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Abstract

This paper presents a study of the interaction between
frequency warping based speaker normalization algorithms,
environment compensation algorithms, and discriminant feature
space transformations (DFT) in providing consistent reductions
in ASR word error rate (WER) over a range of acoustic
degradations. Performance improvements obtained using
speaker normalization algorithms, including vocal tract length
normalization (VTLN) and a newly proposed augmented state
space acoustic decoder, are shown to improve substantially
when applied in a discriminant feature space where acoustic
environment compensation has been applied. Furthermore, the
effects on ASR performance of the DFT are also shown to be
enhanced by reducing within class variability by applying the
DFT on a speaker and an environment normalized feature space.

1. Introduction
Many feature space normalization and acoustic model adap-
tation techniques that are specifically designed to compensate
for speaker specific variability often do not perform well when
other sources of acoustic variability are present. This has been
observed to be the case for a class of approaches that performs
speaker normalization through a process of spectral warping
during feature analysis. One member of this class, often re-
ferred to as vocal tract length normalization (VTLN), estimates
spectral warping factors by choosing the degree of warping that
maximizes the average likelihood of a warped utterance with
respect to the HMM model [1]. Another member of this class is
an augmented state space acoustic decoder (referred to here as
the MATE decoder), which uses a modified Viterbi algorithm
to search for locally optimum degrees of spectral warping or
temporal warping forindividual frames [2]. We will show that
the combination of discriminant feature space transformations
(DFT) and noise robust processing techniques with frequency
warping based speaker normalization can result in larger, more
consistent, reductions in ASR word error rate (WER) over a
wider range of acoustic degradations.

The performance of DFTs are also diminished when
many sources of acoustic variability are present. We will
demonstrate that reducing variability can also improve the
notion of class separability in discriminant feature spaces and
result in reduced ASR WER. Many DFT approaches have
been proposed for reducing feature space dimensionality while
maintaining the separability of phonetic classes in ASR. These
approaches differ in the exact definition of the separability
criterion and their assumptions about the distribution of the
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data within classes. Examples considered here include linear
discriminant analysis (LDA) and heteroscedastic discriminant
analysis (HDA) [3, 4]. The transformation parameters are
estimated by maximizing a separability criterion that minimizes
the sample covariance within a class relative to the separation
of the sample means between classes. Additional variation
resulting from environmental, channel, or speaker specific
effects will only add to the relative within-class variation in the
sample statistics and diminish effects on WER.

Performing linear discriminant analysis in a feature space
that has been compensated to reduce any of these sources of
variability should increase the effective class separability for the
DFT. Towards this end, by performing discriminant analysis in
an environment, channel, and speaker normalized feature space,
we hope to demonstrate that larger performance increases can
be achieved than can be achieved from any individual approach.

The paper is organized as follows. Section 2 contains
a discussion of the methods used to compensate for speaker
and environment variability. These include the MATE decoder
and VTLN for speaker normalization and a set of techniques
implemented as part of an ETSI robust advanced front end
(AFE) for robust acoustic environment compensation [5].
Section 3 discusses the implementation of the DFT. The results
of an experimental study evaluating the impact of combined
feature space normalization and DFT on ASR performance is
presented in Section 4. Finally, discussion and conclusions are
presented in Section 5.

2. Speaker and Environment Compensation
This section provides a brief overview of the VTLN and MATE
speaker normalization approaches and the AFE based robust
environment and channel compensation techniques that are
applied in this work. The interaction of these procedures
with HDA/MLLT based discriminant feature spaces will be
presented in Section 4.

2.1. VTLN based speaker normalization

This class of techniques selects from an ensemble of linear
frequency warping functions,G = {gαi}N

i=1 to produce a
warped frequency scale,f ′ = gα̂ (f). The optimum warping
function,gα̂ is chosen to maximize the average likelihood of a
length T sequence of frequency warped cepstrum observation
vectors,Xα = {xα

t }T
t=1, with respect to the HMM. For the

experiments described in Section 4, there is a set ofN =
11 possible linear warping functions equally spaced along a
range from a minimum of twelve percent compression and a
maximum of twelve percent expansion of the frequency axis.

VTLN can be implemented during recognition as a two pass



procedure. In the first pass, an initial hypothesized word string
is generated. This initial word string is then used in a second
pass to find the optimumgα̂ by computing the likelihood of
i = 1, ..., N utterances, where each utterance is generated using
warping functiongαi , by performing a probabilistic alignment
of Xαi with the decoded word string.

2.2. Augmented State Space Acoustic Decoder

The MATE decoder, as developed by Miguel et al, is a modified
Viterbi algorithm that is implemented in an augmented state
space [2]. It allows frame-specific spectral warping functions to
be estimated as part of the search for an optimum path. It was
shown by Miguel that this same search procedure can also be
used to estimate the optimum frame-specific time interval over
which cepstrum difference coefficients are computed [2]. A
description of this augmented state space will be provided here
and the modified search algorithm will be briefly summarized.

A Viterbi beam search decoder for continuous speech
recognition is implemented by propagating paths into the
nodes of a two dimensional trellis. Each node of the trellis
corresponds to one ofM HMM states{qj}M

j=1 evaluated for
observation vectorsxt, t = 1, ..., L. In the MATE decoder, the
state space can potentially be expanded by a factor ofN , where
N = Nα is the size of the warping function ensemble described
in Section 2.1. This effectively results in a three dimensional
trellis. Each node of this augmented trellis corresponds to one
of as many asM ′ = N · M states,{qk

j }M,N
j=1,k=1.

The states,{qk
j }N

k=1, in the existing implementation share
the same observation densities as the stateqj in the original
model for all j = 1, ..., M . This tying of the observation
densities can be expressed as

bj
k (xt) = bj (xt) , j = 1, ..., M, k = 1, ..., N, (1)

wherebj() is the original Gaussian mixture observation density
function for statej in the original modelλ, xt is a mel-
frequency cepstrum observation vector at a framet, andbk

j (),
is the augmented state space density function for statej and
warping functionk.

The optimum sequence of states is identified for the
decoding process in a standard HMM using the Viterbi
algorithm,

φj (t) = max
i

{φi (t − 1) · ai,j} · bj (ct) . (2)

In Equation 2,φj (t) is the likelihood of the optimum path
terminating in HMM stateqj at timet andai,j is the transition
probability from stateqi to stateqj . Themax is computed over
all states that are permitted by the HMM model to propagate
into stateqj which, for a left-to-right HMM topology would be
qj−1.

In the MATE decoder, the optimum sequence of states in
the augmented state space is identified using a modified Viterbi
algorithm,

φj,n (t) = max
i∈I,αm∈A

˘
φi,m (t − 1) · am,n

i,j

¯
· bj (cαn

t ) . (3)

In Equation 3,φj,n (t) is the likelihood of the optimum path
terminating in stateqn

j at time t and am,n
i,j is the transition

probability from stateqm
i to stateqn

j . Themax is computed
over all states that are permitted by the HMM model to
propagate into stateqn

j .
Structural constraints can be placed on the transformations,

gαn , that are permitted at stateqn
i in the augmented state

space. These constraints can be applied by setting a subset
of the transition probabilities,am,n

i,j equal to zero. Transition
probabilities were constrained so that the frequency warping
transformations applied to adjacent frames were required to be
taken from adjacent indices in the ensembleG. This implies that
am,n

i,j = 0 if |m − n| > 1. These constraints have the effect of
reducing the computational complexity in search. Furthermore,
they also provide a means for limiting the degrees of freedom
in the application of spectral transformations to reflect a more
physiologically plausible degree of variability.

2.3. Robust Feature Analysis

All of the experiments reported in Section 4 are performed using
mel-frequency cepstrum coefficient (MFCC) feature analysis.
First and second order cepstrum difference coefficients are
computed to model temporal dynamics in speech. However,
there is no mechanism in this standard configuration for
compensating with respect to acoustic environment or channel
variability. To investigate how feature compensation algorithms
can impact the performance of speaker normalization and
discriminant feature transformations, a noise-robust advanced
DSR front end (AFE) was applied [5].

There are three major robust processing steps that are
applied in the AFE. First, a two stage Wiener filter is applied.
Second, an SNR-dependent waveform processing procedure is
performed which estimates a weighting function to emphasize
the high SNR portions of the waveform and de-emphasize the
low SNR portions of the waveform [5]. This combination
of noise reduction and SNR dependent waveform processing
serves to increase the effective SNR prior to computation of the
MFCC thereby reducing the impact of additive environmental
noise. Finally, after cepstrum computation, blind equalization
is performed to reduce the effects of convolutional distortion
that may arise from transducer or channel dependent mismatch.

3. Discriminant Feature Transformations
This section provides a brief summary of discriminant feature
transformations (DFTs). The DFT is applied to estimating a
feature space transformation from a high dimensional feature
space to a lower dimensional space while maximizing the
separability betwen classes in the target feature space [3].

Assume that we are given a set ofd dimensional data
vectorsX = {xt}T

t=1, each belonging to one of a set ofL
classesC = {cl}L

l=1 where each class containsNl vectors. For
each class, we have the sample means and covariances

µl =
1

Nl

X
xt∈cl

xt Σl =
1

Nl

X
xt∈cl

(xt − µj)(xt − µj)
T

The optimization criteria for LDA are based on the within class
scatter matrix, and the between class scatter matrix,SB ,

SW =
1

N

LX
l=1

NlΣl SB =
1

N

LX
l=1

Nl(µl − µ)(µl − µ)T

whereN =
PL

l=1 Nl andµ = 1
N

PL
l=1 µl.

Our goal is to estimate a linear transformation from the
d dimensionalx to a p dimensionaly wherep < d. This
transformation takes the form of ap × d dimensional matrixA
with linearly independent rows and columns such thaty = Ax.
In LDA, the parameters ofA can be estimated to optimize a
measure of class separability in a transformed space which is



based on the ratio between the between class scatter to the
within class scatter [3]:

JLDA(A) = log
˛̨̨
(ASW AT )−1(ASBA)

˛̨̨
(4)

HDA extends this criterion to a more general separability cri-
terion in the transformed space that maximizes the separability
only in the projected dimension [4]:

JHDA(A) =

LX
l=1

N log
˛̨̨
ASBAT

˛̨̨
− Nj log

˛̨̨
AΣlA

T
˛̨̨

(5)

Since the data within each class for both LDA and HDA
are assumed to have full covariance distributions, there is
a mis-match to the diagonal covariance assumption that is
used for observation densities in an HMM. To compensate
for this mismatch, another discriminant transformation can be
applied in thep dimensional transformed space that enforces
the diagonal covariance constraint in the transformed space.
This is referred to as maximum likelihood linear transformation
(MLLT) since it produces a discriminant feature space that
maximizes the likelihood of the data under a diagonal class
covariance constraint [4].

In our implementation, an HDA transformation is estimated
for an input feature space where the data vectors correspond
to the concatenation of nine cepstrum feature vectors. With
thirteen component cepstrum, this corresponds to ad = 117
dimensional space. The dimensionality of the transformed
feature space was chosen to bep = 39. A 39 × 39 component
MLLT transformation was estimated and applied to the HDA
transformed features. The classes for the DFT were defined
to be the individual states of the HMM. Working on a limited
vocabulary connected digit recognition domain, there were a
total of approximately 180 HMM states resulting in the same
number of classes in the discriminant space.

4. Experimental Study
This section addresses the interaction between speaker normal-
ization, environment compensation, and DFT in terms of their
impact on ASR performance. Experimental comparisons were
performed for two ASR task domains where the first domain
was based on simulated acoustic environments and the other
was based on utterances collected in a range of actual automo-
bile driving scenarios. After describing the databases associated
with these task domains and the baseline HMM ASR system
configuration, three experimental comparisons are presented.
First, the effect of environmental variability on the ability of
speaker normalization to reduce ASR WER is described. Sec-
ond, the ability of both robust feature analysis and DFT to im-
prove the performance of VTLN and MATE speaker normaliza-
tion procedures in difficult acoustic environments is described.
Third, the effect of training the DFT parameters using speaker
normalized data on WER is considered.

4.1. Speech Corpora and ASR Platform

There were two different speech corpora that were used to
evaluate the performance of the speaker normalization and
discriminant feature transformation (DFT) scenarios discussed
in Sections 2 and 3. Both corpora consisted of utterances
of connected digits. The first task domain corresponds to a
subset of the Aurora 2 database that included four different
simulated acoustic environments. These were obtained by

creating recordings of subway, speech babble, automobile, and
exhibition hall conditions and adding them to speech utterances
recorded in clean conditions under different signal-to-noise
(SNR) ratio assumptions. A total of 8440 utterances (27727
digits) were used for training and 4004 utterances (13159) digits
were used for evaluation. All of the ASR results presented in
Tables 1 and 2 were obtained using HMM models that were
trained from multiple conditions and multiple SNRs.

The second task domain was the Aurora 3 subset of the
Spanish Language SpeechDat Car database. This corpus was
collected using hands-free and close-talking microphones from
a population of 160 speakers operating a vehicle under several
driving conditions. These conditions included a stopped car
with motor running, driving in traffic at low speeds, and high
speed driving. A total of 3292 of these utterances (18334
digits) were used for training acoustic HMM models and 1522
utterances (5012 digits) were used for testing. All of the ASR
results presented in Table 3 were obtained using the above
scenario.

The baseline ASR system is the same as that described
in a previous study of VTLN and MATE based speaker
normalization [2]. HMM word models with 16 states and 3
Gaussian densities per state were used to represent Spanish digit
utterances. The baseline system uses ETSI standard MFCC
feature analysis [6]. All procedures for training HMM models
for the MATE decoder are also the same as reported in [2].

4.2. Experimental Results

Table 1 demonstrates how the effects of VTLN and MATE
speaker normalization are significantly diminished in the
presence of external acoustic variability. The table displays
the WER for the baseline ASR system described above,
the baseline system implemented with VTLN based speaker
normalization as described in Section 2.1, and the MATE
based decoder described in Section 2.2. All three systems
are trained under the multi-condition scenario described above
and evaluated under clean high SNR and noisy 15 dB SNR
conditions on the Aurora 2 database. All of the systems in
Table 1 used the ETSI standard MFCC feature analysis with
no environment or channel normalization techniques applied.
It is clear from Table 1 that both VTLN and MATE based

Aurora 2 Word Error Rate (Improvement)
System Clean 15 dB SNR
Baseline 1.40% 2.18%
VTLN 1.21% (13.6%) 2.08% (4.53%)
MATE 1.01% (27.8%) 1.94% (11.15%)

Table 1: WER for VTLN and MATE using MFCC features.

speaker normalization provide significant WER reduction with
respect to the baseline system under clean testing conditions.
The relative improvements are shown in the table to be 13.6
percent and 27.8 respectively. However, it is also clear that these
relative improvements are reduced by approximately a factor of
three under moderately noisy conditions.

In order to quantify the effects of reduced environmental
variability on speaker normalization performance, the three
systems shown in Table 1 were evaluated under the same
noisy conditions using the robust AFE feature analysis. The
first column of Table 2 displays the WER for the Baseline,
VTLN, and MATE systems when the AFE feature analysis
is used for all these systems under noisy 15 dB SNR test



conditions. Comparing the relative reduction in WER for
VTLN and MATE shown in the first column of Table 2 to the
relative improvements for those systems shown in the second
column of Table 1, it is clear that the use of AFE results in
considerably greater improvements being introduced by MATE
and VTLN speaker normalization.

Aurora 2 Word Error Rate (Improvement)
System AFE DFT DFT+SNF
Baseline 1.95% 1.66%
VTLN 1.80% (7.7%) 1.57% (5.4%) 1.50% (4.4%)
MATE 1.60% (17.9%) 1.42% (15.1%) 1.40% (1.6%)

Table 2: WER for VTLN and MATE using AFE features, DFT
using AFE, and DFT using speaker norm. features (SNF).

The combined effect of applying both robust feature
analysis for reducing environment and channel variability
and discriminant feature transformations to improve class
separability can be observed by comparing the first and second
columns of Table 2. The HDA and MLLT parameters are
estimated directly from the features generated by the AFE based
feature analysis and then used to transform features during
HMM training and recognition. It is clear from the results
shown in Table 2 that the DFT produces significant WER
reduction for all three systems.

The effect of reducing speaker variability prior to perform-
ing linear discriminant analysis is given in last column of Ta-
ble 2. For VTLN, each training utterance was warped to max-
imize P (Xα|λ) and the warped utterances were used for esti-
mating the HDA/MLLT matrices. For MATE, each utterance
was warped using frame-specific warping factors selected by
the MATE decoder. These warped utterances were then used
for training the HDA/MLLT matrices. It is shown in Table 2
that estimating HDA/MLLT matrices from speaker normalized
data has a small effect on WER reduction for this noisy Aurora
2 data.

It can be shown that the value of the LDA optimization
criterion given in Equation 4 is proportional to the sum of the
magnitudes of thep largest eigenvalues ofS−1

W SB . To give
an indication of the degree to which the robust AFE feature
analysis can reduce the within class variability and influence the
separability criterion used for LDA, the 30 largest eigenvalues
are displayed in Figure 1 for two input feature spaces. Both
examples are computed from simulated noisy observation data
obtained from the Aurora 2 database described in Section 4.1.
The bottom curve in the figure corresponds to eigenvalues
that were obtained from LDA estimated from standard MFCC
features with no robust processing applied. The top curve
corresponds to eignenvalues obtained from LDA estimated from
features estimated using robust AFE feature analysis. From
the differences between the two curves, it appears that class
separability and presumably also ASR performance would be
greatly enhanced by using the robust AFE. This is indeed
supported by the observed WER reduction using the baseline
ASR system when applying DFT to standard MFCC and AFE
features on the Aurora 2 database. A 2.2% WER reduction
was obtained by DFT using MFCC features and a much larger
reduction of 14.9

Table 3 shows the results of the evaluation of the speaker
normalization and DFT procedures on the Spanish language
Aurora 3 database. This database differs from the Aurora
2 database in that it represents actual rather than simulated
acoustic environments. However, it also contains approximately

one third of the number of utterances for training and testing
that are contained in the Aurora 2 database. As a result, the
VTLN and MATE procedures, which are not heavily reliant on
training, show consistent improvement. However, when used
with the DFT, which does rely on having sufficient data for
training HDA/MLLT transformations, there is a less consistent
reduction in WER.

Figure 1: LDA eigenvals for MFCC and AFE features

Aurora 3 Word Error Rate (Improvement
System AFE AFE+DFT
Baseline 2.0% 1.8%
VTLN 1.8% (10.0%) 1.6% (11.1%)
MATE 1.7% (15.0%) 1.7% (5.5%)

Table 3: WER on in-car database for VTLN and MATE using
AFE features and DFT.

5. Conclusions
This paper has demonstrated the WER reductions that can
be obtained through the combined application of speaker
normalization, AFE feature analysis, and DFT on noise
corrupted connected digit tasks. The MATE decoder provided
an 18% WER reduction over the baseline system when applied
to features compensated by the AFE. An additional 12%
WER reduction was obtained when MATE was applied in the
discriminant feature space, and a minor reduction in WER was
obtained when the DFT was in turn trained with and applied to
MATE normalized features.
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