated

to the VL–KF methodology, while magenta line corresponds to N-UKF. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of the article.)
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identified. As expected, when N was increased, the RMS of the

prediction error, e, was diminished. On the other hand, it was

demonstrated in [5] that, from a clinical perspective, the initial

50 preceding RR intervals are the most relevant in the analysis

of QT/RR adaptation. Therefore, in this study, the value N = 50

was established and it was corroborated that the error e
associated with that value was below 25% of the preliminary

error calculated with N = 1 (when the RR memory effect is not

taken into account) in more than 80% of the recordings, for the

analysis of the QT interval. In the case of the Ta index, the error

decreased to 60% of its initial value (with N = 1) for the last

tested N value (N = 50), with the observation that, in this case,

low values of N (up to N = 15) already contribute to substantial

error decrease.

An example of how the proposed procedure can be used to

assess dynamically the relationship between the QT and RR

intervals is presented next. Fig. 4(a) and (b) contain the RR and

QT interval series corresponding to one of the recordings

analyzed in the study. The beat-to-beat evolution of the linear

filter weights is shown in Fig. 4(c) and (d) for a linear filter of

length N = 50. Panel 4(c) shows the summed contribution of the

first 10 weights (i.e., those associated with the most recent RR

intervals, which are expected to most strongly influence each

QT measurement), and panel 4(d) shows the contribution of the

remaining weights up to the order of the linear filter. The

relative contribution of the first RR intervals compared to that

of more distant RR intervals can be evaluated along the

recording and differences in the QT adaptation for segments of

steady and non-steady heart rate can be assessed. It can be

observed that distant RR intervals are more influential during

periods of change in HR. The progression of the nonlinearity

coefficients calculated from the same recording is shown in

Fig. 4(e) and (f). Variations in â1(n) reflect how the QT=RR

relationship becomes more/less steep after decelerations/

accelerations in heart rate. Analogously, the relationship

between Ta and RR was investigated. In this case a delay

effect in the adaptation to HR changes could also be observed,

even though less marked than for QT. However, no significant

differences in the adaptation of Ta to marked HR changes as

compared to stable periods could be found. As for the

nonlinearity coefficients, their visualization reveals that â1(n)

and â2(n) are as well noticeably altered after rate changes.

It is of particular interest to analyze the QT/RR relation-

ship in the presence of a very abrupt change in HR. We

selected an excerpt from the recording of Fig. 4 that presents

this characteristic. The corresponding excerpts of RR and QT

Fig. 4. In (a) and (b), the RR and QT interval series for one of the recordings

analyzed in the study are plotted. In (c) and (d), the temporal evolution of the

linear filter weights identified for the series presented in (a) and (b) is illustrated.

Specifically, panel (c) shows the contribution of the first 10 weights of the linear

subsystem, and panel (d) contains the contribution of the remaining weights up

to the order of the linear FIR filter, which was set to 50 in this study. In (e) and

(f), the temporal evolution of the nonlinearity coefficients identified for the

series in (a) and (b) is presented.

Fig. 5. A segment of Fig. 4 illustrating a marked change in heart rate was

selected and the corresponding RR and QT interval series are plotted in (a) and

(b). Circles indicate points selected for subsequent analysis. Panel (c) shows the

time for QT adaptation measured by the variable L90 (defined in Section 4.2) for

the selected segment, together with the optimum QT/RR adaptation profiles

extracted at time instants indicated with circles in panel (c).
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interval series are plotted in Fig. 5(a) and (b), and segments of

stable, decelerating, and accelerating heart rate are evident.

From that excerpt, a plot of the QT adaptation time measured

at each time instant by the marker L90(n) described in Section

4.2 is presented in Fig. 5(c). The QT lag after the decelerating

rate change is around 1.5 min for that particular recording.

The adaptation profiles ĥðnÞ of representative instants of the

excerpt are plotted in the same figure. Those adaptation

profiles ĥðnÞ permit the visualization of the dependence of

QT on RR intervals previous to the immediately preceding

interval. Each adaptation profile is plotted as a function of the

weight index i, where i is varied from N � 1 to 0 for ease of

interpretation.

The qualitative results presented for a given subject of the

database can be quantified for all of the recordings by

representing the interpolated L90(n) calculated at specific

values of l(n). Graphics obtained for individual recordings

were very similar in shape and scale, and, consequently, the

average of all of them is considered as representative. The mean

pairs [l(n), L90(n)] are shown as ‘+’ in Fig. 6(a) (for the QT

interval) and Fig. 6(b) (for Ta). A line fitting those pairs is

represented as well to facilitate interpretation of the results.

From Fig. 6(a) it can be concluded that the larger the changes in

RR, the longer is the time required by the QT interval to follow

those changes. Specifically, for RR variations of magnitude

l(n) = 0.008 n.u., it takes QT nearly 1 min to complete its

adaptation. The observation that L90(n) increases as a function

of the absolute rate of change in RR (i.e. jl(n)j) is valid both for

heart rate accelerations and heart rate decelerations. Regarding

the Ta index, the results point out in the same direction as for the

QT interval. However, the effect is less manifested than for QT,

being in this case the adaptation times at extreme RR variations

always below 30 s.

6. Discussion

In this study two procedures were proposed for identification

of a time-varying nonlinear system with memory operating

under nonstationary conditions, which models the time-varying

relationship between a repolarization index (QT or Ta) and the

RR interval. To determine which of the procedures, described in

Sections 2.2.1 and 2.2.2, is most appropriate for solving the

identification problem, simulations were run in a realistic

scenario and algorithmic performances were evaluated using

the criterion of minimum root mean square of the estimation

errors. For the simulations, orders P = 1 and 2 of the nonlinear

subsystem were tested because they are sufficient plausible

values for modeling the QT/RR and Ta/RR relationships within

a small vicinity of a given RR value [5,22]. In all of the

simulations, the length N of the linear filter was considered to

be three because this allowed the representation of all of the

estimated quantities and the visual assessment of the tracking

performance of the algorithms. When simulations were run for

larger values of N, slightly greater error values occurred, but the

same conclusions on the algorithmic performance could be

drawn. Based on our chosen figure of merit (i.e., the root mean

square), when the order P of the polynomial is one, the method

that uses linearization through Volterra expansion and

subsequent estimation using the Kalman Filter (VL–KF)

provided estimates that were practically equal to those rendered

by the method that deals directly with the nonlinear estimation

using the Unscented Kalman Filter (N-UKF). For situations in

which the order of the polynomial is two (or higher), and the

number of weights of the linear filter is great, the linearized

procedure is not feasible because the total number of

parameters to be estimated increases very substantially and,

accordingly, the nonlinearized procedure N-UKF is recom-

mended. According to our simulation results, the N-UKF

provides as accurate estimates as VL–KF in that case.

When the proposed procedures were used to analyze the QT

interval adaptation in response to changes in HR and

nonlinearity orders P = 1 and 2 were compared, the differences

were insignificant, which indicates that practically no

improvement is achieved when quadratic nonlinearities are

considered. In light of that, the VL–KF approach with a value

for P equal to 1 is selected. Although the results obtained for

P = 1 and 2 are very similar, that does not imply that the

½QT; RR� data of the entire recording are fitted adequately by a

linear regression model because, in this study, the nonlinearity

g(�) is considered to be time-varying and, consequently, it

models the ½QTðnÞ; RRðnÞ� data pairs in a neighbourhood of

each averaged RR measurement. Moreover, even considering

the nonlinearity behaviour in a small neighbourhood of each

point, only, it is not a priori assumed that P = 1 is appropriate

Fig. 6. In (a), the adaptation time L90 required by QT to follow RR is presented as a function of the rate of change l in the RR series. The pairs [l, L90], shown as ‘+’,

are obtained after interpolation and subsequent averaging over recordings (see text for details). Lines fitting those pairs, both for heart rate accelerations and

decelerations, are presented as well. In (b) analogous results are shown for the Ta index.
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but it is concluded from the results. On the other hand,

investigation of Ta adaptation to heart rate revealed more

substantial differences between the orders P = 1 and 2,

confirming that a first-order Taylor polynomial is insufficient

to describe the Ta dependence on RR. The above discussed

results as well as all the other results described in the present

study were obtained considering that the RR, QT and Ta series

were sampled at a frequency of 1 Hz. Even this sampling

frequency may seem to be too low, additional studies carried

out using higher sampling frequencies revealed minor

differences in the outcome of the identification algorithm that,

accordingly, led to the same interpretation of the results.

In the analysis of the relationship between the QT and RR

intervals, it is reasonable to speculate that the dependence of

QTon heart rate can have different characteristics depending on

whether the recording segment being analyzed corresponds to a

period when HR is stable or, conversely, when there are abrupt

variations in HR. The recordings used in this study were

obtained from subjects performing a protocol of body postural

changes; therefore, at certain time instants the RR signal

exhibits marked changes to which the QT reacts, but not

instantaneously. When that QT response is investigated using

the method that we have proposed, the contribution of the most

recent RR intervals, relative to that of more distant RR

intervals, tends to decrease after the occurrence of a sudden and

marked change in HR. The variable L90(n) that measures the QT

adaptation time is able to reflect that effect, as reported in

Section 5.2, where it was shown that the larger the magnitude of

RR change, the longer is the time needed by the QT interval to

adapt to it, with QT lags found after abrupt HR changes being

close to 1 min. The results of this study are consistent with the

findings in [23] regarding pacing rate and those in [5] for 24-h

ambulatory recordings, with the difference that the adaptation

times measured on young healthy subjects are substantially

smaller than those found on post-MI patients (approximately

2.5 min) [5] or in patients with complete heart block (up to

3 min) [23]. The method proposed here has the advantage of

being able to dynamically provide an estimate of the adaptation

time along the recording period. In the case of the Ta index, the

adaptation lag is somewhat less pronounced, as reflected by the

results given in Section 5.2, and it remains more constant along

the recording period.

In addition, information can be extracted from the

coefficients of the nonlinearity relating QT and RR in the

proposed model. When there is a sudden deceleration in rate,

the slope increases initially, while a sudden acceleration in HR

is followed by an instantaneous decrease in the slope values

(see Fig. 4(f)). Similar conclusions are extracted for the

nonlinear function relating Ta and RR.

7. Conclusions

This study presents and validates a new methodology to

dynamically assess adaptation of repolarization to RR

changes, accounting for the effect of hysteresis. Over real

ECG recordings of healthy subjects, it is demonstrated that

the time needed by the QT interval to follow RR changes

increases as a function of the RR variation rate. The response

of the T wave amplitude (Ta) to RR changes is shown to be

substantially faster than that of QT. Also, while the Ta/RR

relationship is proved to be locally quadratic, the QT/RR

relationship is found to be well approximated by a linear

polynomial. Since previous clinical studies have pointed out a

close link between the repolarization response and the risk of

suffering from arrhythmic death, we suggest that the proposed

methodology can be applied to improve risk stratification, and

in particular to assess the efficacy of treatment with

antiarrhythmic drugs.
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Appendix A

For the linear state-space model described in Section 2.2.1

that has additive process and measurement noises, the

following notations are introduced:

m̂ �ðnÞ and m̂ðnÞ are the a priori and a posteriori,

respectively, state estimates at time n.

eS(n) and e(n) are the a priori and a posteriori, respectively,

estimate errors at time n:

e �ðnÞ ¼ mðnÞ � m̂ �ðnÞ; eðnÞ ¼ mðnÞ � m̂ðnÞ:
P�(n) and P(n) are the a priori and a posteriori, respectively,

estimate error covariances at time n:

P �ðnÞ ¼ Efe �ðnÞ e �ðnÞTg; PðnÞ ¼ EfeðnÞ eðnÞTg:
K(n) is the Kalman gain defined as KðnÞ ¼ P mỹðnÞP�1

ỹỹ ðnÞ,
with

P mỹðnÞ ¼ Efðm ðnÞ � m̂ �ðnÞÞð ỹ QTðnÞ � ˆ̃y
�
QTðnÞÞ

Tg;
P ỹỹðnÞ ¼ Efð ỹ QTðnÞ � ˆ̃y

�
QTðnÞÞðỹQTðnÞ � ˆ̃y

�
QTðnÞÞ

Tg;
ˆ̃y
�
QTðnÞ ¼ S̃ TðnÞ m̂ �ðnÞ:

The equations of the Kalman Filter can be summarized

as

(i) Initialize with:

m̂ð0Þ ¼ Efmð0Þg ¼ m0;m;

Pð0Þ ¼ Efðmð0Þ � m̂ð0ÞÞðmð0Þ � m̂ð0ÞÞTg ¼ P0;m:

(ii) For n = 0, 1, . . ., compute:

– Time-update:

m̂ �ðnþ 1Þ ¼ m̂ ðnÞ; P �ðnþ 1Þ ¼ P ðnÞ þQ um
ðnÞ;

ˆ̃y
�
QTðnþ 1Þ ¼ S̃ Tðnþ 1Þm̂�ðnþ 1Þ:
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– Measurement-update

Appendix B

For the nonlinear state-space model described in Section

2.2.2 that has additive process and measurement noises,

definitions of ĉ �ðnÞ; ĉðnÞ; e �ðnÞ; eðnÞ; P �ðnÞ; PðnÞ and K(n)

are introduced that are analogous to those in Appendix A,

except m(n) is replaced by c(n).

Equations of the Unscented Kalman Filter can be

summarized as follows:

(i) Initialize with:

ĉð0Þ ¼ Efcð0Þg ¼ m 0;c;

Pð0Þ ¼ Efðcð0Þ � ĉð0ÞÞðcð0Þ � ĉð0ÞÞTg ¼ P0;c:

(ii) Define

aF = positive scaling parameter indicative of the spread

of the sigma points around the mean value of c(n).

bF = non-negative weighting parameter used to

incorporate prior knowledge of the distribution of

c(n).

kF = secondary scaling parameter �0 to guarantee

positive semidefiniteness of covariance matrices.

z ¼ a2
FðLc þ kFÞ � Lc. In this study, aF = 0.5, bF = 0

and kF = 0 are chosen.

Evaluate vectors w ðmÞ and w ðcÞ, both of dimension

1 � 2Lc, containing the following weighting factors to be

used in the iterative procedure:

w
ðmÞ
0 ¼ z

Lc þ z
; w

ðcÞ
0 ¼

z

Lc þ z
þ ð1� a2

F þ bFÞ;

w
ðmÞ
j ¼ w

ðcÞ
j ¼

1

2ðLc þ zÞ ; j ¼ 1; 2; . . . ; 2Lc:

(iii) Compute for n = 0, 1, . . .:

– Sigma points:

x0ðnÞ ¼ ĉ ðnÞ; x jðnÞ ¼ ĉ ðnÞ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLc þ zÞP ðnÞ

p
Þ j;

j ¼ 1; . . . ; Lc;

x jðnÞ ¼ ĉ ðnÞ � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLc þ zÞP ðnÞ

p
Þ j�Lc

;

j ¼ Lc þ 1; . . . ; 2Lc;

where ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLc þ zÞPðnÞ

p
Þ j denotes the j-th column of the

matrix square root.

– Time-update

x j
�ðnþ 1Þ ¼ x jðnÞ; j ¼ 0; . . . ; 2Lc;

ĉ�ðnþ 1Þ ¼ ĉðnÞ; P�ðnþ 1Þ ¼ PðnÞ þ Quc
ðnÞ;

u j
�ðnþ 1Þ ¼ f̄ðxRRðnÞ; x j

�ðnþ 1ÞÞ; j ¼ 0; . . . ; 2Lc;

ˆ̄yQT
�ðnþ 1Þ ¼

X2Lc

j¼0

w j
ðmÞu j

�ðnþ 1Þ:

– Measurement-update
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