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ABSTRACT environment models. The proposed new algorithm follows
Hﬁe same assumptions that MEMLIN with regard to the
noise model but performs a non-linear transformation based
on histogram equalization to deal with the nonlinearity
getween clean and distorted speech in the cepstral domain.

This paper presents a feature normalization technique base
on minimum mean square error, histogram normalization
and multi-environment models. Using stereo training data,
accurate estimates of the bias between clean and distorte i ) ]
speech cepstral vectors can be provided. With the stereo  1he new algorithm, called Multi-Environment Models
training data, a non-linear transformation of the distorted Pased Histogram Normalization (MEMHIN), as MEMLIN,
cepstral vectors is performed based on minimum meanPerforms a feature normalization using prob§b|llst!c models
square error estimation and histogram equalization. Resultd0r the clean speech, for the noisy acoustic environments
with SpeechDat Car database show an improvement inapd for the conditional probability between cle_an and
the word error rate with regard to linear transformation distorted cepstral vectors. To compensate the differences
techniques as SPLICE [1] and MEMLIN [2]. An inthe variance between the clean and the distorted speech
improvement in word error rate of 67.28in digits task, cepstral _vectors, a non linear transfqrmaﬂon is Iear_nt for
and 40.79 in spelling task are obtained. each pair of gaussians, based on histogram equalization.
So, the target of this algorithm is to learn a non-linear
transformation between clean and distorted feature vectors
associated to a pair of gaussians (one for a clean model,
. . ) ._and the other one for a noisy model), for each basic defined
The _r_msmgtch between tra|n|_ng and testing acoustic acoustic environment. This knowledge, the gaussians
condmon_s is one of the most important reasons for the associated, the conditional probability between clean and
degradation on the performance of the automatic speech}, o oa\ssians, and the environments are the data used

recognmon systems [3.]' In this paper, WE Propose a new,, compensate the mismatch between clean and distorted
non-linear transformation feature normalization algorithm vectors

based on histogram normalization and the Minimum Mean ,
The MEMLIN and MEMHIN algorithms are compared

Square Error (MMSE) estimator. ) . X
Feature normalization based on MMSE has been YSing real distorted speech from the Spanish SpeechDat-Car

successfully applied on the cepstral domain. In this d_ataba_lse and artificial distorted speech (controlled additive
sense, algorithms like multivariate gaussian based cepstraP'Stort'On)'

normalization algorithm, RATZ [4], Stereo based Piecewise ~ This paper is organized as follows: in section 2,
Linear Compensation for Environments, SPLICE [1], or the MMSE estimator is presented, and the equations for
Multi-environment Models based Llnear Normalization, MEMLIN and MEMHIN are obtained. The expressions
MEMLIN [2], are some examples. All of them are based 0f MMSE parameters are explained in section 3. The
on the use of stereo training data to provide accurateresults are shown in section 4. Fina”y, the conclusions are
estimates of the bias between clean and distorted speecgXplained in section 5.

cepstral vectors.  Although the nonlinearity between

the cepstral vectors of clean and distorted cepstral, the

feature normalization is performed by means of a linear 2 MMSE ESTIMATOR

transformation. The main difference between SPLICE and
MEMLIN is the noise models. SPLICE assumes no explicit
noise model and MEMLIN assumes a set of basic noisy

1. INTRODUCTION

Given the clean feature vector and the noisy oney, the
clean estimation vector;, can be calculated by MMSE
This work has been supported by MECD estimation:




os the noisy gaussian, givesy and p(s.|s;,y) is the
& = Elzly] = /a:p(x|y)dx (1) probability of the clean gaussian, given the noisy one
x and the noisy feature vector. On the other hand, in
wherep(z|y) is the probability density function, PDF, Order to calculatep(sy|y), Bayes theorem can be used:
of 2 giveny. In order to evaluate the expression (1) for P(syly) = p(ely)p(syle, y), wherep(ely) is the probability
MEMLIN and MEMHIN, some assumptions are made: of e environment, given the noisy feature vector, and
Noisy signal is divided into several basic environments, P(syle,y) is the probability of the noisy gaussian, given
and for each environment, it will be modelled as a mixture the environment ang. To simplify the notationa.. will
of gaussians: be used in the following expressions insteac(fly); so
pely) = N
Zp s e @ The expression of the c!ean featu're e;tlmatlon, made in
the third assumption, (2), is the main difference between
i MEMLIN, and MEMHIN. MEMLIN uses a linear function
p(ylsy) = N(y; pse, Xse ) (3) (8), and MEMHIN uses a non linear one, obtained by

. . histogram equalization [5] (9):
wheree represents the environment inde, denotes 9 q [51)

the correspondent gaussian of the noisy model forethe & frEMLIN (Y, S0, 85) =Y — Ts, 0 (8)
environment, [hse ZSF p(s{j) are the mean vector, the B
diagonal covariance matrix, and the weight associatef,to © = fuEMHIN(Y, S0, 85) = Cri, e (Cysase (9) (9)

andp(y|s;) is the probability of noisy feature vector, given

the noisy gaussian. _ _ o transformation for MEMLIN. It is associated to each pair of
_ Clean feature vector is modelled with a distribution of o ,ssjans: one of the noisy model of a certain environment,
mixture gaussians: s¢, and the other one of the clean modsl, In MEMHIN
function, Cm,sz,sg is the clean feature vectors cumulative

= Zp(x|sf)p($f) ) probability associated te, ands¢ gaussians, and’, | .
’ is the inverse functionCy ,_ .. is the noisy feature vectors
p(z[sz) = N(@; ps,, Es,) ) cumulative probability associated 0 ands; gaussians.
With these approximations, ((8), and (9)) the final
expressions of (7) for MEMLIN, and MEMHIN are (10),

and (11), respectively:

where r,, . is the independent term of the linear

where s, denotes the correspondent gaussian of the
clean modely,, , X , andp(s,) are the mean, diagonal
covariance matrix, and the weight associates,top(x|s.)
is the probability of the clean feature vector, given the clean
gaussian. @ sy )r. <« (10
The third assumption is consider the clean feature 0 ZXE:Z a8y e lpoclsy, 1) T 10
vector,z as a function of the noisy ong, the clean model

gaussians,, and the noisy environment model gaussign, &, ~ > 3" >~ e p(sC |y )p(sslsS, Y)Crayse (Cyos, st (Ue)
e

> f(y, 5z, 55) 6) (1)

wheret is a temporal index. With the same mathemati-
cal theory, and others assumptions, the expressions of RATZ
and SPLICE can be obtained. For RATZ algorithm, the
clean feature vector is modelled as a mixture of gaussians
((4), and (5)), and the approximation feris:

& / S F W 520 85)p(, 55, 55 |y)da = T~ frarz(Y;Sc) =Y —Ts, 12)

€ S5y where 7, is the independent term of the linear
- ZZZf(y’vasz)p(sﬂsz’y)p(say) (7) transformation and it only depends on the clean gaussian.

With all these assumptions, (1) can be approximated in
the following way, using Bayes theorem:

R

e 5. s Finally, the estimator clean vector is obtained as:
where p(z, s, s5|y) is the probability ofz, s,, and Beyr = p(salye)rs, (13)
sy given y. It can be seen, using Bayes theorem,
asp(z, sz, sply) = p(xlse, s)p(syly)p(sz|sg, y), where For SPLICE technique, noisy feature vectors are

p(z[sz, sy) is the probability of clean feature vector, given modelled with one mixture of gaussians, and the
the noisy and clean gaussiansgs;|y) is the probability approximation forr is:



_10F
r~ fsprice(y, Sy) =Y —Ts, (14)
wheres, is the correspondent noisy gaussian, and
is the independent term of the linear transformation. It only
depends on the noisy gaussian. The estimator clean vector
is obtained as:

Ly > Yy — ZP(3y|Z/t)Tsy (15)
Sy 101 e b
As it can be seen in [2], where SPLICE, MEMLIN, .
and other techniques are compared, the use of clean and | S |
several noisy environments, produces a more specifical i
transformation that models more properly the mismatch
between clean and noisy feature vectors, and it produces =2 10 =  ® 4 2 o 2

a great improvement. On the other hand, the use of

linear transformations supposes that the correspondenfig. 1. Clean and noisy second MFCC coefficient
environment does not produces a variance transformatiorfépresentation, and clean and normalized second MFCC
between clean and noisy feature vectors, given a pair ofcoefficient representation

gaussians; only a mean shift. A non linear transformation

assumes a possible variance transformation, and this is thealculation of the environment weight in this moment will
main improvement of MEMHIN concerning MEMLIN. As  be:

it is well known that convolutional noise in time domain

produces, mainly, a mean shift in Mel Cepstrum domain Qet =0 Qey—1+(1— ﬁ)M (16)
[6], and additive noise produces, principally, a variance 2 e Pe(yt)
transformation [6], it is reasonable to think that MEMHIN where is the memory constant, o are considered

will obtain better results than MEMLIN when additive uniform for all environments. Alsop(sS|y;) can be
noise is more important, and this improvement will be calculated using (2), (3), and Bayes:

less significant when convolutional noise was the most
important noise in the environment.

In order to observe the effect that MEMLIN produces
in a certain feature component and environment, the fig.1
's presented. ~ In ubper plot, the rela_tlon betwgen the Cy.s, s, @ training process with available stereo data for
second MFCC coefficient for clean test signal (y axis), and ~¥:%=:%’ .

. oy each environment is neede&’, = {«§,...,2{ ,...,z5% },
the correspondent noisy one (x axis) is presented. The e e

. . . _for clean feature vectors aid = {v5,...,yf , ..., y5 } for

environment selected is E1 (car stopped and motor running). . : e e

. ) L noisy ones, witht. € [1,7,].
The lower plot is the same relation when the noisy signal The conditional orobabilit . can be
is normalized with MEMLIN technique and 32 gaussians considered time inde pendent )z;'n%(?tx |izy(’agtti)r,nated with the
for noisy and clean environments. The represented IineStereo trainin databprelativé frequency:
in two figures isz = y. It can be seen that MEMLIN 9 y q Y-
obtains a good approximation to the ideal line. The behavior . . Cn(szlsy)
for MEMHIN and for others environments and MFCC P(salsy, ye) = psalsy) = N (18)
coefficients is very similar.

plulss)p(s5)
5 2(01ls5)n(55)

p(syly) = 5 (17)

In order to computey(sx|sy, yt), 7's,,sc, Cu,s, s and

whereCy (s.|s;) is the number of times that the most
probable pair of gaussians is;, and sy for each pair
3. MMSE PARAMETERS ESTIMATION of stereo feature vectors ef environment, andV is the
number of times that the most probable gaussian for noisy
vector issg in e environment.
For MEMLIN, the calculate Ofrs,:,s; (20) can be
eObtained by minimizing the weighted square ery,

In order to calculate the estimator vectdy, for MEMLIN
and MEMHIN, some variables have to be obtained:;,
p(5§|yt), p(sw‘sgepyt)a rsz,s,‘;v C;c,sm,s,‘; and Cy,sm,s,‘;- The
first two, as are dependent of noisy feature vector, ar
computed during recognition. The other ones have to be(19):
obtained in a training process in which stereo data is needed.

For a.. an iterative solution is considered. Each B, . :ZP(SMQ% V(5|92 ) (0, — Yo, +7 56)2 (19)
moment, ¢, a noisy feature vector is availablg,. The T TNV e TR ey



El E2 E3 E4 ES E6 E7 || MWER
T1: CO-CO|| 038 | 2.06 | 1.40 | 0.50 | 0.57 | 0.16 0.0 0.86

T1: CO-C2 || 4.29 | 11.08 | 11.61 | 14.79| 14.49 | 11.27 | 20.07 11.53
T1:C2-C2| 114 | 480 | 280 | 3.38 | 439 | 159 | 1.36 3.07

T2: CO-CO || 11.81| 12.45| 12.94| 11.03| 11.92| 7.41 | 8.86 11.36
T2: CO-C2 || 24.94 | 35.19 | 40.04 | 42.73 | 46.49 | 39.46 | 56.00 38.58
T2: C2-C2 || 24.87 | 27.96 | 30.42 | 25.38 | 32.04 | 22.73 | 29.43 27.59

Table 1. WER digits and spelling tasks baselines results

|1 Ee2 E3 E4 E5 E6  E7| MWER MIMP
MEMLIN88 || 1.73] 575| 462 | 7.52| 9.91] 6.83 | 10.88| 627 5264
MEMLIN 16-16 || 1.44 | 5.66 | 420 | 5.80 | 7.53 | 5.87| 850 || 525  61.03
MEMLIN32-32 || 1.05 | 557 | 420 | 5.01| 7.34 | 492 | 646 || 479  65.65

MEMHIN 8-8 1.63 | 5.66 | 490 | 7.27| 9.06 | 6.51 | 10.2 6.01 54.84
MEMHIN 16-16 || 1.34 | 5.83 | 4.06 | 6.39 | 7.91 | 6.03| 7.82 5.37 60.31
MEMHIN 32-32 || 0.96 | 5.15| 4.06 | 551 | 7.15| 4.60 | 6.46 4.67 67.28

Table 2. WER results with MEMLIN, and MEMHIN techniques for digits task

. ol e . . S Zte p(s$|$§e)(ytee - xge)
r _ Zta p(smlee)p(sgﬂyt;)(yt; - xte) (20) Se T Zt p(sm|x§ )
et > (sl )p(slyf.)

(23)

SPLICE training process is similar to MEMLIN one;
p(sy|y) is obtained in a similar way of (17), and  is

wherep(s,|x7, ) is the probability ofs,. given the clean calculated by minimizing the weighted square erfay, :

feature vector. It can be calculated with (4), and (5), with

Bayes theorem in a similar way as (17): B — Zp sylye g 1 ) (24)
= v s
p Tt |51) (SI)
p(Sz|zf) < (21)
TS, ol ]s0)p(sa) b e Pl ), — ) (25)
On the other hand, for MEMHIN, and associated to > P(sylyt,)

each pair of gaussianas (one for the clean model, and one
for noisy environment one), the bands histograms for 4. RESULTS

each component of the feature vector are obtained (the
components are considered independent [5]). In orderA set of experiments have been carried out using the
to do that, the components for each pair of gaussianasSpanish SpeechDat Car database [7]. Seven environments
are weighted by (s ¢, )p(sS|y:,). With the histograms, — are defined: car stopped, motor running (E1), town
Cos, - andC, , s are calculated cumulating the bands. traffic, windows close and climatizer off (silent conditions)
RATZ needs a training process with stereo data in order (E2), town traffic and noisy conditions: windows open
to obtain the following variablesr,,, andp(s,|y;). The  and/or climatizer on (E3), low speed, rough road, and
mathematic technique is similar to MEMLIN. To calculate Silent conditions (E4), low speed, rough road, and
p(s4|ye), it is used (4), and (5), with Bayes theorem in a noisy conditions (E5), high speed, good road, and silent
similar way as (17)r,, is calculated ((23)) minimizing the ~ conditions (E6), and high speed, good road, and noisy

weighted square errof,, (22): conditions (E7).
The tasks used are isolated and continuous digits (task
Zp (se|we, ) (e, —ye, + 75, )2 (22) T1), and spelling (task T2). All the phrases are 16 KHz

sampled. The clean signals are recorded with a close talk



| B E2 E3 E4 E5 E6 E7| MWER MIMP
MEMLIN8-8 || 21.00 | 26.84 | 26.99| 29.69 | 36.31| 32.57| 43.14| 2940  34.03
MEMLIN 16-16 || 20.46 | 27.12| 27.10| 27.48| 3457 | 29.76 | 4229 2839  37.44
MEMLIN 32-32 || 20.00 | 26.98| 27.88| 26.98| 34.10| 28.74| 4029 2800 3889

MEMHIN 8-8 21.31| 26.63 | 26.77 | 28.59 | 34.96 | 31.29 | 42.86 28.82 35.56
MEMHIN 16-16 || 20.54 | 26.84 | 27.54 | 26.68 | 33.31 | 29.76 | 41.43 28.01 38.50
MEMHIN 32-32 || 20.08 | 26.08 | 27.99 | 26.78 | 32.28 | 27.84 | 41.43 27.44 40.79

Table 3. WER results with MEMLIN, and MEMHIN techniques for spelling task

El E2 E3 E4 ES E6 E7 || MWER
C0-C2 (0dB) || 33.27 | 29.59 | 29.79| 35.21 | 36.70| 23.81 | 25.85 31.55
C0-C2(5dB) || 12.77| 9.43 | 13.01| 13.03| 11.63| 6.35 | 1.36 10.64
C0-C2 (10dB)|| 4.19 | 420 | 6.99 | 476 | 3.81 | 2.86 0.0 4.19
C0-C2(15dB)|| 2.00 | 249 | 461 | 251 | 181 | 0.95 0.0 2.24

Table 4. Baseline results: WER for several SNRs in digits task

H El E2 E3 E4 E5 E6 E7H MWER MIMP

MEMLIN 8-8 20.32 | 20.93 | 22.52| 24.44 | 22.78 | 15.56 | 8.84 20.63 35.57
MEMLIN 16-16 || 19.37 | 19.21 | 20.84 | 22.81 | 22.31| 15.08 | 8.16 19.49 39.38
MEMLIN 32-32 || 18.22 | 18.1 | 19.44 | 21.05| 19.45| 12.38 | 6.12 17.70 45.30

MEMHIN 8-8 16.3 | 17.67| 21.82| 19.8 | 20.50 | 15.08 | 8.16 17.98 43.94
MEMHIN 16-16 || 15.34 | 17.58 | 19.86 | 18.80 | 19.35| 14.60 | 6.46 17.05 46.96
MEMHIN 32-32 || 14.96 | 18.10 | 19.86 | 18.67 | 18.49 | 14.13 | 6.46 16.86 47.49

Table 5. WER results with SNR 0dB with MEMLIN, and MEMHIN techniques for digits task

|2 E2 E3 E4 E5 E6  E7| MWER MIMP
MEMLIN88 || 9.20| 7.38] 11.61] 9.40] 820 571 068 815  25.99
MEMLIN 16-16 || 8.53 | 7.03| 10.77| 8.40| 858 | 5.08| 0.68| 771 3047
MEMLIN32-32 || 8.15 | 6.70 | 9.00 | 7.64| 7.72| 492] 034 706  37.62

MEMHIN 8-8 757|746 | 825 | 7.14| 7.72| 492 | 0.34 6.93 37.82
MEMHIN 16-16 || 7.00 | 6.76 | 8.81 | 5.89 | 7.53 | 5.08 | 0.0 6.55 42.73
MEMHIN 32-32 || 6.52 | 6.52 | 8.10 | 5.89 | 7.53 | 5.08 | 0.0 6.37 44.44

Table 6. WER results with SNR 5dB with MEMLIN, and MEMHIN techniques for digits task



| 2 E2 E3 E4 E5 E6 E7 MWER MIMP
MEMLIN8-8 | 355 3.34| 550 | 363 3.91] 254 00 355  19.95
MEMLIN 16-16 || 2.68 | 3.00| 5.17 | 3.51| 371 | 2.38 | 00| 319 311
MEMLIN 32-32 || 2.68 | 3.09| 5.00 | 3.38 | 3.24| 238 | 00| 308 3386

MEMHIN 8-8 297| 3.69| 503|276 | 286 | 1.75| 0.0 3.04 33.39
MEMHIN 16-16 || 3.07 | 3.00 | 490 | 2.88 | 2.76 | 1.59 | 0.0 2.88 41.04
MEMHIN 32-32 || 297 | 3.00 | 5.03 | 2.76 | 2.76 | 1.43| 0.0 2.84 42.35

Table 7. WER results with SNR 10dB with MEMLIN, and MEMHIN techniques for digits task

|1 E2 E3 E4 E5 E6 E7 MWER MIMP
MEMLINS-8 || 1.82] 2.40| 434 | 251 | 1.62| 095 00 212 1076
MEMLIN 16-16 || 1.73 | 2.23| 4.06 | 2.38 | 1.52| 0.95| 00| 200  24.07
MEMLIN32-32 || 1.63 | 2.23 | 4.06 | 2.26 | 1.52| 0.95| 0.0 || 1.97  26.14

MEMHIN 8-8 1.82]232| 350| 1.75| 1.52| 0.95| 0.0 1.88 25.39
MEMHIN 16-16 || 1.92 | 2.23 | 3.64 | 1.75| 1.43| 0.95| 0.0 1.88 29.57
MEMHIN 32-32 || 1.73 | 2.23 | 3.64 | 1.63 | 1.43 | 0.95| 0.0 1.83 32.71

Table 8. WER results with SNR 15dB with MEMLIN, and MEMHIN techniques for digits task

microphone (Shune SM-10A), which it is called CO, and testing noisy signal with clean models, C2-C2 represents
the noisy signals are recorded by a microphone placed onthe results testing noisy signal with all environments noisy
the car ceiling in front of the driver (Peiker ME15/V520-1): models.
itis C2. The SNR range for the clean signals goes from 20  The WER comparative results between the different
to 30 dB, and for the noisy signals goes from 5 to 20 dB. 12 techniques for task T1 and task T2 can be seen in table
MFCC and energy are computed each 10 ms using a 25 m® and 3, respectively. Next to the technique, appears
hamming window. the numbers of clean and noisy used model gaussians, 8,
The feature normalization techniques are applied over16 or 32. The mean improvement (MIMP) is calculated
the 12 MFCC and delta energy. The clean and noisy modelsbetween C0-C0O and C0-C2, and MWER are presented in
are built for these feature vectors with 8, 16, or 32 gaussiansthe correspondent tables, too. MEMLIN and MEMHIN
For recognition, environment E1 has 200 phrases, E2use all environments to normalize (E1,...,.E7). MEMHIN
223, E3 136, E4 152, E5 200, E6 120, and E7 has 56 histograms were calculated with 600 bands.
phrases, on the other hand, the feature vector is composed of It can be observed that the good behavior of MEMLIN
the 12 normalized MFCC with cepstral mean substraction,and MEMHIN are similar in the two tasks: MEMLIN
the first and second derivative and the normalized deltaobtains an improvement of 65.%5in task T1, and 38.88
energy, given a feature vector of 37 coefficients. The contextin task T2. The improvement of MEMHIN concerning
depended acoustic models are composed of 699 one stat®lEMLIN is not very important: 1.6% in task T1, and
continuous density HMM with at least 16 gaussians per 1.90% in task T2, but, as it has been said, the strong point of
state. These units are defined dividing each phonetic unitMEMHIN is when additive noise is the important mismatch
into its left context, the unit without context, and its right between clean and noisy feature vectors.
context. For example, the Spanish phonetic word /k/ /a/ s/ In order to study the improvement of MEMHIN
/al, is transformed intoi/ < k/ /k/ [k>al k<al lal la>s/ concerning MEMLIN in additive noise environments, an
la<sl Isl Is>al Is<al /al la> §/, wheref means any context,  experiment was developed. Digits task clean signal was
< represents left context, anelis right context. contaminated with additive noise and different SNRs: 0dB,
The baseline word error rate, WER, results for each 5dB, 10dB, and 15dB. Each phrase was contaminated with
environment are presented in table 1. MWER is the meanits own noise. The baseline appears in table 4. The behavior
WER with the seven environments. CO0-CO representsof these two algorithms was studied, and the results can be
testing clean signal with clean models, CO-C2 representsseen in table 5 (for 0dB), table 6 (for 5dB), table 7 (for



10dB), and table 8 (for 15dB).

The results for 10dB and 15dB and environment E7
are not very representative because there are only 56
phrases in the test corpus. Since the range to calculate
the improvement in these cases is 0, MIMP is calculated
without the environment E7. The mean improvement

of MEMHIN concerning MEMLIN in all SNRs is very [6]

significant, and it is more important when the number of
gaussians is small. So, the mean WER improvement when 8

gaussians are used is 12%,Avith 16 gaussians it is 8.82, [7]

and, finally, with 32 gaussians, the improvement is &02
This shows that the variance normalization that MEMHIN
proposes can be a good solution when the environments are
characterized by additive noise.

5. CONCLUSIONS

In this paper it has been compared two techniques based
on MMSE estimator: MEMLIN, and MEMHIN. The main
difference between them is the transformation proposed
to model the differences between noisy and clean feature
vectors. MEMLIN uses a linear transformation with
pendent equal 1, and MEMHIN proposes a non linear
one: this supposes that the environment may produce a
mean and a variance shift between clean and noisy feature
vectors. The results show a small improvement in most
environments when there is an important convolutional
noise, but this improvement goes up when the most
important mismatch between noise and clean signal is
additive noise. In this case, the use of MEMHIN produces
a improvement of more than% Anyway, the results
with both techniques are significant better than with similar
algorithms, like SPLICE [2].
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