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Abstract—We present a non-parametric adaptive surrogate test
that allows for the differentiation of statistically significant T-
Wave Alternans (TWA) from alternating patterns that can be
solely explained by the statistics of noise. The proposed test is
based on estimating the distribution of noise induced alternating
patterns in a beat sequence from a set of surrogate data derived
from repeated reshuffling of the original beat sequence. Thus, in
assessing the significance of the observed alternating patterns in
the data no assumptions are made about the underlying noise
distribution. In addition, since the distribution of noise-induced
alternans magnitudes is calculated separately for each sequence
of beats within the analysis window, the method is robust to data
non-stationarities in both noise and TWA. The proposed surro-
gate method for rejecting noise was compared to the standard
noise rejection methods used with the Spectral Method (SM)
and the Modified Moving Average (MMA) techniques. Using
a previously described realistic multi-lead model of TWA, and
real physiological noise, we demonstrate the proposed approach
reduces false TWA detections, while maintaining a lower missed
TWA detection compared with all the other methods tested.

A simple averaging-based TWA estimation algorithm was
coupled with the surrogate significance testing and was evaluated
on three public databases; the Normal Sinus Rhythm Database
(NRSDB), the Chronic Heart Failure Database (CHFDB) and the
Sudden Cardiac Death Database (SCDDB). Differences in TWA
amplitudes between each database were evaluated at matched
heart rate (HR) intervals from 40 to 120 beats per minute (BPM).
Using the two-sample Kolmogorov-Smirnov test, we found that
significant differences in TWA levels exist between each patient
group at all decades of heart rates. The most marked difference
was generally found at higher heart rates, and the new technique
resulted in a larger margin of separability between patient
populations than when the SM or MMA were applied to the
same data.

Index Terms—ECG, Noise, Surrogate Analysis, T-Wave Alter-
nans, TWA.

I. INTRODUCTION

T -WAVE alternans (TWA), referring to beat-to-beat vari-
ability in the timing or shape of ST -T complex on

the surface electrocardiogram, was first reported in 1908 by
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Hering [1]. Although the phenomenon is widely understood
to be an important indicator of risk of sudden cardiac death
(SCD), [2]–[4], until the 1980s TWA was believed to be rare.
In 1981 Adam et al. first reported the existence of µV-level T-
wave alternans, too small in amplitude to be detected visually
at standard electrocardiogram display scales [5]. Follow-up
studies demonstrated that the absence of significant TWA in
a patient with congestive heart failure, low ejection fraction,
or a recent myocardial infarction is strongly predictive of
a low risk of SCD [6], [7]. A positive finding in such a
patient, though less specific, may indicate that an implantable
cardiac defibrillator would be appropriate, an indication that
can be confirmed using invasive testing. However, the positive
predictive value of TWA remains low [8], and it is yet to be
determined whether further improvements in the methodology
of TWA detection/quantification can improve the positive
diagnostic power of the TWA test.

One unresolved issue in the area of TWA analysis is that
of noise modeling and rejection of false detections while
maintaining a low level of missed detections [9]–[11]. A
comprehensive list of various TWA estimation and detection
techniques is provided in Martı́nez et al. (2005) [12]. Two
of the most common shortcomings of the discussed methods
of TWA detection are 1) unjustified assumptions about the
nature of the physiological noise (e.g., Gaussian or Laplacian
distributions) [11], and 2) arbitrary detection thresholds, often
tuned on patient populations that are judged as healthy [13],
[14].

In this article, we seek to determine if in the presence
of noise (due to exogenous sources such as electrode move-
ments or endogenous interferences such as muscle artifacts)
alternating-like patterns can appear in the data, and whether
in the absence of an appropriate statistical test such patterns
can be mistaken for physiological-based TWA. We propose
a non-parametric test to mitigate the problem of TWA false
detection. The proposed test makes no assumption concerning
the distribution or stationarity of the noise or the TWA in the
data, and therefore is robust under varying recording condi-
tions. The purpose of this work is to devise a robust statistical
test to assist in accurate detection of TWA, independent of the
particular estimation algorithm being used. To the best of our
knowledge, this work is the first to propose a statistical test for
TWA detection that is completely non-parametric and makes
no assumption about the nature (distribution or dynamics) of
the underlying noise or the TWA activity itself.

To provide a comparative study of the proposed TWA
detection algorithm, we used an open source TWA analysis
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tool to evaluate current standards for TWA metrics on four
datasets. First, by using a model of TWA, to which realistic
noise is added, we created a gold standard dataset in which
the existence and magnitude of TWA is completely known. We
then evaluated the concept of false estimation of TWA ampli-
tude by the standard TWA analyzers at low levels of TWA
amplitude and varying noise level to determine the sensitivity
floor of various noise rejection techniques. Once the range
of the standard TWA analysis techniques was determined, we
investigated the feasibility of assessing statistical significance
of a given alternans amplitude via a non-parametric surrogate
test that allows for the differentiation of statistically significant
T-Wave Alternans from alternating patterns that can be solely
explained by the statistics of noise. Our surrogate method is
similar to that described by Small et al. [15] and Theiler [16],
[17], except that all the computations are performed in the time
domain rather than the frequency domain. We also note that
our approach is related to the approximate permutation test,
Monte Carlo permutation tests or random permutation tests
[18]. The proposed statistical significance test was then applied
to three publicly available databases to investigate reports that
TWA manifest more significantly at higher heart rates in both
normal and cardiac-impaired populations [19].

We start with a brief description of the datasets utilized
in this work, followed by an introduction to the most com-
monly utilized TWA analysis methods and a discussion of
false detections in the presence of noise. Next, we describe
the proposed non-parametric statistical test to separate real
TWA effect from the noise induced alternans-like artifacts.
Finally, we evaluate the performance of the proposed approach
compared to the standard approaches using simulated vector-
cardiographs (VCGs) with known TWA amplitude and three
publicly available databases.

II. MATERIALS AND METHODS

Four data sets were used for the analysis; one set of
computer simulated VCGs with known TWA amplitude and
additive physiological noise (from the MIT-BIH Noise Stress
Test Database), one set of recordings from healthy subjects,
one set with chronic heart failure, and one set of recordings
from sudden cardiac death patients.

A. Simulated TWA

Five minutes duration records with TWA amplitudes of
0 through 100 µV were generated using an artificial multi-
lead VCG model with realistic TWA-like effects [20] and
the x-axis of the VCG was chosen as the test signal. Next,
noise segments of five minutes duration with random starting
points were selected from the MIT-BIH Noise Stress Test
Database (NSTDB) [21]. The NSTDB comprises recordings
of three different types of noise, namely baseline wander,
electrode movement, and muscle artifacts. The additive noise
was constructed by mixing all three noise types and the power
of the noise with respect to the VCG signal was adjusted to
simulate records of SNR of 10, 20, 30 dB, and no noise (due to
space limitations only results from SNR of 10 dB and no noise
are reported). For a given SNR level and TWA amplitude, we
generated 50 VCG records of five minutes each at a sampling
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Fig. 1. Examples of simulated VCG with TWA amplitude of 23 µ V.
Physiological noise consisting of a mixture of muscle artifacts, electrode
movements, and baseline wander are added to each record. Only simulations
at SNR of 10 dB (top) and clean VCG (bottom) are shown here. Zooming into
the bottom plot one can observe the micro-volt variations from a normal beat
(type-A) to an abnormal beat (type-B). The maximum amplitude variation
between a type-A and a type-B beat is concentrated around the T-wave peak.

frequency of 500Hz and 16-bit resolution per sample, which
is sufficient to prevent significant quantization noise [10], [22].
Individual records differ in that 1) the underlying VCGs were
generated using a stochastic model of heart rate variability
(70±5 beats/min) [23] and 2) the additive noise was taken
from random five minute segments of the NSTDB. A short
segment from one of the simulated records with a TWA
amplitude of 23 µV with additive noise at 10 dB SNR and
no noise is shown in Fig. 1.

B. Real ECG Recordings

To assess the effectiveness of the proposed statistical test,
we compared the performance of each of the described TWA
detection methods for separating patient populations according
to the magnitude of TWA activity they manifest. To this end
we employed three publicly available databases to investigate
reports that TWA manifest more significantly at higher heart
rates, and more often within the cardiac-impaired populations
[19].

1) Normal Sinus Rhythm Database (NSRDB):
This database includes 18 long-term (at least 8 hour long)

ECG recordings of subjects referred to the Arrhythmia Lab-
oratory at Boston’s Beth Israel Deaconess Medical Center.
Subjects included in this database were found to have had no
significant arrhythmias; they include 5 men, aged 26 to 45, and
13 women, aged 20 to 50 years. Recordings were performed
at 128Hz sampling frequency and 12-bit resolution [24].

2) Chronic Heart Failure Database (CHFDB):
This database includes long-term ECG recordings from 15

subjects (11 men, aged 22 to 71, and 4 women, aged 54 to 63
years) with severe congestive heart failure. This group of sub-
jects was part of a larger study group receiving conventional
medical therapy prior to receiving the oral inotropic agent,
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milrinone. Recordings were performed at 250Hz sampling
frequency and 12-bit resolution [24].

3) Sudden Cardiac Death Database (SCDDB):
These data include 23 patients with underlying sinus rhythm

(four with intermittent pacing), one who was continuously
paced, and four with atrial fibrillation. All patients had a
sustained ventricular tachyarrhythmia, and most had an actual
cardiac arrest. The recordings were performed at sampling
frequency of 250Hz and 12-bit resolution [24].

C. TWA Estimation and Detection

Since the purpose of this study was to propose a robust
test of significance of TWA patterns, independent of the
particular preprocessing (that is, pre-filtering, QRS detection
and beat alignment) or estimation method, we utilized the
same preprocessing steps across all methods. (For a more
thorough description see [25].) Our implementations of the
MMA and SM are based on descriptions found in Martı́nez et
al. (2005) [12] and Narayan (2006) [26] and are described in
the following sections.

The algorithms and metrics chosen for comparative study
in this work were intended to mimic the approaches employed
in commercial equipment and used most often by clinicians
rather than to provide an exhaustive comparison of all TWA
analysis techniques. To facilitate comparisons across various
methods an analysis window of length L=64 beats with 32
beats overlap was utilized independent of the particular TWA
algorithm. All the analyses in this article were performed on
a single lead of the ECG records (lead I). Although different
subjects may manifest maximal TWA activity across different
leads, we expect the differences to average out over our
databases.

1) The Proposed Detection Method (Surrogate Data Anal-
ysis):

In this work, we propose a non-parametric (assumption-free)
statistical test to separate physiologically-induced alternating
patterns (real TWA) in a beat sequence from that which could
be a byproduct of the way one measures TWA amplitude
and deals with the artifacts of recording noise. The main
motivation behind the surrogate data analysis (SDA) method
is that if the estimated alternans amplitudes are not artifacts
of noise, then by eliminating the temporal relationship be-
tween the beats- through shuffling of the beat sequence- the
amplitude of the beat-to-beat alternation ought to decrease
significantly. Henceforth, we define a noise induced alternating
pattern (NIAP) as an alternating pattern in a beat sequence
that is caused by factors other than alternation in ventricular
repolarization on an every-other-beat basis.

To cast the problem into a more rigorous statistical frame-
work, one has to approximate the distribution of NIAP. A
surrogate measure of NIAP may be obtained through repeated
reshuffling of the beat sequence (say N = 250 times) and esti-
mating the alternans amplitude for each surrogate arrangement
of beats. In general, as the number of surrogates (shufflings)
increases, the normalized histogram of the measured NIAP
will approach the true distribution of NIAP. A statistical test
can then be constructed by comparing the measured TWA

amplitude against some upper percentile ((1 − α) × 100) of
the NIAP estimates (e.g., 95th percentile or 99th percentile for
α = 0.05 or α = 0.01, respectively). If the estimated TWA
amplitude is greater than or equal to all the NIAP values up to
and including the (1−α)×100 percentile, the estimated TWA
amplitude is significant and its value is reported. Otherwise,
the TWA amplitude is labeled indeterminate for the given
analysis window. Thus, the indeterminate cases are those
which neither the presence nor the absence of TWA activity
can be ruled out. (It is worth noting that, in the absence of
any TWA activity and no random beat-to-beat variations, all
possible random arrangements of beats must result in 0 V
TWA amplitude, and thus alternans-free beat sequences would
not be labeled indeterminate. However, in real data due to the
presence of noise certain arrangements of beats will result in
non-zero TWA amplitude, therefore, as a consequence of our
definition of indeterminacy and noise, 0 V TWA amplitude is
almost always labeled indeterminate. However, this does not
cause any problem since in practice, missed or indeterminate
0 V alternans are unimportant).

Fig. 2 illustrates the normalized histogram of the NIAP
(black) calculated (using the simple averaging method de-
scribed in the following section) from a 64 beats long segment
of the simulated ECG shown in the upper panel of Fig. 1.
Superimposed on the graph are the fitted gamma distribution
(dark blue) calculated from 250 times reshuffling of the beats
and the 95th and 99th percentiles of the calculated alternans
amplitude (of the empirical distribution) and fitted (parametric)
gamma distribution. If the estimated TWA amplitude of the
unshuffled beat sequence is larger than the 95th or 99th

percentiles of the NIAP distribution one can confidently reject
the null hypothesis (i.e., the alternating pattern in the beat
sequence can be explained by the statistics of noise) at
α = 0.05 or α = 0.01, respectively. Note that, by introducing
a parametric form one can incorporate a belief pertaining to
the tail of the distribution or frequency of rare events (heavy-
tailed vs. light-tailed) which may not be captured through a
moderate number of reshufflings. For instance, a heavy-tailed
distribution can further reduce false alarm rates, since the up-
per percentiles of such distribution will be further to the right
of the corresponding percentiles of the empirical distribution
(or normalized histogram). However, this reduction in false
alarm rates comes at a cost of increasing missed detections.
This may be a large contributing factor in reports that current
TWA analysis approaches are specific but not sensitive.

In Fig. 3 the 99th percentile of NIAP amplitude in reshuffled
beat sequences are shown for simulated VCG records at SNR
of 10 dB and no noise. Each red square on the graph represents
the median over 500 values (50 records of the same TWA
amplitude and 10 overlapping windows per record). Within
each analysis window (of length L = 64 beats) the beat
sequence is reshuffled 250 times, the alternans amplitude is
calculated for each unique arrangement of the beats, and the
99th percentile of alternans amplitude over all 250 arrange-
ments is recorded. Noteworthy is the tendency of the 99th

percentile to increase with the simulated TWA amplitude. Note
also that the NIAP is non-zero (even for 0 µV TWA) and
that the baseline NIAP increases as the SNR drops. These
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Fig. 2. Normalized histogram of the NIAP (black) and fitted gamma
distribution (dark blue) calculated from 250 times reshuffling of the beats
within an analysis window (L = 64 beats). Marked are the 95th and 99th

percentiles of the calculated alternans amplitude (non-parametric) and the
fitted gamma distribution (parametric). If the estimated TWA is larger than
the 95th or 99th percentile one can confidently reject the null hypothesis at
α = 0.05 or α = 0.01, respectively.

observations can be explained by the fact that after reshuffling,
the number of type-A and type-B beats within the even and
the odd group of beats is equal, then any difference between
the average value of even group and odd group will be due
to noise, since the type-A beats (type-B beats) within the
even group will cancel the type-A beats (type-B beats) within
the odd group. When the reshuffling of the beat sequence is
thoroughly random, certain arrangements of beats may result
in one of the beat types being overly represented in the odd
or even group of beats, and therefore, some of the inter-group
differences will be due to the existence of distinct beat types
rather than being purely a noise artifact. In any event, the point
of reshuffling the beat sequence is that, if there are two distinct
beat types that manifest themselves in an alternating scheme
(ie., ABABAB · · ·) then almost all other arrangements of the
beats ought to produce an equal or smaller average difference
between the odd beats and the even beats.

It should be noted that there are L! ways to arrange L beats,
and (L/2)! × (L/2)! ways to arrange these beats such that
the new arrangements result in the same set of even and odd
group of beats as in the original beat sequence. In general, the
latter number is negligibly smaller than the former, and thus,
the probability of generating beat sequences with even and
odd groups of beats similar to the original beat sequence is
negligibly small (for 250 shuffles and L = 64, this probability
is approximately: 250×6.9×1070/1.3×1089 ≈ 1.4×10−16).
Furthermore, even if by chance shuffling results in such an
event, the associated alternans amplitude will belong to the tail
of the NIAP distribution and hence will not cause a missed
detection for even a conservative significance level of α =
0.01.

In this work the SDA-based detection technique employs
a simple averaging-based method for estimating TWA ampli-
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Fig. 3. Range of NIAP amplitudes at 95th percentile significance in
reshuffled beat sequences using the SAM (see Fig. 2), representing a statistical
measure of the upper-limit on the NIAP. Median (boxes), 5% (lower line) and
95% (upper line) are plotted to illustrate spread of the 99th percentile at each
simulated TWA amplitude and across all simulated records, at SNR of 10
dB and no noise scenario.

tude, which we now describe.
2) Simple Averaging Method:
The simple averaging (SAM) method is based on calculating

the absolute value of the difference between the average
of the even and odd groups of beats within the analysis
window, at every sample point within the ST -T complex,
and taking the maximum value of the calculated differences
within the ST -T complex. The SAM method is only an
amplitude estimation technique and is essentially equivalent
to the amplitude estimation part of the spectral method with
a rectangular window.

3) Spectral Method:
In our implementation of the spectral method (SM) [5] [27],

we utilized Welch’s non-overlapping periodogram method of
estimating power spectral density and a Hamming window
[12]. The alternans value was considered significant if the k-
value was larger than 3 (where the k-value refers to the spectral
ratio index utilized within the SM method for detection pur-
poses [27]. It can be shown that the periodogram calculated at
the frequency of 0.5 cycles/beat is proportional to calculating
the difference of even and odd group of beats (or a windowed
version of the even and odd beat sequences in the case of a
Hamming window) [12], [28].

4) Modified Moving Average Method:
The modified moving average (MMA) method was devised

as an ad hoc method of calculating average templates for the
even and the odd group of beats that are less sensitive to large
fluctuations in T-Wave amplitude [29]. The reported TWA
amplitude is the maximum value of the difference between
the calculated even and odd templates. Note also that, the
MMA method is only a TWA amplitude estimation technique
and does not include any test of significance (that is, it
performs TWA amplitude estimation but no TWA detection).
In practice, certain steps in the preprocessing/alignment step-
such as exclusion of beats with abnormal fluctuations in the
TP segment (from the end of T-wave to beginning of the P-
wave)- are taken to reduce noise artifacts [30]. However, since
in this work a uniform preprocessing/alignment step is utilized
independent of the particular TWA detector, the TP segment
based noise rejection was omitted.
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III. RESULTS

A. Simulated Data

In this section we compare the performance of the SDA,
SAM, SM, and MMA methods on the simulated data described
in section II-A, with and without additive realistic noise. The
MMA method, as noted in section II-C4, is only a metric
of TWA amplitude and does not include an explicit detection
step. In contrast, SM uses thresholding method to reject noise
artifacts. Furthermore, the SAM method is employed with and
without our proposed significance testing in order to establish
a baseline performance. Note that, the significance level for the
surrogate test was picked to yield the same level of specificity
(i.e., proportion of negatives which are correctly identified) at
0µV TWA amplitude as the SM method with a k-value of 3. In
general a more stringent level of specificity would necessarily
result in a larger percentage of missed detections and vice
versa. Thus, by fixing the level of specificity of all detection
algorithms one can compare their missed detection rates, as a
means to assess their relative performance.

1) Performance of the SDA and SAM:
Fig. 4 (top) illustrates the performance of the SAM without

significance testing on the simulated data at SNR of 10 dB
and no noise scenario. Represented in each figure are the
lower 5%, median, and the upper 95% of the estimated TWA
amplitude, as well as the identity line y = x (representing ideal
estimation). At each given SNR there was a noise floor that
hindered accurate detection of TWAs with small amplitudes.
This noise floor decreased with an increase in SNR and
resulted in false quantification of TWA amplitude, particularly
at low TWA amplitudes (note that, even though only the
results for SNR of 10 dB is shown here, these observations
were consistent for SNRs of 20 and 30 dB). Even in the
absence of background noise, a lower noise floor of 5-10 µV
was found below which it was impossible to distinguish real
TWA from noise artifacts. Note that, in Fig. 4 (top) since
the estimated alternans were all accepted (in the absence of
significance testing) the percentage of indeterminate cases (or
missed detections) were zero in all cases.

Fig. 4 (bottom) presents the TWA detection statistics after
rejecting cases that were ruled false positives using the SDA
method (α = 0.01), as well as, the percentage of indeterminate
cases (grey color error bar). Note also that at the SNR of 10 dB
and TWA amplitude of 0µV approximately 99% of the NIAP
were rejected. Furthermore, as we show next, the percentage
of missed detections at higher TWA amplitudes were notably
smaller than the SM (e.g., 20 ± 15% at the largest simulated
TWA amplitude and SNR of 10 dB, as apposed to 50± 20%
for the SM).

2) Performance of the SM:
Performance of the spectral method on the equivalent data

is presented in Fig. 5 (bottom), using a k-value of 3 that is
assumed to be constant throughout the analysis. Note that
the SM yielded a substantial rejection rate even at higher
TWA amplitudes (e.g., 50 ± 20% at the largest simulated
TWA amplitude and SNR of 10). Note also that, the SM
underestimated the TWA amplitude by a constant factor.

3) Performance of the MMA method:
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Fig. 4. Performance of the SAM on the simulated data before (top) and
after (bottom) application of the SDA method (α = 0.01). Estimated TWA
amplitude (Calc. TWA Amp.) versus simulated TWA amplitude at SNR
of 10 dB (left) and noise free simulated VCGs (right) are shown. Each point
on the figure is calculated from 50 simulated VCG records of 5 minutes
length each. At a heart rate of 70 ± 5 beats/min this results in roughly 10
TWA amplitude measurements per record, and thus a total of 500 estimates.
Represented in each figure are the lower 5%, median, and the upper 95% of
the estimated TWA amplitude, as well as, the line y = x (representing ideal
detection). The grey color error bars represent the percentage of indeterminate
cases (%indet.). Note that, at the SNR of 10 dB application of surrogate testing
resulted in rejection of approximately 99% of episodes around 0µV simulated
TWA amplitude, and simultaneously the percentage of missed detections (or
indeterminate cases) at higher TWA amplitudes is notably smaller than the
SM method (see Fig. 5).

Fig. 5 (top) illustrates the performance of the MMA method
on the simulated ECG. Comparing with the Fig. 4 (top) it can
be seen that the modified averaging method employed by the
MMA method tended to amplify the noise. For instance at the
SNR of 10 dB, and in the absence of TWA the median of
the MMA estimates was 40 µV compared with 30 µV in the
case of the SAM. This observation affirms and complements
the observations made by Cox et al. [31] who conclude that:
“MMA amplifies TWA compared to traditional spectral analy-
sis, but both likely reflect similar pathophysiology”. However,
our simulations indicate that MMA amplifies both TWA as
well as the effect of the recording noise. Due to the nonlinear
nature of the MMA method we were not able to single out a
unique cause for this behavior.

Table I summarizes the performance of the two TWA
detection algorithms discussed in this work.

4) Effect of Window Size:
Although we fixed the number of beats in our analysis to 64

beats, to allow direct comparison between different detection
techniques for noise rejection, different studies have employed
varying analysis window lengths, ranging from 16 beats [30]
for the MMA method and 128 beats for the SM [27]. To
determine the influence of the analysis window length on the
results reported in this work, we repeated all the simulation
studies with a 32 beats and a 128 beats window. Decreasing
the analysis window length led to a raising of the noise floor
and an increase in the percentage of indeterminate cases, since
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Fig. 5. Performance of the MMA method (top) and the SM (bottom) using
a k threshold value of 3. Note that, such choice of k results in rejection of
almost 98± 2% of false estimates at 0 µV TWA amplitudes and rejection of
50 ± 20% of estimated values at the largest simulated TWA amplitude and
SNR of 10. See Fig. 4 for explanation of legend.

TABLE I
PERFORMANCE SUMMERY OF THE three TWA DETECTION ALGORITHMS

DISCUSSED IN THIS WORK AT LOW SNR OF 10dB, BASED ON FIGS. 4
(BOTTOM,LEFT) AND 5 (BOTTOM,LEFT). IN THE CASE OF THE SM, THE

SPECTRAL RATIO INDEX k WAS SET EQUAL TO 3. THE SIGNIFICANCE
LEVEL OF THE SDA METHOD (α = 0.01) WAS CHOSEN TO YIELD SIMILAR

FALSE ALARM RATE AT 0 µV AS THE SM WITH k = 3 (i.e., 2± 2%).
APPLICATION OF THE WILCOXON RANK SUM TEST INDICATES

SIGNIFICANCE DIFFERENCES (INDICATED BY †) BETWEEN THE TWO
ALGORITHMS IN TERMS OF PERCENTAGE OF MISSED DETECTIONS, AT

EVERY SIMULATED TWA AMPLITUDE LEVEL FROM 50 TO 100µV
(p < 0.001). (DUE TO SPACE LIMITATIONS ONLY RESULTS FOR 50µV AND

100µV ARE PRESENTED HERE.)

Detection Method % False Alarm % missed detections
at 0 µV, at 50 µV 100 µV,

SNR=10 dB SNR=10 dB
SM (spectral ratio test) 2%± 2% 80%± 13% † 50%± 20% †

SDA 1%± 1% 60%± 25% † 20%± 15% †

the noise reduction effect of averaging was less marked when
using fewer beats, but did not influence the trend observed in
our results. On the other hand, increasing the number of beats
in a qualitatively similar way decreased the NIAP level across
all the methods.

B. Real ECG Recordings

In this section we present results of a comparative TWA
analysis of three publicly available databases using the SAM
and the SDA methods. Our goal was to investigate the effects
of the proposed statistical test to facilitate analysis of the
data (in terms of separability of patient populations according
to their level of TWA activity) independent of the particular
method of estimation of the TWA amplitude. To this end, we
applied the SAM (the simplest estimation method) without and
with significance testing to the three databases. To facilitate
comparison, we also present the performance of the SM and
the MMA method on the same databases.

Fig. 6 compares the effects of significance testing on three
different patient populations. The top panels show the esti-
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Fig. 6. Comparison of the NSRDB, CHFDB, and SCDDB patient populations
(at matched HRs) using the SAM (top) and the SDA method (bottom). The
small numbers by the open blue circles indicate the number of detected
episodes of TWA for the given HR range. The grey error bars signify the
percentage of indeterminate cases at each HR range over the entire population.
Note that, in the top panels the indeterminate cases are caused by prepro-
cessing failure of associated analysis windows, while in the indeterminate
cases in the bottom panels are an aggregate result of preprocessing failure
and application of the SDA method (α = 0.05). In comparison to the top
panels, the number of detected episodes of TWA in the bottom panels are
greatly reduced (see numbers by the open blue circles), and the margin of
separability among patient populations is increased (see Table II).

mated TWA amplitude on the NSRDB, CHFDB, and SCDDB
patient populations at matched heart rate (HR) decades using
the SAM with no surrogate testing. We chose to break down
the data into HR decades because TWA is hypothesized to
be a HR dependent phenomenon [19]. By doing so, we avoid
any bias due to the expected differences in HRs between each
population or for any differences in the noise rejection abilities
of each TWA method which may be HR-dependent. Note
that, in the case of real data the definition of indeterminate
is further extended to include preprocessing failure (due to
misalignments, excessive ectopic beats within the analysis
window, etc). The bottom panels in Fig. 6 present results of
applying the proposed SDA method. Setting α = 0.05 resulted
in rejection of a large number of alternans-like episodes which
did not pass the test of significance.

Table II summarizes the differences between the NSRDB,
CHFDB, and SCDDB populations, as depicted in Fig. 6. For
the purpose of comparison, Tables IV and III summarize the
performance of the MMA method and the SM to the same
databases.

These figures and tables demonstrate that the SDA method is
effective in separating the three patient populations according
to the median of their TWA activity. For instance, before
significance testing the difference of median TWA amplitude
between the NSRDB and SCDDB populations for HR band of
110− 120 was −1.35µV (see the 4th column of Table III).
However, after removing episodes of false positive- using
the SDA method- this difference was 41.51µV, indicating a
much higher level of TWA activity among the SCDDB patient
population.
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TABLE II
COMPARISON OF TWA ACTIVITY AT DIFFERENT HR IN THE NSRDB,

CHFDB, AND SCDDB POPULATIONS USING THE SAM WITHOUT
SIGNIFICANCE TESTING (TOP) AND AFTER SIGNIFICANCE TESTING WITH

α = 0.05 (BOTTOM). FOR A GIVEN HR RANGE, ∆med(1,2) IS THE
MEDIAN TWA AMPLITUDE OF CHFDB POPULATION MINUS THE MEDIAN
TWA AMPLITUDE IN THE NSRDB POPULATION. SIMILARLY, ∆med(1,3)
IS THE MEDIAN TWA AMPLITUDE OF SCDDB POPULATION MINUS THE

MEDIAN TWA AMPLITUDE IN THE NSRDB POPULATION. † INDICATES A
SIGNIFICANT DIFFERENCE BETWEEN TWA AMPLITUDES AT A GIVEN HR

RANGE USING THE KOLMOGOROV-SMIRNOV TEST (p < 0.0001). THE
EMPTY ENTRIES (−) INDICATE THAT THERE WERE FEWER THAN 10
DETECTED EPISODES OF TWA ACTIVITY IN THE CORRESPONDING

PATIENT POPULATIONS, AND THUS NOT AMENABLE TO SIGNIFICANCE
TESTING USING THE KOLMOGOROV-SMIRNOV TEST.

HR Band NSRDB/CHFDB/SCDDB ∆med(1,2) ∆med(1,3)

(beats/min) (% indeterminate) (µV) (µV)
SAM

40-50 1±5 / - / 20±20 - -2.28†
50-60 1±7 / 14±15 / 20±23 0.03† -2.58†
60-70 4±11 / 7±12 / 16±20 -1.67† -3.14†
70-80 4±11 / 8±14 / 10±16 -2.82† -6.23†
80-90 10±17 / 14±18 / 8±16 -1.08† -5.50†

90-100 14±19 / 11±18 / 13±20 3.05† -5.70†
100-110 12±18 / 17±21 / 8±15 9.28† -5.60†
110-120 27±25 / 14±14 / 9±16 25.05† -1.35†

After Significance Testing (SDA method)
40-50 88±4 / - / 80±11 - -2.70†
50-60 86±9 / - / 88±8 - 18.41†
60-70 83±12 / 89±5 / 90±5 8.01† 6.47†
70-80 88±8 / 82±18 / 90±9 3.45† 0.11†
80-90 88±7 / 70±25 / 68±30 9.60† 6.95†

90-100 88±8 / 84±18 / 86±12 20.71† 0.43†
100-110 91±6 / 81±18 / 90±8 28.09† 9.69†
110-120 92±4 / 66±17 / 92±6 30.96† 41.51†

TABLE III
COMPARISON OF THE NSRDB, CHFDB, AND SCDDB USING THE SM

WITH A SPECTRAL RATIO THRESHOLD VALUE OF k=3. SEE TABLE II FOR
A DESCRIPTION OF THE PRESENTED ITEMS.

HR Band NSRDB/CHFDB/SCDDB ∆med(1,2) ∆med(1,3)

(beats/min) (% indeterminate) (µV) (µV)
40-50 - / - / - - -
50-60 87±10 / - / 92± 6 - 12.12†
60-70 91±6 / 85±15 / 93±4 -1.37† -4.57†
70-80 93±4 / 78±21 / 91±6 3.91† -5.79†
80-90 94±3 / 87±11 / 87±13 3.68† -5.33
90-100 95±3 / 87±10 / 88±9 9.15† -4.21†

100-110 95±2 / 76±13 / 91±7 28.14† -4.25†
110-120 95±2 / 74±15 / 90±8 21.95† 3.24†

IV. DISCUSSION

TWA analysis generally leads to a large number of indeter-
minate cases [4], [6], [7]. Furthermore, ‘natural’ TWA activity
of normal subjects of up to 10 µV has been reported in healthy
subjects [19]. The results of our study suggest that these
observations may be explained by the high number of false
positive TWA events, particularly during periods of higher
noise (such as during exercise/stress test when the signal
quality is qualitatively similar to the 10 dB simulated records
studied here). In addition, our simulation study indicates
that in the absence of appropriate (adaptive non-parametric)
significance testing, even a relatively small amount of noise
(due to muscle artifact, baseline wander or electrode motion)
can lead to the raising of the noise floor to clinically significant
levels (10 µV or much more).

Our results on artificial data indicate that the SDA method
produces a more accurate detection of TWA patterns in noise,
when compared to other standard or more advanced techniques
of noise rejection at both low and high values of TWA and

TABLE IV
COMPARISON OF THE NSRDB, CHFDB, AND SCDDB USING THE MMA
METHOD. SEE TABLE II FOR A DESCRIPTION OF THE PRESENTED ITEMS.

HR Band NSRDB/CHFDB/SCDDB ∆med(1,2) ∆med(1,3)

(beats/min) (% indeterminate) (µV) (µV)
40-50 1±5 / - / 20±20 - -2.94†
50-60 1±7 / 14±15 / 20±23 -2.14 -2.63†
60-70 4±11 / 7±12 / 16±20 -1.56† -4.28†
70-80 4±11 / 8±14 / 10±16 -4.54† -8.64†
80-90 10±17 / 14±18 / 8±16 -2.33† -7.85†
90-100 14±19 / 11±18 / 13±20 1.53† -7.86†

100-110 12±18 / 17±21 / 8±15 9.36† -7.92†
110-120 27±25 / 14±14 / 9±16 23.19† -3.43†

noise. Since our technique assumes nothing concerning the
noise distribution, we expect (and observe) a lower error rate.
The inverse relationship between the false alarm rate and
missed detection rate is well known; reducing one results
in increasing the other and vice versa. Thus, to facilitate
comparison of the three detection algorithms discussed in this
work, we fixed their false alarm rates at the simulated TWA
amplitude of 0µV to approximately 1− 2% and studied their
missed detection rates. As summarized in Table I, the SDA
method resulted in a statistically significant reduction in the
percentage of missed detections (or indeterminate cases) at
every simulated TWA amplitude from 50 to 100µV (Wilcoxon
rank sum test, p < 0.001).

The SAM method is utilized in this work as a baseline am-
plitude estimation technique to demonstrate the applicability
of the SDA method for reducing false detections (false alarms)
and simultaneously reducing missed detections. Our rational
for choosing the SAM method was its ease of interpretation,
as that it is based on simple averaging in time-domain. Logi-
cally, we can expect that more sophisticated TWA amplitude
estimation techniques, in association with the SDA method,
will result in further improvements.

When testing the effect of window size we found that
decreasing the window length from 128 to 64 to 32 beats
simply raised the noise floor, but did not affect the trend
in our result. These observations are consistent with the
previously reported results concerning the influence of window
size on the performance of the SM and the MMA method
[9]. Nevertheless, increasing the window size is not always
practical, since one might wish to decrease the window length
to mitigate the nonstationary effects such as phase changes due
to ectopy and HR perturbations, and to be able to more rapidly
track changes in TWA amplitude. We also demonstrate that the
SM technique produces an estimate of the TWA amplitude that
is biased towards values lower than simulated values. (This
observation can be explained mathematically and is beyond
the scope of this work [28], [32].)

Studies on both artificial data and three different patient
populations (using the NSRDB, the CHFDB, and the SCCDB)
indicate that our new detection algorithm provides enhanced
discriminatory power between patient populations. (The me-
dian difference between healthy and unhealthy patients is
significantly larger than the other standard techniques at almost
all HRs (p < 0.0001).) The most marked differences are
found at higher HRs, although HRs below standard thresholds
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(110 BPM) also allow differentiation of normal and abnormal
subjects. Note that in each case the application of significance
testing increased the margin of separability between the patient
populations (see Tables II and III). This improvement can be
explained as follows: before significance testing the number
of reported alternans-like episodes with relatively small am-
plitudes were much larger, and thus the quantiles were biased
towards zero. After significance testing a large number of such
episodes were marked as indeterminate and thus were removed
from the quantile calculations, and therefore each quantile took
on a larger value. Therefore, the application of significance
testing improved the margin of separability by removing false
detections that were negatively weighting the calculations.
Furthermore, on average the surrogate test maintained a lower
percentage of indeterminate case than a comparable test (the
SM). This observation may be explained by the lower missed
detection rate of our surrogate test method.

Note that the SM does include a test of significance
(designed under assumption of Gaussianity of the spectral
coefficients) while in contrast the MMA method relies on
the preprocessing steps (such as exclusion of beats with
abnormal fluctuations in the TP complex) to reduce noise
artifacts [29], [30]. We repeated the TWA analysis on the
real data using the SM and MMA methods. In the case of
the NSRDB-CHFDB, application of the SM resulted in an
improvement in inter-population separability over both the
SAM (with no significance testing) and the MMA method.
However, in the case of the NSRDB-SCDDB, only the SAM
with the surrogate testing method was able to improve the
inter-population margin of separability. The MMA method
produced similar results to the SAM (with no significance
testing) although with a positive offset at all HRs, as we would
expect from our experience on artificial data.

It is worth noting that the SDA method is not compu-
tationally more expensive than the standard methods, since
the bulk of the computation of TWA algorithms is devoted
to preprocessing and alignment of beats, with generation of
surrogate data through beat index reshuffling and re-estimation
of TWA amplitude being only a small portion of the overall
computational cost.

Finally, we note that we employed the same preprocessing
for all the methods, using the best available open source
algorithms [25] since our work focuses on significance testing.
The commercial implementations of the MMA and the SM
may include additional or alternative pre-processing and noise
reduction steps that are not considered here. However, it is
unlikely that even extremely sophisticated preprocessing or
estimation methods (such as complex demodulation or time-
frequency approaches) would obviate the need for significance
testing since there exits no known technique which completely
removes all noise in the ECG.

V. CONCLUSIONS

We have described a new application of a non-parametric
surrogate test to reject false TWA-like activity (which could
have been due to artifacts or noise). The new technique was
evaluated on both real and artificial data. Tests on the artificial
data demonstrate the superiority of our method over existing

TWA detection methods both at low and high levels of TWA
amplitude.

In the absence of background physiological noise, a lower
noise floor of 5-10 µV was found, below which the measured
TWA is unreliable and could be due to noise alone. This noise
floor may account for some reports of TWA in normal patients
below 10 µV. Results also demonstrate that the higher the
background noise, the more likely it is that a given technique
will falsely detect TWA and over-estimate the magnitude of
the TWA.

When evaluated on three public databases (the NSRDB,
CHFDB and SCDDB) our new approach demonstrated signif-
icant differences in TWA amplitudes between each database at
all HRs intervals between 40 BPM and 120 BPM. The most
marked differences were generally found at higher HRs, and
the new technique provided a larger margin of separability
between patient populations than the standard methods. Our
results also indicate that population separation is possible at
lower HRs than currently clinically recommended.
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