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ABSTRACT

Model-based approaches towards the segmentation of vas-
cular and cardiac images are presented. For vessel segmen-
tation, prior shape information is introduced based on the
notion that vessels are elongated structures. For cardiac seg-
mentation, shape information derived from a training set of
segmented images is incorporated in an automatically con-
structed point distribution model of the heart.

1. INTRODUCTION

In order to improve accuracy and robustness of medical im-
age segmentation, model- or knowledge based approaches
have become increasingly popular. Whereas prior knowl-
edge may concern knowledge of the image formation pro-
cess, or information of the medical expert interpreting the
image, most emphasis in model-based segmentation has been
put on constraining the shape of the objects to be segmented.
The most commonly used approach, including the large body
of work on deformable models [1, 2], includes a smoothness
term in order to enforce regularity of the object contour or
surface. Other approaches explicitly limit the space of pos-
sible shapes. For an overview of these approaches applied
to cardiac image segmentation we refer to a recent review
article by Frangi et al. [3].

In this paper, some of our work on model-based segmen-
tation of cardiac, vascular, and cardiovascular images is de-
scribed. In case of vessel segmentation and quantification,
the a priori knowledge that the object is an elongated struc-
ture is used. In cardiac segmentation, a point distribution
model of the heart for active shape model (ASM) segmen-
tation is automatically constructed from a set of segmented
training shapes using volumetric elastic registration.

2. VASCULAR IMAGE PROCESSING

Vessel segmentation and quantification has received con-
siderable interest, see e.g. [4-9]. The approach which is
adopted in the majority of our work [10-15] is based on a
two step approach. First, centerline(s) of a vessel segment
or vessel network are obtained, prior to quantification, visu-
alization or segmentation.

In order to extract the vessel axis, a feature image is
constructed which determines the likeliness that a voxel be-
longs to (the center of) the vessel. This likeliness is de-
fined as a discriminant fuction [16] based on the eigenvalues
|λ1| ≤ |λ2| ≤ |λ3| of the Hessian matrix:
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This vesselness filter can be interpreted as mapping sec-
ond order features into probability-like estimates of vessel
likeliness. For an ideal tubular structure, it is expected that
RA is one, and RB is small. The measure S corresponds
to the degree of (2nd order) image structureness. The pa-
rameters α, β and c tune the sensitivity of the filter to de-
viations inRA, RB and S relative to the ideal behavior for
a line structure. The second order derivatives to construct
the Hessian matrix are computed using normalized scaled
Gaussian derivatives. The filter is applied at multiple scales
and the maximum response across scales is selected to en-
sure that the method is sensitive to a range of vessel widths.
Furthermore, the scale at which the ouput is maximum gives
a rough indication of the vessel width, while the eigenvec-
tors give information of the orientation of the vessel seg-
ment. Based on the vesselness discriminant function, and
user-initialized start and end points, the central vessel axis
can be found, e.g. by fitting a spline using energy minimiza-
tion [10] or by using a minimum cost path approach using a
discrete [17] or continuous approach [18].

Upon constructing the central vessel axis, the second
step of the procedure is either (i) utilizing this axis for vi-
sualization [14] or direct quantitative measurements, or (ii)
utilizing this axis as initialization for segmentation algo-
rithms [10, 11, 15]. In Fig. 1 an example of the use of
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the central vessel axis for improved coronary visualization
is shown. Normally, in order to view a large coronary seg-
ment multiple slices have to be examined. By first determin-
ing the central coronary axis, a multiplanar reformat can be
made which visualizes the entire coronary in a single plane
[13].

RCA LCX LAD

Fig. 1. Automatically extracted central coronary axis is used
to visualize coronaries in a single plane using multiplanar
reformatting

For vessel segmentation based on the central vessel axis,
a number of different approaches can be utilized. In one ap-
proach [10, 11] a NURBS surface is initialized along the
central vessel axis and attracted to the boundary using a
feature image that incorporates knowledge of the image for-
mation process. Another approach [15] utilizes the central
vessel axis as initialization for level-set based segmenta-
tion. Fig. 2 shows results of these methods in carotid artery
segmentation for stenosis grading. In an evaluation study
it was found that the automated methods performed better
than inter-observer variability [11].

Fig. 2. Maximum intensity projection of carotid artery (left)
and segmentations obtained using a NURBS surface (mid-
dle) and level set segmentation (right).

3. CARDIAC SEGMENTATION

In the overview of model-based cardiac segmentation [3]
ASM models were indicated as a promising approach [19].
The underlying idea of AMSs [20] is that prior knowledge is
learned from the variability of shapes observed in a training

set. One major drawback of this method is that in the con-
struction of the model a large collection of corresponding
landmark sets between shapes in the training set needs to be
established. Manual identification of corresponding land-
marks is a time-consuming and tedious task, especially in
3D. Several authors have proposed automatic procedures for
finding corresponding landmark points based on segmented
images [20-23]. We have utilized an approach [25] in which
corresponding landmarks are obtained by mapping the land-
marks of an atlas that is representative of the shapes in the
training set to individual instances of the training set (see
Fig. 3).
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Fig. 3. Construction of a heart model. Landmarks of an
atlas are propagated to all other shapes of the atlas using
a quasi-affine registration and an elastic registration. PCA
analysis in an atlas-aligned coordinate system is used to
construct the heart point distribution model.

Given a landmarked average shape or atlas, the land-
marks are warped to the individual shapes in the training set
by a transformation T = Ta + Te. Here Ta is a quasi-affine
registration to map the shape into atlas-aligned coordinates
and Te is an elastic deformation. The elastic deformation
is a multi-resolution volumetric free-form deformation that
is computed using the method proposed by Rueckert et al.
[26]. Once the global transformation T has been applied,
the landmarks can be copied from the atlas to the individual
shape and the inverse transformation T−1e can be applied
to obtain the landmark positions in the atlas-aligned coordi-
nate system. This process is performed for each shape in the
training set. As a result, a set of landmarked shapes is ob-
tained that represents shape differences with respect to the
atlas. Since all shapes are in atlas-aligned coordinates, pose
and size variations are eliminated from further analysis.

Once the corresponding landmarks have been found, the
resulting sets of points can be used to determine a statisti-
cal shape model. First, all shapes are described by a 3n-
dimensional vector x, where n is the number of landmarks.
The model is now described by the mean shape:

x̄ =
1

N

N∑
i=1

xi (4)
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and a matrix Φ which contains the t eigenvectors corre-
sponding to the largest eigenvalues of the covariance matrix

S =
1

N − 1
N∑
i=1

(xi − x̄)(xi − x̄)T (5)

Any shape in the training set can now be approximated by

x ≈ x̄+Φb (6)

where

b = ΦT (x− x̄) (7)

Shapes similar to those seen in the training set can be gener-
ated by varying x according to (6) while applying limits to
the parameters bi, e.g. ±3√λi. The number of eigenvectors
contained in Φ is chosen in such a way that a predefined
proportion of the variance present in the data can be de-
scribed by the model. In Fig. 4 an example of a heart model
built out of fourteen segmented datasets is shown.
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Fig. 4. Shape instances of the 3D cardiac model.

In order to test how well the model built with the auto-
matic landmarking method generalises, a leave-one-out ex-
periment has been performed in which a single shape is ap-
proximated by the model built from the remaining shapes.
If the training set does not contain all the variation that is
expected to occur within the family of shapes, significant
errors will be introduced. Therefore the experiment is car-
ried out for a small (15), medium (50) and large (100) set of
training shapes. In Fig. 5 both the cumulative variance and
the reconstruction error are plotted as a function of the num-
ber of modes for the three models. It can be observed that

the ASM approach achieves a compact model (few modes
are needed to explain the variance) even if a large training
set is used. Also, a larger training set yields an improved
model as the reconstruction error for a given number of
modes is smaller.

Fig. 5. Graphs displaying the variance that is explained as a
function of the number of modes (top) and the reconstruc-
tion error in a leave-one-out experiment (bottom) where the
individual shapes are fitted with the model of the remaining
shapes.

4. SUMMARY

A brief overview of our work in model-based segmentation
of cardiac and vascular images is presented. In our expe-
rience, for vascular image analysis a simple model based
on an automatically extracted central vessel axis is useful
in a wide range of applications. For cardiac segmentation,
ASMs provide a powerful framework, and an approach is
presented to automatically construct point distributionmod-
els from segmented shapes for this purpose.

5. REFERENCES

[1] T. McInerney and D. Terzopoulos, “Deformable mod-
els in medical image analysis: a survey,” Medical Im-
age Analysis, vol. 1, no. 2, pp. 91–108, 1996.

24



[2] A. Singh, D. Goldgof, and D. Terzopoulos, De-
formable models in medical image analysis, IEEE
Computer Society Press, 1998.

[3] A. Frangi, W. J. Niessen, and M. A. Viergever, “Three-
dimensional modeling for functional analysis of car-
diac images,” IEEE Trans. Med. Im., vol. 20, no. 1,
pp. 2–25, 2001.

[4] H. E. Cline, D. R. Thedens, P. Irarrazaval, C. H.
Meyer, B. S. Hu, D. G. Nishimura, and S. Ludke, “3D
MR coronary artery segmentation,” Magnetic Reso-
nance in Medicine, vol. 40, no. 5, pp. 697–702, 1998.

[5] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi,
S. Yoshida, T. Koller, G. Gerig, and R. Kikinis,
“Three-dimensional multi-scale line filter for segmen-
tation and visualization of curvilinear structures in
medical images,” Medical Image Analysis, vol. 2, no.
2, pp. 143–168, 1998.

[6] D.L. Wilson and J. A. Noble, “An adaptive segmen-
tation algorithm for time-of-flight MRA data,” IEEE
Trans. Med. Im., vol. 18, no. 10, pp. 938–945, 1999.

[7] E. Bullitt, S. Aylward, K. Smith, S. Mukherji,
M. Jiroutek, and K. Muller, “Symbolic description of
intracerebral vessels segmented from magnetic reso-
nance angiograms and evaluation by comparison with
X-ray angiograms,” Medical Image Analysis, vol. 5,
no. 2, pp. 157–169, 2001.

[8] L. M. Lorigo, O. D. Faugeras, W. E. L. Grimson,
R. Keriven, R. Kikinis, and C. Navabi, A. Westin,
“CURVES: Curve evolution for vessel segmentation,”
Medical Image Analysis, vol. 5, no. 3, pp. 195–206,
2001.

[9] P. J. Yim, J. J. Cebral, R. Mullick, H. B. Marcos, and
P. L. Choyke, “Vessel surface reconstruction with a
tubular deformable model,” IEEE Trans. Med. Im.,
vol. 20, no. 12, pp. 1411–1421, 2001.

[10] A. Frangi, W. J. Niessen, R.M. Hoogeveen, Th.
Van Walsum, and M. A. Viergever, “Model-based
quantitation of 3-D magnetic resonance angiographic
images,” IEEE Trans. Med. Im., vol. 18, no. 10, pp.
946–956, 1999.

[11] A. Frangi, W. J. Niessen, P. J. Nederkoorn, J. Bakker,
W. P. Th. M. Mali, and M. A. Viergever, “Quanti-
tative analysis of vascular morphology from 3D MR
angiograms: in vitro and in vivo results,” Magnetic
Resonance in Medicine, vol. 45, no. 2, pp. 311–322,
2001.

[12] O. Wink, W. J. Niessen, and M. A. Viergever, “Fast
delineation and visualization of vessels in 3D angio-
graphic images,” IEEE Trans. Med. Im., vol. 19, no. 4,
pp. 337–346, 2000.

[13] O. Wink, W. J. Niessen, A. F. Frangi, B. Verdonck, and
M. A. Viergever, “3D MRA coronary axis determina-
tion using a minimum cost path approach,” Magnetic
Resonance in Medicine, 2002, In press.

[14] C. M. van Bemmel, W. J. Niessen, O. Wink, B. Ver-
donck, and M. A. Viergever, “Blood pool agent CE-
MRA: improved arterial visualization of the aortoiliac
vasculature in the steady-state using first-pass data,” in
MICCAI, 2001, pp. 699–706.

[15] C. M. van Bemmel, L. Spreeuwers, B. Verdonck,
M. A. Viergever, and W. J. Niessen, “Blood pool agent
CE-MRA: improved arterial visualization of the aor-
toiliac vasculature in the steady-state using first-pass
data,” in SPIE Medical Imaging, 2002, In Press.

[16] A. Frangi, W. J. Niessen, K. L. Vincken, and M. A.
Viergever, “Multiscale vessel enhancement filtering,”
in Medical Image Conference and Computer Assisted
Interventions, 1998, pp. 130–137.

[17] E. W. Dijkstra, “A note on two problems in connex-
ion with graphs,” Numerische Mathematik, vol. 1, pp.
269–271, 1959.

[18] J. A. Sethian, Level set methods and fast marching
methods: evolving interfaces in computationalgeome-
try, fluid mechanics, computer vision and material sci-
ences, Cambridge Univ. Press, 1999.

[19] S.C. Mitchell, B.P.F. Lelieveldt, R.J. van der Geest,
H.G. Bosch, J.H.C. Reiber, and M. Sonka, “Multistage
hybrid active appearance model matching: segmenta-
tion of left and right ventricles in cardiac MR images,”
IEEE Trans. Med. Im., vol. 8, pp. 415–423, 2001.

[20] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham,
“Active shape models - their training and application,”
Computer Vision and Image Understanding, vol. 61,
no. 1, pp. 38–59, 1995.
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