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ABSTRACT

This paper presents a feature normalization technique based
on minimum mean square error, histogram normalization
and multi-environment models. Using stereo training data,
accurate estimates of the bias between clean and distorted
speech cepstral vectors can be provided. With the stereo
training data, a non-linear transformation of the distorted
cepstral vectors is performed based on minimum mean
square error estimation and histogram equalization. Results
with SpeechDat Car database show an improvement in
the word error rate with regard to linear transformation
techniques as SPLICE [1] and MEMLIN [2]. An
improvement in word error rate of 67.28% in digits task,
and 40.79% in spelling task are obtained.

1. INTRODUCTION

The mismatch between training and testing acoustic
conditions is one of the most important reasons for the
degradation on the performance of the automatic speech
recognition systems [3]. In this paper, we propose a new
non-linear transformation feature normalization algorithm
based on histogram normalization and the Minimum Mean
Square Error (MMSE) estimator.

Feature normalization based on MMSE has been
successfully applied on the cepstral domain. In this
sense, algorithms like multivariate gaussian based cepstral
normalization algorithm, RATZ [4], Stereo based Piecewise
LInear Compensation for Environments, SPLICE [1], or
Multi-environment Models based LInear Normalization,
MEMLIN [2], are some examples. All of them are based
on the use of stereo training data to provide accurate
estimates of the bias between clean and distorted speech
cepstral vectors. Although the nonlinearity between
the cepstral vectors of clean and distorted cepstral, the
feature normalization is performed by means of a linear
transformation. The main difference between SPLICE and
MEMLIN is the noise models. SPLICE assumes no explicit
noise model and MEMLIN assumes a set of basic noisy
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environment models. The proposed new algorithm follows
the same assumptions that MEMLIN with regard to the
noise model but performs a non-linear transformation based
on histogram equalization to deal with the nonlinearity
between clean and distorted speech in the cepstral domain.

The new algorithm, called Multi-Environment Models
based HIstogram Normalization (MEMHIN), as MEMLIN,
performs a feature normalization using probabilistic models
for the clean speech, for the noisy acoustic environments
and for the conditional probability between clean and
distorted cepstral vectors. To compensate the differences
in the variance between the clean and the distorted speech
cepstral vectors, a non linear transformation is learnt for
each pair of gaussians, based on histogram equalization.
So, the target of this algorithm is to learn a non-linear
transformation between clean and distorted feature vectors
associated to a pair of gaussians (one for a clean model,
and the other one for a noisy model), for each basic defined
acoustic environment. This knowledge, the gaussians
associated, the conditional probability between clean and
noisy gaussians, and the environments are the data used
to compensate the mismatch between clean and distorted
vectors.

The MEMLIN and MEMHIN algorithms are compared
using real distorted speech from the Spanish SpeechDat-Car
database and artificial distorted speech (controlled additive
distortion).

This paper is organized as follows: in section 2,
the MMSE estimator is presented, and the equations for
MEMLIN and MEMHIN are obtained. The expressions
of MMSE parameters are explained in section 3. The
results are shown in section 4. Finally, the conclusions are
explained in section 5.

2. MMSE ESTIMATOR

Given the clean feature vectorx, and the noisy one,y, the
clean estimation vector,̂x, can be calculated by MMSE
estimation:



x̂ = E[x|y] =
∫

x

xp(x|y)dx (1)

wherep(x|y) is the probability density function, PDF,
of x given y. In order to evaluate the expression (1) for
MEMLIN and MEMHIN, some assumptions are made:

Noisy signal is divided into several basic environments,
and for each environment, it will be modelled as a mixture
of gaussians:
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y)p(se
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wheree represents the environment index,se
y denotes

the correspondent gaussian of the noisy model for thee
environment,µse

y
, Σse

y
, p(se

y) are the mean vector, the
diagonal covariance matrix, and the weight associated tose

y,
andp(y|se

y) is the probability of noisy feature vector, given
the noisy gaussian.

Clean feature vector is modelled with a distribution of
mixture gaussians:

p(x) =
∑
sx

p(x|sx)p(sx) (4)

p(x|sx) = N(x; µsx , Σsx) (5)

where sx denotes the correspondent gaussian of the
clean model,µsx , Σsx , andp(sx) are the mean, diagonal
covariance matrix, and the weight associated tosx. p(x|sx)
is the probability of the clean feature vector, given the clean
gaussian.

The third assumption is consider the clean feature
vector,x as a function of the noisy one,y, the clean model
gaussian,sx, and the noisy environment model gaussian,se

y:

x ' f(y, sx, se
y) (6)

With all these assumptions, (1) can be approximated in
the following way, using Bayes theorem:
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where p(x, sx, se
y|y) is the probability ofx, sx, and

se
y given y. It can be seen, using Bayes theorem,

as p(x, sx, se
y|y) = p(x|sx, se

y)p(se
y|y)p(sx|se

y, y), where
p(x|sx, se

y) is the probability of clean feature vector, given
the noisy and clean gaussians,p(se

y|y) is the probability

os the noisy gaussian, giveny, and p(sx|se
y, y) is the

probability of the clean gaussian, given the noisy one
and the noisy feature vector. On the other hand, in
order to calculatep(se

y|y), Bayes theorem can be used:
p(se

y|y) = p(e|y)p(se
y|e, y), wherep(e|y) is the probability

of e environment, given the noisy feature vector, and
p(se

y|e, y) is the probability of the noisy gaussian, given
the environment andy. To simplify the notation,αe will
be used in the following expressions instead ofp(e|y); so
p(e|y) = αe.

The expression of the clean feature estimation, made in
the third assumption, (2), is the main difference between
MEMLIN, and MEMHIN. MEMLIN uses a linear function
(8), and MEMHIN uses a non linear one, obtained by
histogram equalization [5] (9):

x ' fMEMLIN (y, sx, se
y) = y − rsx,se

y
(8)

x ' fMEMHIN (y, sx, se
y) = C−1

x,sx,se
y
(Cy,sx,se

y
(y)) (9)

where rsx,se
y

is the independent term of the linear
transformation for MEMLIN. It is associated to each pair of
gaussians: one of the noisy model of a certain environment,
se

y, and the other one of the clean model,sx. In MEMHIN
function, Cx,sx,se

y
is the clean feature vectors cumulative

probability associated tosx andse
y gaussians, andC−1

x,sx,se
y

is the inverse function.Cy,sx,se
y

is the noisy feature vectors
cumulative probability associated tosx andse

y gaussians.
With these approximations, ((8), and (9)) the final

expressions of (7) for MEMLIN, and MEMHIN are (10),
and (11), respectively:
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wheret is a temporal index. With the same mathemati-

cal theory, and others assumptions, the expressions of RATZ
and SPLICE can be obtained. For RATZ algorithm, the
clean feature vector is modelled as a mixture of gaussians
((4), and (5)), and the approximation forx is:

x ' fRATZ(y, sx) = y − rsx (12)

where rsx is the independent term of the linear
transformation and it only depends on the clean gaussian.
Finally, the estimator clean vector is obtained as:

x̂t ' yt −
∑
sx

p(sx|yt)rsx (13)

For SPLICE technique, noisy feature vectors are
modelled with one mixture of gaussians, and the
approximation forx is:



x ' fSPLICE(y, sy) = y − rsy (14)

wheresy is the correspondent noisy gaussian, andrsy

is the independent term of the linear transformation. It only
depends on the noisy gaussian. The estimator clean vector
is obtained as:

x̂t ' yt −
∑
sy

p(sy|yt)rsy
(15)

As it can be seen in [2], where SPLICE, MEMLIN,
and other techniques are compared, the use of clean and
several noisy environments, produces a more specifical
transformation that models more properly the mismatch
between clean and noisy feature vectors, and it produces
a great improvement. On the other hand, the use of
linear transformations supposes that the correspondent
environment does not produces a variance transformation
between clean and noisy feature vectors, given a pair of
gaussians; only a mean shift. A non linear transformation
assumes a possible variance transformation, and this is the
main improvement of MEMHIN concerning MEMLIN. As
it is well known that convolutional noise in time domain
produces, mainly, a mean shift in Mel Cepstrum domain
[6], and additive noise produces, principally, a variance
transformation [6], it is reasonable to think that MEMHIN
will obtain better results than MEMLIN when additive
noise is more important, and this improvement will be
less significant when convolutional noise was the most
important noise in the environment.

In order to observe the effect that MEMLIN produces
in a certain feature component and environment, the fig.1
is presented. In upper plot, the relation between the
second MFCC coefficient for clean test signal (y axis), and
the correspondent noisy one (x axis) is presented. The
environment selected is E1 (car stopped and motor running).
The lower plot is the same relation when the noisy signal
is normalized with MEMLIN technique and 32 gaussians
for noisy and clean environments. The represented line
in two figures isx = y. It can be seen that MEMLIN
obtains a good approximation to the ideal line. The behavior
for MEMHIN and for others environments and MFCC
coefficients is very similar.

3. MMSE PARAMETERS ESTIMATION

In order to calculate the estimator vector,x̂t, for MEMLIN
and MEMHIN, some variables have to be obtained:αe,t,
p(se

y|yt), p(sx|se
y, yt), rsx,se

y
, Cx,sx,se

y
andCy,sx,se

y
. The

first two, as are dependent of noisy feature vector, are
computed during recognition. The other ones have to be
obtained in a training process in which stereo data is needed.

For αe,t an iterative solution is considered. Each
moment, t, a noisy feature vector is available,yt. The
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Fig. 1. Clean and noisy second MFCC coefficient
representation, and clean and normalized second MFCC
coefficient representation

calculation of the environment weight in this moment will
be:

αe,t = β · αe,t−1 + (1− β)
pe(yt)∑
e pe(yt)

(16)

whereβ is the memory constant.αe,0 are considered
uniform for all environments. Also,p(se

y|yt) can be
calculated using (2), (3), and Bayes:

p(se
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In order to computep(sx|se
y, yt), rsx,se

y
, Cx,sx,se

y
and
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y
, a training process with available stereo data for

each environment is needed:Xe = {xe
1, ..., x

e
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, ..., xe
Te
},

for clean feature vectors andYe = {ye
1, ..., y

e
te

, ..., ye
Te
} for

noisy ones, withte ∈ [1, Te].
The conditional probability, p(sx|se

y, yt), can be
considered time independent, and it is estimated with the
stereo training data by relative frequency:
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N
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whereCN (sx|se
y) is the number of times that the most

probable pair of gaussians issx, and se
y for each pair

of stereo feature vectors ofe environment, andN is the
number of times that the most probable gaussian for noisy
vector isse

y in e environment.
For MEMLIN, the calculate ofrsx,se

y
(20) can be

obtained by minimizing the weighted square error,Esx,se
y

(19):
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y|yte)(xte−yte +rsx,se

y
)2 (19)



E1 E2 E3 E4 E5 E6 E7 MWER

T1: C0-C0 0.38 2.06 1.40 0.50 0.57 0.16 0.0 0.86

T1: C0-C2 4.29 11.08 11.61 14.79 14.49 11.27 20.07 11.53

T1: C2-C2 1.14 4.80 2.80 3.38 4.39 1.59 1.36 3.07

T2: C0-C0 11.81 12.45 12.94 11.03 11.92 7.41 8.86 11.36

T2: C0-C2 24.94 35.19 40.04 42.73 46.49 39.46 56.00 38.58

T2: C2-C2 24.87 27.96 30.42 25.38 32.04 22.73 29.43 27.59

Table 1. WER digits and spelling tasks baselines results

E1 E2 E3 E4 E5 E6 E7 MWER MIMP

MEMLIN 8-8 1.73 5.75 4.62 7.52 9.91 6.83 10.88 6.27 52.64

MEMLIN 16-16 1.44 5.66 4.20 5.89 7.53 5.87 8.50 5.25 61.03

MEMLIN 32-32 1.05 5.57 4.20 5.01 7.34 4.92 6.46 4.79 65.65

MEMHIN 8-8 1.63 5.66 4.90 7.27 9.06 6.51 10.2 6.01 54.84

MEMHIN 16-16 1.34 5.83 4.06 6.39 7.91 6.03 7.82 5.37 60.31

MEMHIN 32-32 0.96 5.15 4.06 5.51 7.15 4.60 6.46 4.67 67.28

Table 2. WER results with MEMLIN, and MEMHIN techniques for digits task
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wherep(sx|xe
te

) is the probability ofsx given the clean
feature vector. It can be calculated with (4), and (5), with
Bayes theorem in a similar way as (17):

p(sx|xe
te

) =
p(xte |sx)p(sx)∑
sx

p(xte |sx)p(sx)
(21)

On the other hand, for MEMHIN, and associated to
each pair of gaussianas (one for the clean model, and one
for noisy environment one), then bands histograms for
each component of the feature vector are obtained (the
components are considered independent [5]). In order
to do that, the components for each pair of gaussianas
are weighted byp(sx|xte)p(se

y|yte). With the histograms,
Cx,sx,se

y
andCy,sx,se

y
are calculated, cumulating the bands.

RATZ needs a training process with stereo data in order
to obtain the following variables:rsx , andp(sx|yt). The
mathematic technique is similar to MEMLIN. To calculate
p(sx|yt), it is used (4), and (5), with Bayes theorem in a
similar way as (17).rsx is calculated ((23)) minimizing the
weighted square error,Esx (22):

Esx =
∑
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SPLICE training process is similar to MEMLIN one;
p(sy|y) is obtained in a similar way of (17), andrsy is
calculated by minimizing the weighted square error,Esx :

Esy =
∑
te

p(sy|yte)(xte − yte + rsy )2 (24)
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4. RESULTS

A set of experiments have been carried out using the
Spanish SpeechDat Car database [7]. Seven environments
are defined: car stopped, motor running (E1), town
traffic, windows close and climatizer off (silent conditions)
(E2), town traffic and noisy conditions: windows open
and/or climatizer on (E3), low speed, rough road, and
silent conditions (E4), low speed, rough road, and
noisy conditions (E5), high speed, good road, and silent
conditions (E6), and high speed, good road, and noisy
conditions (E7).

The tasks used are isolated and continuous digits (task
T1), and spelling (task T2). All the phrases are 16 KHz
sampled. The clean signals are recorded with a close talk



E1 E2 E3 E4 E5 E6 E7 MWER MIMP

MEMLIN 8-8 21.00 26.84 26.99 29.69 36.31 32.57 43.14 29.40 34.03

MEMLIN 16-16 20.46 27.12 27.10 27.48 34.57 29.76 42.29 28.39 37.44

MEMLIN 32-32 20.00 26.98 27.88 26.98 34.10 28.74 40.29 28.00 38.89

MEMHIN 8-8 21.31 26.63 26.77 28.59 34.96 31.29 42.86 28.82 35.56

MEMHIN 16-16 20.54 26.84 27.54 26.68 33.31 29.76 41.43 28.01 38.50

MEMHIN 32-32 20.08 26.08 27.99 26.78 32.28 27.84 41.43 27.44 40.79

Table 3. WER results with MEMLIN, and MEMHIN techniques for spelling task

E1 E2 E3 E4 E5 E6 E7 MWER

C0-C2 (0dB) 33.27 29.59 29.79 35.21 36.70 23.81 25.85 31.55

C0-C2 (5dB) 12.77 9.43 13.01 13.03 11.63 6.35 1.36 10.64

C0-C2 (10dB) 4.19 4.20 6.99 4.76 3.81 2.86 0.0 4.19

C0-C2 (15dB) 2.00 2.49 4.61 2.51 1.81 0.95 0.0 2.24

Table 4. Baseline results: WER for several SNRs in digits task

E1 E2 E3 E4 E5 E6 E7 MWER MIMP

MEMLIN 8-8 20.32 20.93 22.52 24.44 22.78 15.56 8.84 20.63 35.57

MEMLIN 16-16 19.37 19.21 20.84 22.81 22.31 15.08 8.16 19.49 39.38

MEMLIN 32-32 18.22 18.1 19.44 21.05 19.45 12.38 6.12 17.70 45.30

MEMHIN 8-8 16.3 17.67 21.82 19.8 20.50 15.08 8.16 17.98 43.94

MEMHIN 16-16 15.34 17.58 19.86 18.80 19.35 14.60 6.46 17.05 46.96

MEMHIN 32-32 14.96 18.10 19.86 18.67 18.49 14.13 6.46 16.86 47.49

Table 5. WER results with SNR 0dB with MEMLIN, and MEMHIN techniques for digits task

E1 E2 E3 E4 E5 E6 E7 MWER MIMP

MEMLIN 8-8 9.20 7.38 11.61 9.40 8.20 5.71 0.68 8.15 25.99

MEMLIN 16-16 8.53 7.03 10.77 8.40 8.58 5.08 0.68 7.71 30.47

MEMLIN 32-32 8.15 6.70 9.09 7.64 7.72 4.92 0.34 7.06 37.62

MEMHIN 8-8 7.57 7.46 8.25 7.14 7.72 4.92 0.34 6.93 37.82

MEMHIN 16-16 7.00 6.76 8.81 5.89 7.53 5.08 0.0 6.55 42.73

MEMHIN 32-32 6.52 6.52 8.10 5.89 7.53 5.08 0.0 6.37 44.44

Table 6. WER results with SNR 5dB with MEMLIN, and MEMHIN techniques for digits task



E1 E2 E3 E4 E5 E6 E7 MWER MIMP

MEMLIN 8-8 3.55 3.34 5.59 3.63 3.91 2.54 0.0 3.55 19.95

MEMLIN 16-16 2.68 3.00 5.17 3.51 3.71 2.38 0.0 3.19 31.1

MEMLIN 32-32 2.68 3.09 5.00 3.38 3.24 2.38 0.0 3.08 33.86

MEMHIN 8-8 2.97 3.69 5.03 2.76 2.86 1.75 0.0 3.04 33.39

MEMHIN 16-16 3.07 3.00 4.90 2.88 2.76 1.59 0.0 2.88 41.04

MEMHIN 32-32 2.97 3.00 5.03 2.76 2.76 1.43 0.0 2.84 42.35

Table 7. WER results with SNR 10dB with MEMLIN, and MEMHIN techniques for digits task

E1 E2 E3 E4 E5 E6 E7 MWER MIMP

MEMLIN 8-8 1.82 2.40 4.34 2.51 1.62 0.95 0.0 2.12 10.76

MEMLIN 16-16 1.73 2.23 4.06 2.38 1.52 0.95 0.0 2.00 24.07

MEMLIN 32-32 1.63 2.23 4.06 2.26 1.52 0.95 0.0 1.97 26.14

MEMHIN 8-8 1.82 2.32 3.50 1.75 1.52 0.95 0.0 1.88 25.39

MEMHIN 16-16 1.92 2.23 3.64 1.75 1.43 0.95 0.0 1.88 29.57

MEMHIN 32-32 1.73 2.23 3.64 1.63 1.43 0.95 0.0 1.83 32.71

Table 8. WER results with SNR 15dB with MEMLIN, and MEMHIN techniques for digits task

microphone (Shune SM-10A), which it is called C0, and
the noisy signals are recorded by a microphone placed on
the car ceiling in front of the driver (Peiker ME15/V520-1):
it is C2. The SNR range for the clean signals goes from 20
to 30 dB, and for the noisy signals goes from 5 to 20 dB. 12
MFCC and energy are computed each 10 ms using a 25 ms
hamming window.

The feature normalization techniques are applied over
the 12 MFCC and delta energy. The clean and noisy models
are built for these feature vectors with 8, 16, or 32 gaussians.

For recognition, environment E1 has 200 phrases, E2
223, E3 136, E4 152, E5 200, E6 120, and E7 has 56
phrases, on the other hand, the feature vector is composed of
the 12 normalized MFCC with cepstral mean substraction,
the first and second derivative and the normalized delta
energy, given a feature vector of 37 coefficients. The context
depended acoustic models are composed of 699 one state
continuous density HMM with at least 16 gaussians per
state. These units are defined dividing each phonetic unit
into its left context, the unit without context, and its right
context. For example, the Spanish phonetic word /k/ /a/ /s/
/a/, is transformed into /] < k/ /k/ /k>a/ /k<a/ /a/ /a>s/
/a<s/ /s/ /s>a/ /s<a/ /a/ /a> ]/, where] means any context,
< represents left context, and> is right context.

The baseline word error rate, WER, results for each
environment are presented in table 1. MWER is the mean
WER with the seven environments. C0-C0 represents
testing clean signal with clean models, C0-C2 represents

testing noisy signal with clean models, C2-C2 represents
the results testing noisy signal with all environments noisy
models.

The WER comparative results between the different
techniques for task T1 and task T2 can be seen in table
2 and 3, respectively. Next to the technique, appears
the numbers of clean and noisy used model gaussians, 8,
16 or 32. The mean improvement (MIMP) is calculated
between C0-C0 and C0-C2, and MWER are presented in
the correspondent tables, too. MEMLIN and MEMHIN
use all environments to normalize (E1,...,E7). MEMHIN
histograms were calculated with 600 bands.

It can be observed that the good behavior of MEMLIN
and MEMHIN are similar in the two tasks: MEMLIN
obtains an improvement of 65.65% in task T1, and 38.89%
in task T2. The improvement of MEMHIN concerning
MEMLIN is not very important: 1.63% in task T1, and
1.90% in task T2, but, as it has been said, the strong point of
MEMHIN is when additive noise is the important mismatch
between clean and noisy feature vectors.

In order to study the improvement of MEMHIN
concerning MEMLIN in additive noise environments, an
experiment was developed. Digits task clean signal was
contaminated with additive noise and different SNRs: 0dB,
5dB, 10dB, and 15dB. Each phrase was contaminated with
its own noise. The baseline appears in table 4. The behavior
of these two algorithms was studied, and the results can be
seen in table 5 (for 0dB), table 6 (for 5dB), table 7 (for



10dB), and table 8 (for 15dB).
The results for 10dB and 15dB and environment E7

are not very representative because there are only 56
phrases in the test corpus. Since the range to calculate
the improvement in these cases is 0, MIMP is calculated
without the environment E7. The mean improvement
of MEMHIN concerning MEMLIN in all SNRs is very
significant, and it is more important when the number of
gaussians is small. So, the mean WER improvement when 8
gaussians are used is 12.07%, with 16 gaussians it is 8.82%,
and, finally, with 32 gaussians, the improvement is 6.02%.
This shows that the variance normalization that MEMHIN
proposes can be a good solution when the environments are
characterized by additive noise.

5. CONCLUSIONS

In this paper it has been compared two techniques based
on MMSE estimator: MEMLIN, and MEMHIN. The main
difference between them is the transformation proposed
to model the differences between noisy and clean feature
vectors. MEMLIN uses a linear transformation with
pendent equal 1, and MEMHIN proposes a non linear
one: this supposes that the environment may produce a
mean and a variance shift between clean and noisy feature
vectors. The results show a small improvement in most
environments when there is an important convolutional
noise, but this improvement goes up when the most
important mismatch between noise and clean signal is
additive noise. In this case, the use of MEMHIN produces
a improvement of more than 6%. Anyway, the results
with both techniques are significant better than with similar
algorithms, like SPLICE [2].
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