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Abstract—In order to develop a robust man-machine in- of two techniques: augMented stAte space acousTic modEl
terface based on speech for cars, the speaker variability and (MATE), which compensates, by adapting the acoustic mod-
the acoustic environment effects have to be compensated. In g|g the rotation effect, and Multi-Environment Model based
this work, an on-Ilne feature and acoustic model compensation Linear Normalization (MEMLIN), which is a feature vector
(MATE-MEMLIN) is proposed to compensate the speaker N . o ;
variability and the acoustic car environment. MATE-MEMLIN ~ normalization technique that obtains important improvements
consists on the combination of the techniques augMented compensating the translations.

StAte space acousTic modEl (MATE) and Multi-Environment The speaker variability problem has been addressed by
Model based Linear Normalization (MEMLIN). MATE defines many authors, specially in the sense of compensation of
expanded acoustic models to compensate the speaker frequency
variability using data driven estimated linear transformations. vocal tract Sh_apg by means of the well k_nown Vc_JcaI_ Length
On the other hand, MEMLIN, an empirical feature vector ~ Tract Normalization (VLTN) [1] and Maximum Likelihood
normalization technique, was also presented and it was proved Linear Regression (MLLR) methods [2]. Those methods still
to be effective to compensate environment mismatch. Some have limitations in order to adapt the acoustic models to the
experiments with Spanish SpeechDat Car database were car- speaker. Usually a great amount of speaker data and exact
ried out in order to study the performance of the proposed - . -
technique in a real car environment, reaching an important transcriptions or previous uttergnces and ASR trahscrlptlons
mean improvement in Word Error Rate, WER. are needed. In this research line, MATE [3] consists of an
expansion of the VTLN methods that provides the spectral
I. INTRODUCTION warping to be locally optimized and simultaneously to the

Since cars are more and more considered as busingistoding of the state sequence. MATE obtains expanded
offices, drivers need a safe way to communicate and interatoustic models from reference ones using linear transfor-
with either other human or machines. For safety reasomations and it was proved to be effective in noise free or
traditional visual and tactile man-machine interfaces, such asoderately noisy speech conditions [3], [4]. However the
displays, buttons and knobs are not satisfactory but speecltcuracy of a speech recognition system based on MATE
as the most convenient and natural way of communicat@ith noisy signal rapidly degrades. To compensate this
is an appropriate and complementary solution which calimitation, robustness techniques can be used.
reduce distractions. Hence, Automatic Speech RecognitionMEMLIN [5] is an effective empirical feature vector
(ASR) provides safety and convenience, and it is possible iibrmalization technique which compensates the effects of
follow the philosophy “Eyes on the road and hands on theynamic and adverse acoustic environments. MEMLIN is
steering wheel”, which should drive every in-vehicle systempased on Minimum Mean Square Error (MMSE) estimator,
design. The problem of robust ASR in car environments hamnd models clean and noisy spaces assuming Gaussian
attracted much attention in the recent years and a new markg@ixture Models (GMMs). A bias vector transformation for
demands for systems which allow the driver to control noeach pair of Gaussians from the clean and the noisy spaces
critical devices or tasks like phone dialing, RDs-tuner, aifs defined to compensate the mismatch between clean and
conditioner, satellite navigation systems, remote informationoisy feature vectors.

Web browsing... For this purpose, hands-free interaction in This paper is organized as follows: In Section I, a novel
challenging acoustic environments still needs to be improvgsbint of view of MATE analysis is explained. In Section IlI
with respect to several kinds of variabilities. an overview of MEMLIN is detailed. The MATE-MEMLIN

ASR system performance can be degraded by two inagorithm is presented in Section IV. The normalized space
portant factors: the speaker variability and the acoustigcoustic models are explained in Section V. The results with
environment. It can be assumed that the speaker variabili§panish SpeechDat Car database [6] are included in Section
produces, mainly, a rotation of the feature vectors, whilg|, and finally, the conclusions are presented in Section VII.
the acoustic environment generates mainly a translation of
the feature vectors. In this work we propose a combination Il. MATE
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and articulatory instant shapes. A more complex and flex-
ible speech production scheme can be assumed, in which
local elastic deformations of the speech can be captured or
generated by the model by means of linear transformations,
i.e. rotations. Inertia and memory constraints are imposed on
the dynamics of the local transformations, then the plausible
transformation sequence is assumed to follow an HMM

process.

In [7], it was shown that the spectral warping performed
by VTLN methods is equivalent to a linear projection of the
cepstral feature space. So, for a discrete seNopossible
warping factors,a,,, the equivalent MATE transformation
matrices{A,,}_, can be obtained as

Gaussian S,

Gaussian 5,

Clean GMM 5
san Noisy GMM

Clean feature space Noisy feature space

Fig. 1. Scheme of MEMLIN approximations for one basic environment,
o where s, and s, are the index of clean and noisy space Gaussians and
Ve = A, W, Q) rs,.s, is the bias vector transformation associated to the pair of Gaussians
sz andsy.
wheren € [1, N] is the index of the warping facto€W is a
matrix which is composed by the source space data, and the
Ve~ matrix includes the target space data, which is obtained i ¢ luate th d data instead of
from the source space data normalized with VTLN using thg'er?n ﬁzi%enﬁ:a g ?r tevgtuti N er warped data Irt]is en? dol
correspondingy,, warping factor [1]. ormaiizing the data to € Source space acouslic moce

MATE [3] expands each state of the source space acousfig " [1_0]' E_>e5|des, in the new framewor_k t_he covarance Is
models (HMM). So, an original state (¢ € [1,Q]) will normalized in the expanded model description, including the
P d ’ Jacobian normalization in the model [7].
be expandedV times into stategq,n). Thus MATE pro-
vides qbservation generation probability den§ity functiona. MSE Transformation matrix estimation
(pdfs) in the states that depend on the discrete set OfThe rotation MATE matricesA.,, as a general linear

transformapon matricesA.,, embedding the warping 1N yansformation for the feature vectors, provide a great degree
the acoustic model as a general transformation. Assumn%q freedom for the MATE expanded models, including the

that a component |n.th(.e qu mixture of the original Stat(?otation transformations in the mean vectors and covariance
q follows a normal distribution:V (x¢; 114, %), the corre- matrices

sponding expanded state compontent Is assumed to follow), o qer o estimate the rotation matrices,, a linear
the distributionVV (x; A pq, AnEgA.,). So, the pdf for the transformation as (1) is defined and the multidimensional

expanded statéy, n), f(x¢|n, ¢), is a G.MM Gi the deflneq regression Minimum Square Error (MSE) criterion is used in

expanded components where the a priori component Welgr:‘;{‘Q‘previous process with training data. So, a residual error is

remain unaltered. . . defined as the squared sum of differences between the target
The expanded acoustic model, from the perspective _%Ifata,V“n (Dx L) (D is the dimension of the feature vectors

a feature vector generaior, can be seen as a more flex”&'ﬁdL is the number of feature vectors) and the projected

speech production process because it can generate sequentes A w whereW matrix includes the source dat® x
of warped cepstrum vectors. To complete the parametgr —. i

£ h ded del th ded eleh. Taking derivatives with respect t#4,, and equating them
set o _t__e expanded model, the expanded state transiti zero, we obtain the following expression for the estimation
probabilitiesII, are

of A,

,N,Q,N
II = {Trq/ﬂl’,q7n}§=1,?ﬂ=l,q=l,n=17 (2) An — (th)_IW(VQ")t. (4)

being 7y » ¢,» the transition probability from statgy’,n') lIl. MEMLIN OVERVIEW
to (¢,n), which is obtained as [10]. MEMLIN i irical feat ¢ lizati
The search algorithm for decoding unlabeled sequences IS an empirical feature vector normalization

under this framework can be performed by computing rech-eChnlque based on MMSE estimator. It assumes three

sively the score state variable, . (t), for the state(g, n), approximations: the clean feature space is modelled as a

the index of the warping factot and the frame time index mixiure of Gaussians (GMM), the noisy one is split into
' several basic acoustic environments and each one of them is

modelled as a GMM. The third assumption consists on defin-
ing a bias vector transformation associated with each pair of
Pgn (t) = max {@g ns (t = 1) - Ty mr g} f (XeIn,q) . (3) Gaussians from the clean and the noisy basic environment
e spaces. These assumptions can be shown, in a schematic
This recursive expression is very similar to the one conway, in Fig. 1 for one basic environment, where clean and
sidered in [3], being the main difference how the warping imoisy spaces are modelled by GMMs and the corresponding
applied, since now is the expanded acoustic model whidhias vector transformation between a clean space GMM



noisy basic env. 1
Do

component £,) and a noisy space GMM component,)
is depicted asg, ;, . / ;

)
A. MEMLIN approximations P/ nobascen.2 :63
e Clean feature vectors;, are modelled using a GMM WA apencent K@A”Tn?é’,i’ikdi"n?"’ke’
e clean space, speaker
dependent
=D fxelse)p(sa), (5)
Sz |
o= /r’u;isy basic env. 3
f(xt |Sz) = N(Xﬁ Hsy s Esz )? (6) 189" Nosly l_mic e () Gaussian component
Gaussian component '\\\ Clean space, speaker
. _—¥ MEMLIN translation: r, >’ dependent
wherey,,, 3., andp(s,) are the mean vector, the diagonal |-, ciesnspace. speser - 7\ Cloan il paser
. . . . o . \1 Independent
covariance matrix, and the a priori probability associated | demnmeds, spester Y WATE Rotston: 4
with the clean model Gaussiag. ——Independent
¢ Noisy space is split into several basic environmeats, Fig. 2. Scheme of MATE-MEMLIN performance.

and the noisy feature vectorg,, are modeled as a GMM
for each basic environment

IV. MATE-MEMLIN

- Zf(Yt|S;)p(5§), ) In order to provide robustness to MATE in adverse
/ acoustic conditions, MATE-MEMLIN combines MATE with
MEMLIN. So, the MEMLIN normalize feature vectors are
f(yelsy) = N(yt;usg,zsg), (8) decoded using MATE-MEMLIN expanded acoustic models.
Since the rotation matrices can be estimated in a data driven
where s; denotes the corresponding Gaussian of the noisjay and MEMLIN maps the different basic environment
model for thee basic environmenty., ¥,. andp(sj) are  data towards only one space, the corresponding matrices
the mean vector, the diagonal covariance matrix, and thefér MATE-MEMLIN can be adapted to the specific problem
priori probability associated withy . without considering any environment dependence (see Fig.
e Clean feature vectors can be approximated as a linegy. In the left part of the Fig. 2, the MEMLIN normalization
function of the noisy feature vectors, which depends on thig depicted and the speaker noisy data are mapped to a clean
basic environment and the clean and noisy model Gaussiagpeaker dependent space. The MATE effect is presented on
x ~ U(yt, 8z, 8)) = Yt —Ts,, 85 wherery_ s¢ is a bias vector the right part of the figure, where the clean independent
transformation between noisy and clean feature vectors fgpeaker acoustic models are adapted to the optidg)) (

each pair of Gaussians, and ;. speaker dependent space. This acoustic model eleatigh (
is obtained frame by frame in the search algorithm by
B. MEMLIN enhancement maximum likelihood (3).

As it has been described in Section Il, the MATE rotation
matrices obtained with the MSE linear regression criterion
need matched source and target data. In this work it is
assumed available stereo training data for each basic envi-

_ e ronmente, (X% Y®) = {(x{,y¥9),.-- (x5, ¥¢)---, (X7, ¥5) },
=y 2 2 FeagPlelyp(sy lye p(selyes e, )), where X® re(zpresenzs thi(clleari)feat(urte vte)ctor(s for t:a)e} basic
(9) environmente, andY* the corresponding noisy ones (these
where p(ely,) is the a posteriori probability of the basic Stereo data are also needed to obtain the bias vector trans-
environmente; p(s¢ly:,e) is the a posteriori probability formations and the cross-probability models for MEMLIN
of the noisy model Gaussiast, given the noisy feature [5])-
vector y; and the basic environment Those two terms In the MATE-MEMLIN rotation matrix estimation, the
are computed on-line for each frame applying (7) and (8fource space data abe, which is the concatenation of the
as described in [5]. Finally, the cross-probability modelclean training data for all the basic environments. On the
p(salye, €, 55), is the probability of the clean model Gaussiarpther hand, the target space data are obtained with noisy
Sas given the n0|sy feature vectgt, the basic environmeiat dataY for all the basic environments, including rotation and
and the noisy model Gaussiaf). That term, along with the translation compensations as following
bias vector transformation;, ., is estimated in a previous « Noisy warped cepstrum feature vectory'<®~) are
training phase using stereo data [5]. If stereo data is not obtained applying the VTLN rotation [1] to the noisy
available, a “blind” version of the training phase can be training data for all the basic environmerisYe.
applied [9]. « MEMLIN compensation algorithm is applied over

With those approximations, MEMLIN transforms the
MMSE estimation expressio; = E[x|y:], into

e se Sg



TABLE |
WER BASELINE RESULTS IN %, FROM THE DIFFERENT BASIC ENVIRONMENTYEL,..., E7) WHERE MWER IS THE MEAN WER.

Train  Test El E2 E3 E4 ES E6 E7 ‘ MWER (%)

CLK CLK | 095 2.32 0.70 0.25 0.57 0.32 0.00 0.91
CLK HF 3.05 1329 1552 27.32 31.36 35.5663.06 21.48
HF HF 3.81 6.86 3.50 3.76 4.96 4.44 3.06 4.63
Training data are normalized in the same way as testing data and
o the original clean acoustic models are adapted with those
e e ploriess) data towards the new normalized space. If there are enough
data, Maximum Likelihood (ML) algorithm can be used,
Xy but a model adaptation method should be applied otherwise
[,,l . }—’[Eff,i?ﬂf]}'ﬂuon ] ﬂ[?ﬂﬂ‘.ﬂim ]_, 4 (Maximum A Posteriori, MAP [_11], MLLR [2]...). _In this
work, once the MEMLIN normalized space acoustic models
Y : : : are obtained, the normalized testing data can be recognized
P — — — dlrectly with them, or ywth new expandeq MATE-MEMLIN
" }—-[0“ ]%[,l %’ Ay acoustic models. In this case the normalized acoustic models
x ! are expanded with the corresponding MATE transformation
Decoding matrices. In this work, the two options are compared.

e P VI. RESULTS
To compare the performance of the MATE-MEMLIN tech-
nigue in a real, dynamic, and complex car environment, a set
Fig. 3. Scheme of MATE-MEMLIN phases. of experiments were carried out using the Spanish SpeechDat
Car database [6]. Seven basic environments were defined: car
stopped, motor running (E1), town traffic, windows close
Yen obtaining the normalized dat&e» (9). The an_d climati_z_er off (_silent conditions) (E_2), tqwn traffic and
noisy conditions: windows open afmt climatizer on (E3),

target space datX*» are composed by the concatenas-

tion of the normalized data for all basic environments.IOW speed, rough road, and silent conditions (E4), low speed,

i . . - . rough road, and noisy conditions (E5), high speed, good road,
Thus, finally, the rotation matrix estimations, which are : " :
defined as the following linear projectidi® — A, X, are and silent conditions (E6), and high speed, good road, and

Section II noisy conditions (E7).
(see Section II) Two channels of the database, which were recorded si-

g (Gt multaneously (stereo data), were used: a clean signal from
An = (XX)TX(X*) (10) a ClLose talk channel (CLK), which was recorded with
In decoding, the noisy feature vectors are normalized with Shure SM-10A microphone, and a noisy signal from a
MEMLIN algorithm and the normalized data are recognizediands-Free channel (HF), which was recorded using a Peiker
using the MATE-MEMLIN expanded acoustic models withME15/V520-1 microphone located on the ceiling in front of
the transformation matricesA,, (10). A graphical repre- the driver. HF signals were used in recognition tasks.
sentation for the rotation matrix estimation method and the The SNRs (mea#: standard deviation) of the HF channel
recognition process for MATE-MEMLIN can be observed infange from 14.053.89 dB in the E1 basic environment to
Fig. 3. 5.65+4.35 dB in the high speed and good road conditions
Note that the resulting expanded MATE-MEMLIN acous-(E6 and E7 basic environments combined).
tic models are able to locally rotate the frequency axis in The recognition task is isolated and continuous digits
the standard VTLN way, including at the same time théecognition (a typical hands-free phone task). As feature set,
information of how the MEMLIN normalized feature vectorsthe standard ETSI front-end features plus the energy and the

are distributed in the feature space. corresponding delta and delta delta coefficients were used
in all the experiments [12]. Cepstral mean normalization
V. NORMALIZED SPACE ACOUSTIC MODELS is applied to testing and training data in all cases. On

Feature vector normalization techniques try to map théhe other hand, in this work, the VTLN, MEMLIN and
noisy feature vectors to the clean space. However this mapPLICE with environmental model selection [8] (SPLICE
ping is not perfect and a new normalized space is createdS) algorithms were applied to the 12 MFCCs and energy,
which is different to the clean one. So, a further improvemenwhereas the derivatives were computed over the normalized
can be obtained adapting the clean acoustic models towarstatic coefficients. The acoustic models were composed of 16
the normalized space. For this purpose, the noisy trainirgjate HMM for each digit, a 3 state begin-end silence HMM



and an 1 state inter-word silence HMM. In all cases, each %
pdf state is composed by a mixture of three Gaussians.

A. Baseline results

The Word Error Rate (WER) baseline results for each égo.
basic environment are presented in Table |, where MWER

P, (%).
2

is the Mean WER, which is computed proportionally to the & [ S 0

number of words on each basic environment. “Train” column g o " e—"“f‘f ‘‘‘‘‘‘‘‘ o ¢

refers to the signals used to obtain the corresponding acoustic © Jo o

models: if they are trained with all clean training utterances, 870'

the column is marked CLK, and if the column is marked g I3

HF, the acoustic models are trained with all noisy training 2 5 __:_ MQUENEMUN I

utterances. “Test” column indicates the signals which are $ o SPLICE MS

used for recognition: clean, CLK, or noisy, HF. 605 = m = = e =
Table | shows the effect of real car noise, which pro- Number of Gaussians per environment.

duces a significant increase in WER in all of the basic
environments, _(_Traln CLK' Test HF), Conceml_ng the ratel?ig. 4. Mean improvement in WER (MIMP) if, for MATE-MEMLIN,

for clean conditions, (Train CLK, Test CLK). With matchedyemLiN and SPLICE with environmental model selection (SPLICE MS)
conditions: when acoustic models are retrained using athen different number of Gaussians per basic environment are considered.

basic environments, (Train HF, Test HF) MWER decreases

significantly.
the corresponding mean improvement in WER is computed
B. MATE, MEMLIN and MATE-MEMLIN results as
Table 1l shows the MWER when only MATE is applied.
The expanded MATE models are obtained over the ones 100(MWER — MWERcLK—-HF)
trained with “Train” column signals. To compute the trans- MIMP = MWERcLk—cLx — MWERGLK - 1p
formation matrices, the source space is the clean one, and (11)

the target space is obtained with the clean data normalizethere MW ERc 1k _cri IS the mean WER obtained with
with VTLN using 5 warping factors (0.8, 0.9, 1.0, 1.1 andclean conditions (0.91 in this case), aMiW FRcrx_ur

1.2 [1)). is the baseline (21.48). So, A 1%W0 MIMP would be
achieved when MWER equals the one obtained under clean
conditions. In order to compare all the methods, the MIMP
has been depicted with respect to the number of Gaussians
per basic environment because it gives an idea of the com-

TABLE Il
MEAN WER (MWER)IN % FROM MATE TECHNIQUE.

Train Test ‘ MWER ¢) puting cost. It can be observed the improvement of MATE-
MATE CLK _ CLK 0.76 MEMLIN with respect to MEMLIN: from 62.5% to 75.44%
MATE CLK _HF 29.28 (from 8.61% to 5.96% of MWER) with only 4 Gaussians
MATE HF HF 7.30 per basic environment and from 75%3o 83.4%% (from

5.95% to 4.32% of MWER) with 128 Gaussians, showing

It can be verified in Table Il the improvement that ex-the importance of the use of the expanded MATE-MEMLIN
panded MATE models obtain when they are applied oveacoustic models with after MEMLIN normalization. On the
the clean signals (0.76 of MWER) concerning the result other hand, note the important improvement of MATE-
obtained when clean feature vectors are recognized wWiMEMLIN with respect to SPLICE MS. It is also important
clean acoustic models (0.%1of MWER). This result is to observe that the dependence of the results concerning
better than if VTLN [1] is applied over clean signal (0%1 the number of Gaussians per basic environment has been
of MWER). Furthermore, the basic VTLN technique is noreduced when MATE-MEMLIN is applied; so competitive
on-line as MATE. However, MATE is not very effective in results can be obtained with a few number of Gaussians per
noisy conditions due to the high noise sensibility of thébasic environment. The best results of MWER for SPLICE
method. This the reason of using MEMLIN combined withMS, MEMLIN and MATE-MEMLIN (all of them obtained
MATE, because they are complementary and the bad pewith 64 Gaussians per basic environment) are included in
formance of MATE in noisy conditions can be compensatedable llI
with MEMLIN. . i .

To compensate the effects of the noise in recognitiors- Results with normalized space acoustic models
MEMLIN and MATE-MEMLIN are proposed. Fig. 4 shows Table IV shows the corresponing matching condition re-
the mean improvement in WER (MIMP) if% for MEM-  sults (MWER and MIMP) when normalized acoustic models
LIN and MATE-MEMLIN. Also the results obtained with are used. Clean and noisy condition results (Train CLK, Test
SPLICE MS are included to compare. Given a Mean WERCLK and Train HF, Test HF, respectively) are included again



TABLE IlI
BESTMEAN WER (MWER)IN % FROM SPLICEWITH
ENVIRONMENTAL MODEL SELECTION (SPLICE MS), MEMLIN
AND MATE-MEMLIN TECHNIQUES(ALL OF THEM OBTAINED
WITH 64 GAUSSIANS PER BASIC ENVIRONMENT.

of MWER), but, with noisy data the system rapidly degrades.

To compensate this mismatch, the feature vector normaliza-

tion technique MEMLIN is selected to normalize the noisy

data, defining MATE-MEMLIN. So, in MATE-MEMLIN,

the MEMLIN normalize feature vectors are decoded us-

Train _ Test ‘ MWER (%) ing MATE-ME_MLIN _expanded acpustic models. MATE-
MEMLIN obtains an improvement in WER of 83.%bwith

CLK HF SPLICEMS 6.25 . . .

128 Gaussians per basic environment, whereas MEMLIN
CLK _HF MEMLIN °.95 in the same conditions reaches 7%%63lf expanded nor
CLK HF MATE-MEMLIN 4.19 P

malized space acoustic models are used in recognition, the
mean improvement is 96.Z5with 128 Gaussians per basic
environment.

to compare. In “HF MEM” the normalized with MEMLIN
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A. Conclusions

In this paper we have presented the MATE-MEMLIN,
which is a combination between a novel point of view of
MATE (acoustic model adaptation technique) and MEM-
LIN (feature vector normalization algorithm), in order to
compensate the speaker variability and the car environment
effects. MATE proposes new expanded acoustic models
from original models to normalize the vocal track length.
Some results with Spanish SpeechDat Car database show
the effective behaviour of the technique with clean signals,
0.76% of MWER, (better than VTLN, which reaches 081



