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Abstract

This paper presents a novel acoustic modeling framework that
naturally extends the Hidden Markov Model (HMM) approach.
The novel models reduce the errors caused by speaker variability
by means of a local spectral mismatch reduction. A more com-
plex and flexible speech production scheme can be assumed, in
which the local temporal and frequency elastic deformations of the
speech are captured by the model. In the new framework the states
of a standard HMM, which are usually associated with temporal
transitions, are expanded so that a new degree of freedom forthe
model is provided and it is then possible to estimate an optimum
frequency warping factor at the same time as the decoder findsthe
best state sequence. In the local spectral warping based models
the states become time-frequency related states and the number of
parameters of the model is comparable to the standard HMM since
they share a certain amount of parameters as it will be shown.The
novel models are evaluated in the noise-free TIDIGITS corpus,
which includes connected digits uttered by male, female andchil-
dren. It has been found that, under speaker group (age-gender)
mismatch conditions, the local frequency warping reduced Word
Error Rate (WER) in mean by a70%, using the initial models.
When matched speaker group conditions were tested the errorwas
reduced in mean in a9.7% after reestimating the models.
Index Terms: speaker variability, local frequency warping.

1. Introduction
A speech modeling technique for speaker variability reduction is
investigated in this paper, since this variability has a great interest
due to the impact on the accuracy of Automatic Speech Recog-
nition, ASR, systems. It will be shown that the model presented
provides a mechanism to reduce the error on ASR for a wide range
of local deformations of the speech parameters across the time and
frequency axes.

Standard techniques as Hidden Markov Models (HMM) pro-
vide a successful reduction of the speaker variability in terms of
temporal variability thanks to the time alignment of the utterances
to the models by the Viterbi algorithm, capturing the essential
information needed for speech recognition tasks. In the HMM
framework there also exists a basic mechanism to model the fre-
quency variability due to speaker, which causes changes in the vo-
cal tract shape. It is provided by the state dependent observation
generating process, which usually is assumed to follow a probabil-
ity density function pdf as a Gaussian Mixture Model (GMM) The
vocal tract shape deviations due to a large population of speakers
are captured by the state pdfs as different components of themix-
ture. Then, a number of examples from each one of the shapes are
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needed so that the components of the mixture can be estimatedin
the learning process. Therefore a large amount of Gaussian com-
ponents and training data are required in order to deal with this
source of variability in a simple HMM.

Some methods have appeared in order to compensate more
accurately both sources of variability specially in the frequency
axis. In this paper we focus the experiments towards this kind
of speaker variability, manifested as the frequency deformations
of the spectrum envelope that occur in speaker independent ASR
tasks, which are known to have its origin in the vocal tract and ar-
ticulatory instant shapes. Some methods have appeared previously
in order to compensate for speaker frequency variability asVocal
Tract Length Normalization, VTLN, [1, 2] and Maximum Likeli-
hood Linear Regression, MLLR, [3], which reduce the mismatch
between data an model, but those methods compensate the mis-
match given previous utterances and transcriptions or extra speaker
dependent training data. The model framework, referred from here
as the augMented stAte space acousTic dEcoder/modEl (MATE),
consists of an expansion of the VTLN methods to provide local
transformations to be locally optimized, simultaneously to the de-
coding of the state sequence in an expanded search trellis. The
training and the testing of MATE is speaker independent, since it
is expected to capture part of the speaker variability by means of
the expanded state space and the inter-transformation transitions.

The first approaches to this paradigm were envisioned in [4]
and then followed by [5, 6] in a more general approach. Those
methods were intended to normalize the speech signal to be bet-
ter accepted by the model. The model presented in this paper is
an evolution of them and the transformation is embedded intothe
model, allowing a more general formulation and derivation of the
model parameter estimation expressions, as it will be shownin sec-
tions 3 and 3.2. The transformations of MATE described in this ar-
ticle are a valid generalization of [5] in both sources of variability,
time and frequency but, as the effect of the local temporal warping
is less noticeable unless a stressed or pathological speechcorpus
is tested, the experiments in this article are going to be oriented
to show speaker independent ASR improvements in the sense of
frequency transformations in the new MATE framework.

The paper is organized as follows. Section 2 reviews the the
existing techniques used for speaker mismatch reduction. Section
3 presents the model formulation and the procedure for estimating
the model parameters using the EM algorithm. Section 4 includes
the results of an experimental study of the new models. Finally,
discussion and conclusions are presented in Section 5.

2. Speaker mismatch reduction model based
methods

Basic HMM provides a simple, but effective under certain condi-
tions, mechanism of modeling speaker variability which consists



of learning the observations generated by the same state in the
model thanks to a multimodal pdf, as the mixture of Gaussians.
But in order to reduce speaker variability mismatch in a moregen-
eral way, frequency warping based speaker normalization tech-
niques as VTLN, have been applied in many ASR task domains
[1]. This class of techniques produces a warped frequency scale
by selecting an optimum warping function chosen to maximizethe
average likelihood of the normalized sequence with respectto the
HMM.

In [7], it was shown that the procedure for obtaining the fre-
quency warped features was equivalent to a linear projection of the
original cepstrum. This work revealed a straight forward relation-
ship between VTLN and MLLR methods.

Both methods reduce the need of large amounts of data to train
speaker independent models but suffer from two main problems.
The first one is that it is generally implemented as a two pass pro-
cedure which can make real-time implementation difficult. The
first pass is used to generate an initial hypothesized word string.
This initial word string is then used in a second pass to normalize
the data or the models to reduce the mismatch. The second limita-
tion is related to the fact that only a single linear warping function
or model transformation is selected for the whole utterance. Even
though physiological evidence indicates that all phoneticevents
do not exhibit similar spectral variation as a result of physiologi-
cal differences on vocal tract shape. The procedure described in
[5] and generalized in this article, addressed both of theseissues
and it showed a good performance when compared to previous
methods. The procedure requires only a single pass over the input
utterance and produces frame-specific estimates of the frequency
warping functions.

3. MATE
In order to model the vocal tract shape changes during speech
utterances and across speakers we propose a model (MATE) in
which a new degree of freedom has been added to track those
changes in a HMM way.

Following [7], the spectral warping performed in the previ-
ous decoding method [5] can be seen as a linear projection of the
cepstral feature space,Xαn = AnX, with n = 1, · · · , N , the
number of warping factors.

The model is constructed after a state space expansion that is
similar to [5], where a stateq is expanded into states(q, n) with n
the index of the transformations. The new model provides obser-
vation generation pdfs in the states that depend on a discrete set of
transformation matrices,{An}

N
n=1, embedding the warping in the

model as a general transformation instead of normalizing data as
before [5].

Given that a component in the original state pdf mixture fol-
lows normal distribution:N (µq,Σq), the expanded states compo-
nents are assumed to follow a distribution:

xt|n,q ∼ N (Anµq ,AnΣqA
t
n), (1)

so that the model can generate sequences of warped cepstrum vec-
tors, which we expect to be closer to real data.

3.1. Complete model

For clarity in the hidden variable derivation lets firstly assume
that a complete set of labeled data is available, the joint pdf of
the data and label sequences is called complete or visible model.
The sequences that could be generated by such model are: a cep-
strum data sequence,X = (x1, ..., xT )t, a state labels sequence,

S = (s1, ..., sT )t, the transformation labels sequence,R =
(r1, ..., rT )t, wherext ∈ R

D (with D the dimension of the fea-
ture vector),st is an indicator vectorst ∈ {0, 1}Q, with 1 in the
state indexq that generated the observationxt and zeros elsewhere
as in [8], and finallyrt is another indicator vectorrt ∈ {0, 1}N ,
with 1 in the transformation matrix indexn used to generate the
observationxt and zeros elsewhere.

The pdf of a sequence of this kind can be written as follows
using the rule of Bayes,

f(X, S,R) = f(S,R)f(X|S, R) (2)

=

T
Y

t≥1

f(st, rt|s
t−1
1 , r

t−1
1 )

T
Y

t≥1

f(xt|x
t−1
1 , S,R).

Taking HMM-like assumptions, we can approximate (2) by:

f(X,S,R) =

T
Y

t≥1

f(st, rt|st−1, rt−1)

T
Y

t≥1

f(xt|st, rt). (3)

The indicator vectors follow a Multinomial distribution ofparam-
eters,

Π = {πq,n,q′ ,n′}Q,N,Q,N

q=1,n=1,q′=1,n′=1, (4)

beingπq,n,q′,n′ the transition from state(q, n) to (q′, n′) proba-
bility,

f(st,q′ = 1, rt,n′ = 1|st−1,q = 1, rt,n = 1) = πq,q′,n,n′ . (5)

Making use of it and taking into account that the indica-
tor variables are zeros in all positions except one, then we can
express (3) as (6), where the expanded state(q, n) pdf in (6),
f(xt|st,q = 1, rt,n = 1) , follows a distribution of the form of
(1). The ensemble of parameters composed byΠ and the state
pdfs are referred asΘ.

3.2. EM training algorithm

When the labeled data of the complete problem is missing as in
speech applications,S andR are hidden variables, the EM is a
well known algorithm that provides a method for estimating the
parameters of the model in an iterative two step process.

The first step, E expectation step, consists of calculating the
auxiliary functionQ(Θ|Θ(k)) = E[log f(X,S,R|Θ)|X, Θ(k)]
that involves expected value computations for the hidden variables
with respect to the data and the model parameters at iteration k.
It can be expressed as in (7) for our model, where the expressions
noted as(·)(k) refer to the expected values of the variable between
the parentheses:

(st,qrt,n)(k) = E[st,qrt,n|X,Θ
(k)]

= f(st,q = 1, rt,n = 1|X, Θ
(k)). (8)

(st−1,qrt−1,nst,q′rt,n′)(k) = E[st−1,qrt−1,nst,q′rt,n′ |X,Θ
(k)]

= f(st−1,q = 1, rt−1,n = 1, st,q′ = 1, rt,n′ = 1|X, Θ(k)). (9)

Those expressions are difficult to calculate directly but thanks
to the expanded auxiliary functionsαt,q,n, βt,q,n, which can be
calculated recursively, computations are reduced to an affordable
level. Nevertheless, in order to speed up the method and having
experimented almost identical results, the expected values in (8)
and (9) can be approximated in hard decision way, (0 or 1), by the
Viterbi decoding algorithm.

The second step, M maximization step, consists of maximiz-
ing theQ(Θ|Θ(k)) function with respect to the model parameters
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from each iteration in order to obtain the values for the parame-
ters in the next iteration,Θ(k+1) = arg max

Θ

Q(Θ|Θ(k)) Finally

maximizing the expression subject to the constraint,

X

q′,n′

πq,n,q′,n′ = 1, ∀q, n, (10)

we obtain the following expressions for the parameter estimations
in the iterationk +1, (for a single Gaussian model for simplicity):
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3.3. MSE Transformation matrices estimation

The rotation matricesAn allow to this family of models to a great
degree of freedom as they can be any linear transformation for
the feature vectors, therefore including the VTLN transformation
naturally in the model and in this article we have focused on this
transformations.

In order to estimate the transformation matrix as it has been
shown in Section 3, we have followed the well known result of the
multidimensional regression Minimum Square Error (MSE) crite-
rion, which we sum up in this section. We have selected this data
driven method as it is suitable for this task but also will provide the
possibility of expanding to more transformations by changing the
target data.

Let be a linear transformation for aD-dimensional source fea-
ture space samplesX (D×T ), where T is the number of samples,
to a target feature spaceY (D×T ), and we define a general linear
transformation as:

Y = AX + bO, (14)

where we want to estimateA (D×D) and a bias termb (D×1),
beingO an all ones(1 × T ) matrix. Then we define the residual
errore to be the square sum of differences between the desiredY

data and the projected data as,

e = Tr
ˆ

(AX + bO − Y)(AX + bO− Y)t
˜

. (15)

After taking derivatives with respect toA andb and equaling
them to zero, we will obtain the well know result, valid if themean
in t of X is 0:

A = (XX
t)−1

XY
t
. (16)

b = (OO
t)−1(Y −AX)Ot

. (17)

In the experiments in this paper we have proposed a target data
which is the VTLN warped feature vectors,X

α, in [5, 6], provid-
ing a transformation matrix for each one of the warping factors.

3.4. Search algorithm

After presenting the way that the model parameters are estimated,
we now propose the search algorithm for decoding unlabeled se-
quences under this framework,

φq,n (t) = max
n′,q′

{φq′,n′ (t − 1) · πq′,n′,q,n} · f (xt|q, n) , (18)

whereφ() is the score state variable andπ vector contains the state
transition probabilities andf(xt|n, q) is the observation genera-
tion pdf described in (2).

This recursive expression is very similar to the one in [5] and
the main difference is how the warping is done, since now is the
model who tries to generate or evaluate the warped data instead
of normalizing data to fit the model. In the new framework the
covariance is normalized in the model description so the Jacobian
normalization in [7] is included in the model. The same restric-
tions as in [5] have been applied to the transition matrix.

4. Results
In order to evaluate the performance of the new models, several
experiments have been carried out. The task domain was isolated
and connected digits in the TIDIGITS corpus, which is a noise
free corpus organized in age and gender groups for a total of 326
speakers (111 men, 114 women, 50 boys, 51 girls). Since the main
objective of the method is the speaker variability, this corpus and
the proposed experimental method have been chosen.

In all the experiments7 groups were defined in the training and
testing partitions: ’boy’, ’girl’, ’man’, ’woman’, ’boy + girl’, ’man
+ woman’ and ’all’. For those7 groups, HMM 16 state word mod-
els with increasing number of Gaussian components and a begin-
end silence 3 states model and an inter word silence model of 1
state were trained. As feature set, the standard ETSI features plus
the energy and their first and second derivatives, were used in all
the experiments.

On the first experiment, the speaker variability reduction on a
high mismatch task is tested, this experiment was performedon a
subset of the corpus containing only isolated digits in order to test
the ability of the proposed method to reduce inter speaker mis-
match in a low training data availability context (3586 isolated
digit utterances for training and 3582 for testing). Since mismatch
conditions were tested, models for MATE where not reestimated
and the simple expansion of the baseline pdfs was performed,a
20% of deviation forα was set andN = 5. The results of the
experiments are shown in Figure 1, where the WER is calculated
as the mean of all the WERs of testing each of the defined group
models with data from a different group (42 tests). It could be
thought that MATE results comparison for a fixed number of Gaus-
sian components as in [5] could carry an increase of the computa-
tion cost to obtain a performance that could also be achievedby in-
creasing the number of Gaussian components, but we can observe
in this experiment that the effect of overtraining is observable as
the number of Gaussian components grow, since it is a small data
set, and MATE can reduce the WER effectively under this kind of



Table 1:Recognition results in WER for each of the defined groups in the matched conditions.
Group Man Woman Boy Girl Man + Woman Boy + Girl All

baseline (% WER) 1.79 1.04 1.90 1.17 2.00 1.50 2.67
MATE (% WER) 1.74 0.91 1.82 0.95 1.80 1.39 2.34

% IMP 2.8 12.7 4.2 18.9 9.8 7.4 12.3
max deviation (%) ±10% ±10% ±5% ±10% ±15% ±5% ±15%
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Figure 1:Mean WER in the speaker train and test models mismatch ex-
periment for the baseline and MATE.

situations. Comparing the best result obtained in the HMM base-
line, 4 Gaussians, the WER reduction then is a70% for MATE,
(MATE std is 1.9% vs. a6.6% for baseline), a14% of reduc-
tion was found for VTLN. This experiment shows the ability of
generalization of MATE in speaker mismatch situations (e.g. test
children with trained adult models). The results,4%, for baseline
are not surprising since HMMs are not able to generate/recognize
samples of unseen data (group mismatch). In this experimentwe
have compared also the effect of the normalization of the covari-
ance matrix as it has been described, as in a previous MATE [5]
was not taken into account. Although the effect can be noticed, it
appears that there not exists an statistically significative difference
in our experiment. The second experiment includes the normaliza-
tion as it does not require any additional computation cost.

In the second experiment, the group model and test examples
are matched so that the variability inside the defined groupscan
be measured. It was evaluated for the complete TIDIGITS corpus
size and results are presented in Table 1. As the corpus size is
bigger in this experiment the effects of the overtraining have not
been evaluated as in the previous one. The model parameters have
been fixed to 1 Gaussian component per state in both baseline and
MATE tests,N = 5 and various ranges of transformation factor
have been evaluated in this case. MATE in this experiment wasre-
trained with one iteration as it has been shown in Section 3. From
the results it is interesting to note that for the best maximum range
of transformation factor for the frequency axis, which is presented
in the last row of the table, it is possible to check that, as expected,
the more compact are the groups it tends to be smaller. For the
more specialized groups: Man, Woman, Girl, Boy, the maximum
transformation factor lays between 5% and 10%, and when they
are merged them into bigger groups the best maximum range has
increased up to a 15%. We have found WER reductions in all the

groups (a 9.7% in mean), but the more significative and applica-
ble to a real system are the last three columns, which correspond
to the merged groups, as in many ASR systems there is no prior
information if the kind of speaker.

5. Conclusions
In this paper we have presented a model for speech feature vector
sequences in which it is believed to exist certain amount of local
variability that the usual HMM framework is not able to model
even the corpus size and the number of parameters is highly in-
creased. The MATE includes naturally frame specific transforma-
tions of the speech in the state observation pdfs, by means ofa
linear projection and a kind of expansion of the states whichdoes
not increase substantially the number of parameters as theyremain
tied across the expansion.

The models have been tested on TIDIGITS corpus in two main
experiments: speaker matched and speaker unmatched training
and testing age-gender group conditions, obtaining good results
in both of them, specially in the high mismatch cases in whichthe
WER reduction can reach to a70% in a relatively small subset of
the corpus and in the smaller mismatch experiments. When the
model is trained with utterances coming from all the groups the
WER reduction can be a12.3%.
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