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Abstract— In order to develop a robust man-machine in-
terface based on speech for cars, the speaker variability and
the acoustic environment effects have to be compensated. In
this work, an on-line feature and acoustic model compensation
(MATE-MEMLIN) is proposed to compensate the speaker
variability and the acoustic car environment. MATE-MEMLIN
consists on the combination of the techniques augMented
stAte space acousTic modEl (MATE) and Multi-Environment
Model based LInear Normalization (MEMLIN). MATE defines
expanded acoustic models to compensate the speaker frequency
variability using data driven estimated linear transformations.
On the other hand, MEMLIN, an empirical feature vector
normalization technique, was also presented and it was proved
to be effective to compensate environment mismatch. Some
experiments with Spanish SpeechDat Car database were car-
ried out in order to study the performance of the proposed
technique in a real car environment, reaching an important
mean improvement in Word Error Rate, WER.

I. INTRODUCTION

Since cars are more and more considered as business
offices, drivers need a safe way to communicate and interact
with either other human or machines. For safety reason,
traditional visual and tactile man-machine interfaces, such as
displays, buttons and knobs are not satisfactory but speech,
as the most convenient and natural way of communicate,
is an appropriate and complementary solution which can
reduce distractions. Hence, Automatic Speech Recognition
(ASR) provides safety and convenience, and it is possible to
follow the philosophy “Eyes on the road and hands on the
steering wheel”, which should drive every in-vehicle system
design. The problem of robust ASR in car environments has
attracted much attention in the recent years and a new market
demands for systems which allow the driver to control non
critical devices or tasks like phone dialing, RDs-tuner, air
conditioner, satellite navigation systems, remote information
Web browsing... For this purpose, hands-free interaction in
challenging acoustic environments still needs to be improved
with respect to several kinds of variabilities.

ASR system performance can be degraded by two im-
portant factors: the speaker variability and the acoustic
environment. It can be assumed that the speaker variability
produces, mainly, a rotation of the feature vectors, while
the acoustic environment generates mainly a translation of
the feature vectors. In this work we propose a combination
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of two techniques: augMented stAte space acousTic modEl
(MATE), which compensates, by adapting the acoustic mod-
els, the rotation effect, and Multi-Environment Model based
LInear Normalization (MEMLIN), which is a feature vector
normalization technique that obtains important improvements
compensating the translations.

The speaker variability problem has been addressed by
many authors, specially in the sense of compensation of
vocal tract shape by means of the well known Vocal Length
Tract Normalization (VLTN) [1] and Maximum Likelihood
Linear Regression (MLLR) methods [2]. Those methods still
have limitations in order to adapt the acoustic models to the
speaker. Usually a great amount of speaker data and exact
transcriptions or previous utterances and ASR transcriptions
are needed. In this research line, MATE [3] consists of an
expansion of the VTLN methods that provides the spectral
warping to be locally optimized and simultaneously to the
decoding of the state sequence. MATE obtains expanded
acoustic models from reference ones using linear transfor-
mations and it was proved to be effective in noise free or
moderately noisy speech conditions [3], [4]. However the
accuracy of a speech recognition system based on MATE
with noisy signal rapidly degrades. To compensate this
limitation, robustness techniques can be used.

MEMLIN [5] is an effective empirical feature vector
normalization technique which compensates the effects of
dynamic and adverse acoustic environments. MEMLIN is
based on Minimum Mean Square Error (MMSE) estimator,
and models clean and noisy spaces assuming Gaussian
Mixture Models (GMMs). A bias vector transformation for
each pair of Gaussians from the clean and the noisy spaces
is defined to compensate the mismatch between clean and
noisy feature vectors.

This paper is organized as follows: In Section II, a novel
point of view of MATE analysis is explained. In Section III
an overview of MEMLIN is detailed. The MATE-MEMLIN
algorithm is presented in Section IV. The normalized space
acoustic models are explained in Section V. The results with
Spanish SpeechDat Car database [6] are included in Section
VI, and finally, the conclusions are presented in Section VII.

II. MATE

The main motivation in MATE is to find an acoustic
model able to capture speaker variability. MATE provides a
mechanism based on the VTLN spectral warping procedure
to frame by frame optimized. The acoustic model captures
local frequency deformations of the spectrum envelope,
which are known to have their origin in the vocal tract



and articulatory instant shapes. A more complex and flex-
ible speech production scheme can be assumed, in which
local elastic deformations of the speech can be captured or
generated by the model by means of linear transformations,
i.e. rotations. Inertia and memory constraints are imposed on
the dynamics of the local transformations, then the plausible
transformation sequence is assumed to follow an HMM
process.

In [7], it was shown that the spectral warping performed
by VTLN methods is equivalent to a linear projection of the
cepstral feature space. So, for a discrete set ofN possible
warping factors,αn, the equivalent MATE transformation
matrices{An}Nn=1 can be obtained as

Vαn = AnW, (1)

wheren ∈ [1, N ] is the index of the warping factor,W is a
matrix which is composed by the source space data, and the
Vαn matrix includes the target space data, which is obtained
from the source space data normalized with VTLN using the
correspondingαn warping factor [1].

MATE [3] expands each state of the source space acoustic
models (HMM). So, an original stateq (q ∈ [1, Q]) will
be expandedN times into states(q, n). Thus MATE pro-
vides observation generation probability density functions
(pdfs) in the states that depend on the discrete set of
transformation matrices,An, embedding the warping in
the acoustic model as a general transformation. Assuming
that a component in the pdf mixture of the original state
q follows a normal distribution:N (xt;μq,Σq), the corre-
sponding expanded state component is assumed to follow
the distributionN (xt;Anμq,AnΣqAtn). So, the pdf for the
expanded state(q, n), f(xt|n, q), is a GMM of the defined
expanded components where the a priori component weights
remain unaltered.

The expanded acoustic model, from the perspective of
a feature vector generator, can be seen as a more flexible
speech production process because it can generate sequences
of warped cepstrum vectors. To complete the parameter
set of the expanded model, the expanded state transition
probabilitiesΠ, are

Π = {πq′,n′,q,n}
Q,N,Q,N
q′=1,n′=1,q=1,n=1, (2)

beingπq′,n′,q,n the transition probability from state(q′, n′)
to (q, n), which is obtained as [10].

The search algorithm for decoding unlabeled sequences
under this framework can be performed by computing recur-
sively the score state variable,φq,n(t), for the state(q, n),
the index of the warping factorn and the frame time index
t.

φq,n (t) = max
n′,q′
{φq′,n′ (t− 1) ∙ πq′,n′,q,n} ∙f (xt|n, q) . (3)

This recursive expression is very similar to the one con-
sidered in [3], being the main difference how the warping is
applied, since now is the expanded acoustic model which

Fig. 1. Scheme of MEMLIN approximations for one basic environment,
where sx and sy are the index of clean and noisy space Gaussians and
rsx,sy is the bias vector transformation associated to the pair of Gaussians
sx andsy .

tries to generate or evaluate the warped data instead of
normalizing the data to fit the source space acoustic model
as in [10]. Besides, in the new framework the covariance is
normalized in the expanded model description, including the
Jacobian normalization in the model [7].

A. MSE Transformation matrix estimation

The rotation MATE matricesAn, as a general linear
transformation for the feature vectors, provide a great degree
of freedom for the MATE expanded models, including the
rotation transformations in the mean vectors and covariance
matrices.

In order to estimate the rotation matricesAn, a linear
transformation as (1) is defined and the multidimensional
regression Minimum Square Error (MSE) criterion is used in
a previous process with training data. So, a residual error is
defined as the squared sum of differences between the target
data,Vαn (D×L) (D is the dimension of the feature vectors
and L is the number of feature vectors) and the projected
ones,AnW, whereW matrix includes the source data(D×
L). Taking derivatives with respect toAn and equating them
to zero, we obtain the following expression for the estimation
of An

An = (WW
t)−1W(Vαn)

t
. (4)

III. MEMLIN OVERVIEW

MEMLIN is an empirical feature vector normalization
technique based on MMSE estimator. It assumes three
approximations: the clean feature space is modelled as a
mixture of Gaussians (GMM), the noisy one is split into
several basic acoustic environments and each one of them is
modelled as a GMM. The third assumption consists on defin-
ing a bias vector transformation associated with each pair of
Gaussians from the clean and the noisy basic environment
spaces. These assumptions can be shown, in a schematic
way, in Fig. 1 for one basic environment, where clean and
noisy spaces are modelled by GMMs and the corresponding
bias vector transformation between a clean space GMM



component (sx) and a noisy space GMM component (sy)
is depicted asrsx,sy .

A. MEMLIN approximations

• Clean feature vectors,xt, are modelled using a GMM

f(xt) =
∑

sx

f(xt|sx)p(sx), (5)

f(xt|sx) = N (xt;μsx ,Σsx), (6)

whereμsx , Σsx andp(sx) are the mean vector, the diagonal
covariance matrix, and the a priori probability associated
with the clean model Gaussiansx.
• Noisy space is split into several basic environments,e,

and the noisy feature vectors,yt, are modeled as a GMM
for each basic environment

fe(yt) =
∑

sey

f(yt|s
e
y)p(s

e
y), (7)

f(yt|s
e
y) = N (yt;μsey ,Σsey ), (8)

wheresey denotes the corresponding Gaussian of the noisy
model for thee basic environment,μsey , Σsey andp(sey) are
the mean vector, the diagonal covariance matrix, and the a
priori probability associated withsey.
• Clean feature vectors can be approximated as a linear

function of the noisy feature vectors, which depends on the
basic environment and the clean and noisy model Gaussians:
x ≈ Ψ(yt, sx, sey) = yt−rsx,sey , wherersx,sey is a bias vector
transformation between noisy and clean feature vectors for
each pair of Gaussians,sx andsey.

B. MEMLIN enhancement

With those approximations, MEMLIN transforms the
MMSE estimation expression,̂xt = E[x|yt], into

x̂t = yt−
∑

e

∑

sey

∑

sx

rsx,seyp(e|yt)p(s
e
y|yt, e)p(sx|yt, e, s

e
y),

(9)
where p(e|yt) is the a posteriori probability of the basic
environmente; p(sey|yt, e) is the a posteriori probability
of the noisy model Gaussiansey, given the noisy feature
vector yt and the basic environmente. Those two terms
are computed on-line for each frame applying (7) and (8),
as described in [5]. Finally, the cross-probability model,
p(sx|yt, e, sey), is the probability of the clean model Gaussian
sx, given the noisy feature vectoryt, the basic environmente,
and the noisy model Gaussiansey. That term, along with the
bias vector transformationrsx,sey , is estimated in a previous
training phase using stereo data [5]. If stereo data is not
available, a “blind” version of the training phase can be
applied [9].

Fig. 2. Scheme of MATE-MEMLIN performance.

IV. MATE-MEMLIN

In order to provide robustness to MATE in adverse
acoustic conditions, MATE-MEMLIN combines MATE with
MEMLIN. So, the MEMLIN normalize feature vectors are
decoded using MATE-MEMLIN expanded acoustic models.
Since the rotation matrices can be estimated in a data driven
way and MEMLIN maps the different basic environment
data towards only one space, the corresponding matrices
for MATE-MEMLIN can be adapted to the specific problem
without considering any environment dependence (see Fig.
2). In the left part of the Fig. 2, the MEMLIN normalization
is depicted and the speaker noisy data are mapped to a clean
speaker dependent space. The MATE effect is presented on
the right part of the figure, where the clean independent
speaker acoustic models are adapted to the optimal (An)
speaker dependent space. This acoustic model election (An)
is obtained frame by frame in the search algorithm by
maximum likelihood (3).

As it has been described in Section II, the MATE rotation
matrices obtained with the MSE linear regression criterion
need matched source and target data. In this work it is
assumed available stereo training data for each basic envi-
ronmente, (Xe,Ye) = {(xe1,y

e
1), ...(x

e
t ,y

e
t )..., (x

e
T ,y

e
T )},

whereXe represents the clean feature vectors for the basic
environmente, andYe the corresponding noisy ones (these
stereo data are also needed to obtain the bias vector trans-
formations and the cross-probability models for MEMLIN
[5]).

In the MATE-MEMLIN rotation matrix estimation, the
source space data areX, which is the concatenation of the
clean training data for all the basic environments. On the
other hand, the target space data are obtained with noisy
dataY for all the basic environments, including rotation and
translation compensations as following

• Noisy warped cepstrum feature vectors (Ye,αn ) are
obtained applying the VTLN rotation [1] to the noisy
training data for all the basic environmentse, Ye.

• MEMLIN compensation algorithm is applied over



TABLE I

WER BASELINE RESULTS, IN %, FROM THE DIFFERENT BASIC ENVIRONMENTS(E1,..., E7),WHERE MWER IS THE MEAN WER.

Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

CLK CLK 0.95 2.32 0.70 0.25 0.57 0.32 0.00 0.91

CLK HF 3.05 13.29 15.52 27.32 31.36 35.5653.06 21.48

HF HF 3.81 6.86 3.50 3.76 4.96 4.44 3.06 4.63

Fig. 3. Scheme of MATE-MEMLIN phases.

Ye,αn , obtaining the normalized datâXe,αn (9). The
target space datâXαn are composed by the concatena-
tion of the normalized data for all basic environments.

Thus, finally, the rotation matrix estimations, which are
defined as the following linear projection̂Xαn = AnX, are
(see Section II)

An = (XX
t)−1X(X̂αn)

t
. (10)

In decoding, the noisy feature vectors are normalized with
MEMLIN algorithm and the normalized data are recognized
using the MATE-MEMLIN expanded acoustic models with
the transformation matrices,An (10). A graphical repre-
sentation for the rotation matrix estimation method and the
recognition process for MATE-MEMLIN can be observed in
Fig. 3.

Note that the resulting expanded MATE-MEMLIN acous-
tic models are able to locally rotate the frequency axis in
the standard VTLN way, including at the same time the
information of how the MEMLIN normalized feature vectors
are distributed in the feature space.

V. NORMALIZED SPACE ACOUSTIC MODELS

Feature vector normalization techniques try to map the
noisy feature vectors to the clean space. However this map-
ping is not perfect and a new normalized space is created,
which is different to the clean one. So, a further improvement
can be obtained adapting the clean acoustic models towards
the normalized space. For this purpose, the noisy training

data are normalized in the same way as testing data and
the original clean acoustic models are adapted with those
data towards the new normalized space. If there are enough
data, Maximum Likelihood (ML) algorithm can be used,
but a model adaptation method should be applied otherwise
(Maximum A Posteriori, MAP [11], MLLR [2]...). In this
work, once the MEMLIN normalized space acoustic models
are obtained, the normalized testing data can be recognized
directly with them, or with new expanded MATE-MEMLIN
acoustic models. In this case the normalized acoustic models
are expanded with the corresponding MATE transformation
matrices. In this work, the two options are compared.

VI. RESULTS

To compare the performance of the MATE-MEMLIN tech-
nique in a real, dynamic, and complex car environment, a set
of experiments were carried out using the Spanish SpeechDat
Car database [6]. Seven basic environments were defined: car
stopped, motor running (E1), town traffic, windows close
and climatizer off (silent conditions) (E2), town traffic and
noisy conditions: windows open and/or climatizer on (E3),
low speed, rough road, and silent conditions (E4), low speed,
rough road, and noisy conditions (E5), high speed, good road,
and silent conditions (E6), and high speed, good road, and
noisy conditions (E7).

Two channels of the database, which were recorded si-
multaneously (stereo data), were used: a clean signal from
a CLose talK channel (CLK), which was recorded with
a Shure SM-10A microphone, and a noisy signal from a
Hands-Free channel (HF), which was recorded using a Peiker
ME15/V520-1 microphone located on the ceiling in front of
the driver. HF signals were used in recognition tasks.

The SNRs (mean± standard deviation) of the HF channel
range from 14.05±3.89 dB in the E1 basic environment to
5.65±4.35 dB in the high speed and good road conditions
(E6 and E7 basic environments combined).

The recognition task is isolated and continuous digits
recognition (a typical hands-free phone task). As feature set,
the standard ETSI front-end features plus the energy and the
corresponding delta and delta delta coefficients were used
in all the experiments [12]. Cepstral mean normalization
is applied to testing and training data in all cases. On
the other hand, in this work, the VTLN, MEMLIN and
SPLICE with environmental model selection [8] (SPLICE
MS) algorithms were applied to the 12 MFCCs and energy,
whereas the derivatives were computed over the normalized
static coefficients. The acoustic models were composed of 16
state HMM for each digit, a 3 state begin-end silence HMM



and an 1 state inter-word silence HMM. In all cases, each
pdf state is composed by a mixture of three Gaussians.

A. Baseline results

The Word Error Rate (WER) baseline results for each
basic environment are presented in Table I, where MWER
is the Mean WER, which is computed proportionally to the
number of words on each basic environment. “Train” column
refers to the signals used to obtain the corresponding acoustic
models: if they are trained with all clean training utterances,
the column is marked CLK, and if the column is marked
HF, the acoustic models are trained with all noisy training
utterances. “Test” column indicates the signals which are
used for recognition: clean, CLK, or noisy, HF.

Table I shows the effect of real car noise, which pro-
duces a significant increase in WER in all of the basic
environments, (Train CLK, Test HF), concerning the rates
for clean conditions, (Train CLK, Test CLK). With matched
conditions: when acoustic models are retrained using all
basic environments, (Train HF, Test HF) MWER decreases
significantly.

B. MATE, MEMLIN and MATE-MEMLIN results

Table II shows the MWER when only MATE is applied.
The expanded MATE models are obtained over the ones
trained with “Train” column signals. To compute the trans-
formation matrices, the source space is the clean one, and
the target space is obtained with the clean data normalized
with VTLN using 5 warping factors (0.8, 0.9, 1.0, 1.1 and
1.2 [1]).

TABLE II

MEAN WER (MWER) IN % FROM MATE TECHNIQUE.

Train Test MWER (%)

MATE CLK CLK 0.76
MATE CLK HF 29.28
MATE HF HF 7.30

It can be verified in Table II the improvement that ex-
panded MATE models obtain when they are applied over
the clean signals (0.76% of MWER) concerning the result
obtained when clean feature vectors are recognized with
clean acoustic models (0.91% of MWER). This result is
better than if VTLN [1] is applied over clean signal (0.81%
of MWER). Furthermore, the basic VTLN technique is not
on-line as MATE. However, MATE is not very effective in
noisy conditions due to the high noise sensibility of the
method. This the reason of using MEMLIN combined with
MATE, because they are complementary and the bad per-
formance of MATE in noisy conditions can be compensated
with MEMLIN.

To compensate the effects of the noise in recognition,
MEMLIN and MATE-MEMLIN are proposed. Fig. 4 shows
the mean improvement in WER (MIMP) in% for MEM-
LIN and MATE-MEMLIN. Also the results obtained with
SPLICE MS are included to compare. Given a Mean WER,
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Fig. 4. Mean improvement in WER (MIMP) in% for MATE-MEMLIN,
MEMLIN and SPLICE with environmental model selection (SPLICE MS)
when different number of Gaussians per basic environment are considered.

the corresponding mean improvement in WER is computed
as

MIMP =
100(MWER−MWERCLK−HF )

MWERCLK−CLK −MWERCLK−HF
,

(11)
whereMWERCLK−CLK is the mean WER obtained with
clean conditions (0.91 in this case), andMWERCLK−HF
is the baseline (21.48). So, A 100% MIMP would be
achieved when MWER equals the one obtained under clean
conditions. In order to compare all the methods, the MIMP
has been depicted with respect to the number of Gaussians
per basic environment because it gives an idea of the com-
puting cost. It can be observed the improvement of MATE-
MEMLIN with respect to MEMLIN: from 62.57% to 75.44%
(from 8.61% to 5.96% of MWER) with only 4 Gaussians
per basic environment and from 75.53% to 83.45% (from
5.95% to 4.32% of MWER) with 128 Gaussians, showing
the importance of the use of the expanded MATE-MEMLIN
acoustic models with after MEMLIN normalization. On the
other hand, note the important improvement of MATE-
MEMLIN with respect to SPLICE MS. It is also important
to observe that the dependence of the results concerning
the number of Gaussians per basic environment has been
reduced when MATE-MEMLIN is applied; so competitive
results can be obtained with a few number of Gaussians per
basic environment. The best results of MWER for SPLICE
MS, MEMLIN and MATE-MEMLIN (all of them obtained
with 64 Gaussians per basic environment) are included in
Table III

C. Results with normalized space acoustic models

Table IV shows the corresponing matching condition re-
sults (MWER and MIMP) when normalized acoustic models
are used. Clean and noisy condition results (Train CLK, Test
CLK and Train HF, Test HF, respectively) are included again



TABLE III

BEST MEAN WER (MWER) IN % FROM SPLICEWITH

ENVIRONMENTAL MODEL SELECTION (SPLICE MS), MEMLIN
AND MATE-MEMLIN TECHNIQUES(ALL OF THEM OBTAINED

WITH 64 GAUSSIANS PER BASIC ENVIRONMENT).

Train Test MWER (%)

CLK HF SPLICEMS 6.25
CLK HF MEMLIN 5.95
CLK HF MATE-MEMLIN 4.19

to compare. In “HF MEM” the normalized with MEMLIN
noisy training data are used to retrain the new acoustic mod-
els with the ML algorithm. The results for “HF MAT-MEM”
are obtained with the expanded MATE-MEMLIN acoustic
models estimated from the ones retrained with the MEMLIN
normalized noisy training data and the ML algorithm. In
both cases MEMLIN is applied with 128 Gaussians per
basic environment. The recognition rates using less number
of Gaussians for MEMLIN are similar, for instance, if 4
Gaussians per basic environment are used in MEMLIN, the
MIMP with the new retrained acoustic models is 94.63%,
and if the corresponding expanded acoustic models are
estimated by MATE-MEMLIN, the MIMP reaches 95.06%.
Clearly there are significant improvements when normalized
space acoustic models are used, even when noisy acoustic
models are applied. Furthermore, in this case the number of
Gaussians used for MEMLIN does not affect significatively
to the performance.

TABLE IV

MEAN WER (MWER) AND MEAN IMPROVEMENT IN WER
(MIMP) IN % FROM MEMLIN (MEM) AND MATE-MEMLIN
(MAT-MEM) WITH 128 GAUSSIANS PER BASIC ENVIRONMENT

AND ML- ADAPTED ACOUSTIC MODELS TO THE NORMALIZED

SPACE.

Train Test MWER (%) MIMP (%)

CLK CLK 0.91 –
HF HF 4.63 81.93
HF MEM HF MEM 1.72 96.08
HF MAT-MEM HF MAT-MEM 1.68 96.25

VII. CONCLUSIONS

A. Conclusions

In this paper we have presented the MATE-MEMLIN,
which is a combination between a novel point of view of
MATE (acoustic model adaptation technique) and MEM-
LIN (feature vector normalization algorithm), in order to
compensate the speaker variability and the car environment
effects. MATE proposes new expanded acoustic models
from original models to normalize the vocal track length.
Some results with Spanish SpeechDat Car database show
the effective behaviour of the technique with clean signals,
0.76% of MWER, (better than VTLN, which reaches 0.81%

of MWER), but, with noisy data the system rapidly degrades.
To compensate this mismatch, the feature vector normaliza-
tion technique MEMLIN is selected to normalize the noisy
data, defining MATE-MEMLIN. So, in MATE-MEMLIN,
the MEMLIN normalize feature vectors are decoded us-
ing MATE-MEMLIN expanded acoustic models. MATE-
MEMLIN obtains an improvement in WER of 83.45% with
128 Gaussians per basic environment, whereas MEMLIN
in the same conditions reaches 75.53%. If expanded nor-
malized space acoustic models are used in recognition, the
mean improvement is 96.25% with 128 Gaussians per basic
environment.
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